The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Learning Planning Domains from Non-redundant Fully-Observed Traces:
Theoretical Foundations and Complexity Analysis

Pascal Bachor!, Gregor Behnke?

! Albert-Ludwigs-Universitit Freiburg
2Universiteit van Amsterdam
bachorp @cs.uni-freiburg.de, g.behnke @uva.nl

Abstract

Domain learning is the task of finding an action model that
can explain given observed plan executions, so-called traces.
It allows us to automate the identification of actions’ precon-
ditions and effects instead of relying on hand-modeled ex-
pert knowledge. While previous research has put forth vari-
ous techniques and covers multiple planning formalisms, the
theoretical foundations of domain learning are still in their
infancy.

We investigate the most basic setting, that is grounded clas-
sical planning without negative preconditions or conditional
effects with full observability of the state variables. The given
traces are assumed to be justified in the sense that either no
single action or no set of actions can be removed without
violating correctness of the plan. Furthermore, we might be
given additional constraints in the form of a propositional log-
ical formula. We show the consequences of these assumptions
for the computational complexity of identifying a satisfactory
planning domain.

Introduction

Automated planning is concerned with finding out how to
act in a given environment by means of computation. A do-
main, or action model, specifies available actions along with
the effects they have on the current world state and the con-
ditions under which they can be applied. To be able to utilize
planning algorithms, we require an action model. Modeling
actions, however, can be difficult and expensive, as it usu-
ally requires the knowledge and labor of domain experts.
This drawback, known as the knowledge acquisition prob-
lem, has been identified as a bottleneck for the successful
application of planning systems (Wang 1995; Benson 1996;
Kambhampati 2007; Gregory and Lindsay 2016).

Domain learning is concerned with automatically infer-
ring the preconditions and effects of actions from a given set
of observations. These observations usually take the form of
traces, i.e. plans together with information about the state
before and after each action execution (Jimenez et al. 2012;
Cresswell and Gregory 2011; Arora et al. 2018). In this
work, we consider only the fully-observable case in which
traces contain all state information. If the traces are (par-
tially) unobservable (see e.g. (Yang, Wu, and Jiang 2007;

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

20028

Aineto, Celorrio, and Onaindia 2019)), domain learning can
be more complicated as we might have to infer the existence
of certain unobserved state features.

In most cases, domain learning algorithms are provided
only with positive examples, i.e. traces that are supposed
to be valid in the domain to be learned. The possible in-
ferences when requiring only the validity of the given traces
are limited. Therefore, usually either further assumptions on
the given input are made or there is some other bias toward
certain models. In this work, we will presuppose that given
traces are non-redundant (we say justified) in the sense that
either no single action or no set of actions can be skipped
without violating the validity of the trace. We will then ana-
lyze the problem of deciding whether there exists a domain
in which the given traces are valid and justified. As far as we
are aware, these particular assumptions have not yet been
studied in the context of domain learning. Furthermore, an
analysis of the problem’s computational complexity (in this
or any other formulation) has never been conducted. We aim
at building a firm theoretical foundation that facilitates the
formal definition and analysis of varied domain learning sce-
narios in the future.

Problem Definition

We adopt the popular classical planning formalism STRIPS
(Fikes and Nilsson 1971). The environment state will be
modeled using a set of variables (or state variables) that can
either be contained (true) or missing (false) in a state. Ac-
tions are characterized by their preconditions, variables that
must be true in—, deletions, variables that will be removed
from—, and additions, variables that will be added to a state
in which the action is executed. A domain is the definition
of actions’ preconditions and effects. Note that we do not
allow negative preconditions or any other non-atomic pre-
conditions or effects.

Definition 1. § = (pre, del, add), where pre = dpre, del =
Odel, and add = d.qq are relations between actions and
variables, is a domain if (pre Udel) N add = (.

We let A(6) == {a | Iz.(a,x) € Jaqa } and V(§) =
{z]3Ja.(a,z) € dadd }-

A relation rel between actions and variables is a set of
pairs (a,) such that a is an action and z is a variable. We let
rel(a) = {z | (a,z) € rel Yand rel ' (z) == {a | (a,) €

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

a b ¢ a
r e e SN
Y e o
z e o o

Figure 1: The trace 7 = (m, v), where 7 = (a, b, ¢, a, g) and

V:({$}7{$7y}7{y72}7{$72}a{wvz})'

rel }. The condition (pre Udel) N add = () rules out con-
tradictory or redundant effects. Namely, both deleting and
adding a variable and adding a variable that is necessarily
already present. This is particularly important in the context
of domain learning because redundant effects can never be
observed in a given trace.

Definition 2. A state is a set of variables. The applica-
tion of the action a to the state v in the domain § =

(pre, del, add) is

app(d,v,a) == {(V \ del(a)) Uadd(a), pre(a) C v

1 otherwise.

Planning

The planning problem is usually posed as follows. Given a
domain, find a sequence of actions (a plan) that, when start-
ing in a given initial state, yields a state that contains all
variables in a given set of goal variables. Such plan is said
to be successful.

In this work, instead of an initial state, we use an op-
tional initialization action i that adds the appropriate vari-
ables; and instead of goal variables we use a goal action g
that has the appropriate variables as preconditions. We will
assume that when the first action of a plan is executed, all
variables are false and that the final action of a successful
plan is the goal action. Mocking initial state and goal vari-
ables using dedicated actions is by no means a weakening of
the definition and reduces the technical overhead consider-
ably, especially in the context of this paper. This technique
has been used before, e.g. by Yang, Wu, and Jiang (2007).

Definition 3. A plan © = (m;); is a sequence of actions. A
trace T = (m,v) is a plan T = T, along with a sequence of
states v = 1, such that |1| == || = |v|.

We let A(m) = \U;{mi} and we let (m,v)"(x',1") =
(ror' vV,

Note that (s;); is shorthand for (sz);‘gl and s_; =
5|s|—i» Where |s| denotes the length of the sequence s.
st == (sgy...,8-1,t0,...,t_1) denotes the concatena-
tion of s and ¢. An example trace 7 is shown in Figure 1.
Our intended semantics for traces is that the action m;; is
applied to the state v; with v;,1 as the resulting state. In 7,
for example, we see that applying the action c to the state
{z,y } results in the state { y, z }.

Definition 4. The trace of the plan 7 in the domain 6, de-
noted T8,), is the unique trace (w,v) such that

vy = app(d, 0, 7o)
Vit1 = app(0, Vi, Tiy1)

20029

if it exists, else 1. The set of valid plans in the domain § is

M) ={n | T(6,m) #L}.

We can now formally define the planning problem.

Definition 5 (Planning). Given a domain § and a goal ac-
tion g, find a plan w € T1(0) such that m1_1 = g.

The problem is PSPACE-complete in general and NP-
complete when limited to plans of length at most %k, where k
is polynomial in the size of the input (Bylander 1994).

Plan Justification

We are usually interested in finding a plan that is not only
successful in reaching the goal but also does so quickly and
without detours. We will formally define two such additional
qualities, namely well-justification and perfect justification.
We adopt both notions from Fink and Yang (Fink 1992; Fink
and Yang 1992, 1993).

Definition 6. s = (s;); is a subsequence of t = (t;); if
s = (ti;); for some (iz); with ij < i;41. s is a proper
subsequence of t if s is a subsequence of t and s # t.

For example, (1,1) and (2, 3, 1) are proper subsequences
oft =(1,2,3,2,1,3),but (3, 1, 2) is not a subsequence of £.
Definition 7.

(i) @ < wif o’ = (mo,..

some i < |m| — 1.
(ii) @ < 7 if 7 is a proper subsequence of T such that
7TL1 = T_1.

i1, Tig 15+, T—1) for

A plan 77’ < 7 contains all but a single action of 7. A plan
7w’ < 7 contains all but arbitrarily many actions of 7. In both
cases the final action w_; must not be missing.

Definition 8. A plan © € TI(9) is well-justified (perfectly
Justified) in the domain ¢ if there exists no ©' € TI(§) such
that 7" < 7 (7' <).

Remark. If 7' < =, then ©' < m and therefore perfect
Justification implies well-justification.

For a plan 7, the number of plans 7’ < 7 is at most linear
in ||, but the number of plans 7’ < 7 can be exponen-
tial in |7|. In fact, we can efficiently test a plan for well-
justification, but perfect justification cannot be checked effi-
ciently unless P = NP (Fink and Yang 1992).

Lemma 1. Given a plan w and a domain §, deciding
whether m is well-justified in § is in P. O

Lemma 2. Given a plan w and a domain §, deciding
whether T is perfectly justified in § is coNP-complete. [

Domain Learning

The objective of domain learning is to find a domain that
explains a given (set of) trace(s). Given a trace 7 = (m,v),
a domain ¢ explains (or is consistent with) T if the state se-
quence v results from executing 7 in J. In our proofs, we
restrict ourselves to learning from a single trace. We will,
however, show that with regard to the computational com-
plexity this does not weaken the results (Lemma 8).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Definition 9. The set of domains that are consistent with
the trace 7 is A(1) = {§ | T(0,7=) = 7T }. A trace T is
consistent if A(1) # (.

Based on the semantics of action application (Defini-
tion 4), we can specify necessary and sufficient conditions
for a domain to be consistent with a trace. Namely, that (i)
the preconditions of an action must hold in the state to which
they are applied and (ii) deletions (additions) to a state in the
trace must correspond to a delete (add) effect of the appro-
priate action and vice versa. These properties are formulated
in the following alternative definition of consistency.

Lemma 3. (pre,del,add) € A((w,v)) if and only if

pre(mg) =10 (1
del(my) C 8)
add(ﬁo) =1 (3)
and
pre(miy1) Cv; “
v \ Vg1 C del(misr) ol (5)
Vit1 \ v C add(miz1) C vigq, (6)

where XC denotes the complement of X, i.e. X C Ve —
Xny =0 O

As an example, let us consider our trace as shown in Fig-
ure 2. From the trace we can infer that add(a) = {« } and
del(a) = {y}. This follows from the fact that the action
a, when it first occurs, can be observed to add exactly x
and, when it occurs for the second time, can be observed
to delete y and not delete z. This corresponds to Proposi-
tions (3) and (5) of Lemma 3. Similarly, we can infer that
y € add(b), z € del(c), and z € add(c). Whether or not,
for example, b deletes z or ¢ adds y can, however, not be
observed. Regarding preconditions, we only have the upper
bounds from Propositions (1) and (4) and cannot make any
positive inferences. Under the assumption that the trace is
well-justified, however, we can infer that pre(g) = { z, z }.
This follows from the fact thatif « ¢ pre(g), (a,b,c,g) <7
is a valid plan and if z ¢ pre(g), (a,b,a,g) < 7 is a valid
plan. Furthermore, we can infer that y must be a precondi-
tion of ¢ and x must be a precondition of b or c.

Therefore, if we want to learn more than is implied sim-
ply by the semantics of action application, in particular any
preconditions, we might want to learn from justified traces.
We will define the domain learning problem accordingly.

Definition 10 (Domain Learning). Given a trace T, find
a domain § € A(T) in which T (that means Tr) is well-
Jjustified (perfectly justified).

Lin and Bercher (2021) study the complexity of the re-
lated problem domain modification. There, we are given an
almost correct domain ¢ and a plan 7 that is not consistent
with 4, i.e. 7 ¢ T1(4). We are then searching for a domain ¢’
consistent with 7 having as few differences to J as possible.
They do not consider justification.

20030

a b ¢ a.g
T + o x +: 0
Yy X + © X
z + 0.0

Figure 2: Example trace 7 with observed additions 4 and
deletions x and preconditions @ necessary for the justifica-
tion of the trace. If additionally « € pre(b) U pre(c), the
trace is both well-justified and perfectly justified.

Preliminary Results

Next, we introduce a few constructions that are essential to
the subsequent proofs. First, we define a notion of relative
restrictiveness for domains that will allow us to discard most
candidate domains when searching for a domain in which a
given trace is justified. Second, we define an encoding that
allows us to enforce preconditions and effects in a trace.
Third, we define a trace combination procedure that allows
us to work with multiple traces instead of a single one.

The Domain Restrictiveness Order

We introduce the order relation < for domains. If 6 < &', we
say ¢ is more restrictive than ¢'.

Definition 11. Let § and &' be domains. We let 6 < &' if
dpre 2 0'pre, Odel 2 0'del, and dagd C ¢ ada. For a given
trace T we let <;:= (<, A(T)).

Note that § < ¢’ holds iff § has at least the preconditions
and delete effects— and at most the add effects of ¢'.
Lemma 4. Both < and <, form a lattice.

A lattice is a relation that is reflexive, antisymmetric, and
transitive (i.e. a partial order) such that any two elements
have a unique infimum and a unique supremum.

Proof. Because C (2) forms a lattice with infimum N (U)

and supremum U (N) and < is isomorphic to the product
lattice © x 2D x C, < forms a lattice with

lnf{ 57 5/ } = (5Pl‘e U (%)rev 6del U 5:ie17 6add N 5;dd)
Sup{ 57 o } = (51)1'9 n 5{:)1‘97 dde1 N 5:1917 dada U 5;dd)'
Note that § € A(7) if and only if a set of equations of the
form X C v C Y, where v is a set of state variables of ¢, is

fulfilled (Lemma 3). Furthermore,
XCu,CY = XCovniv' CovUud CY
and therefore
5,0' € A(t) = inf{4,d' },sup{d,8'} € A(r). O

The following result reveals the strength of the lattice
structure of the domain space: the more restrictive a domain,
the fewer plans it admits.

Lemma 5. If6 < ¢/, then I1(0) C TI(¢').

Proof. We show that 7 € II() implies 7 € II(¢) via in-
duction over the length ¢ of the plan 7.

Induction hypothesis:

() (mo,...,me—1) € II(&)
(i) vy D vy, where v = T'(0,), and v/ = T(¢',)

v

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

X+ o

ey

Figure 3: 7 in min A(7).

(=0
() € II(¢")
Vo = 0aaa(70) 2 dada (7o) = 1o
{=i+1:
Vigr = (Vf\ 0ger(Ti1)) U dpaa(mit1)
2 (¥i \ ddel(mit1)) U bada (Tit1)
= Vit1 2 Opre(Tit1) 2 Opre(Tit1)
From (7o, ..., mi—1) € (') and d,,0(miv1) € vy

follows (mo, ..., m;) € II(d). O

The fewer plans a domain admits, the fewer counterexam-
ples to the well- or perfect justification there can be. We can
take advantage of this fact by considering only such domains
that restrict the valid plans as much as possible.

Definition 12. Let A be a set of domains. § € A is a
most restrictive domain of A, denoted § € min A, if 0 is
<-minimal in A.

For convenience, we let min A(7) denote the most re-
strictive domain of A(7) that does not use any actions or
variables that do not occur in 7. If 7 is consistent, min A(7)
exists and can be constructed efficiently.

We sketch the most restrictive domain of our example
trace in Figure 3. Consult Figure 4 for an overview of the
symbols we use in such diagrams throughout this paper.

Lemma 6. If 7 is well-justified (perfectly justified) in any
d € A(7), then 7 is well-justified (perfectly justified) in
min A(T).

Proof. TI(min A(7)) C II(§) (Lemma 5) and therefore any
counterexample to the well-justification (perfect justifica-
tion) of 7 in min A(7) is a counterexample to the well-
justification (perfect justification) of 7 in §. O

Note that the notion of safe action model from Stern and
Juba corresponds to our notion of relative restrictiveness <,
and their F'(II7) or Mggan corresponds to our most re-
strictive domain in an SAS™ setting (Stern and Juba 2017,
Juba, Le, and Stern 2021).

Encoding a Domain in a Trace

We show that for a given domain § we can construct a trace
t(d) such that any action a adds (deletes) a variable = in §
if and only if a adds (deletes) x in any domain consistent
with £(¢). Furthermore, if x is not a precondition of a in d,
it won’t be a precondition of a in any domain consistent with
t(8). Note that the presence of preconditions, opposed to the
their absence, cannot be observed and therefore cannot be

20031

The variable is

present a precondition deleted added
o yes no no no
© yes yes no no
X no no yes no
® no yes yes no
+ yes no no yes
Figure 4: Legend.

Pa @& Q @
V(9) \ (pre(a) Udel(a) Uadd(a))) ¢}
add(a) + 4+
pre(a) \ del(a) @ © &) ©
del(a) \ pre(a) X) X
pre(a) Ndel(a) ® ® (<) ®
Pa + o ®
a + o

Figure 5: The trace 72 as in the proof of Lemma 7. We depict
one representative for each of the five possible classes of
variables of § as well as the auxiliary variables p, and g,.

encoded in a trace. We can, however, enforce them at least
for the most restrictive domain in which there are as many
preconditions as possible.

Lemma 7. For any domain § there exists a trace t(8) such

that for any a € A(S), x € V(0), and §' € A(t(9)) it holds

(i) (a,z) € 84 < (a,2) € ddel
(a,ac) S (5;dd — (a,sr:) € 0add
(ii) (a,7) & dpre = (2,7) ¢ Opye
(a,2) € dpre = (a,2) € minA(t(0)) re
(iii) ©(9) is perfectly justified in min A(t(9)).
Proof. Besides the actions and variables from 0, t(J) uses
the action g, as well as for each a € A(J) the actions p, and

g, and variables p, and g,. The construction is sketched in
Figure 5. Let t(8) = (" aca(s) ™) ~((g.0)), where

7 = (7*,1%) = ((Pa, @, da, @), (1/871/‘11,”;,1/;))
V5 = Opre(a) U {pa}

v} = app(d, a, v§)

vy = 5pre(a) U V() \ dada(a)) U{ g}

vy = app(d, a,v3).

Let 0’ € A(t(d)), a € A(d), and = € V(9).

(i) If is a deletion of a in ¢, then & € 1§ \ v/ witnesses
that x is a deletion of a in §’. If is not a deletion of a
in 0, then x € v§ witnesses that z is not a deletion of
ain ¢’. If x is an addition of a in ¢, then x € v} \ 1}
witnesses that x is an addition of a in ¢’. If z is not an
addition of a in d, then = ¢ v} witnesses that z is not
an addition of a in ¢’. These statements correspond to
propositions (5) and (6) of Lemma 3.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Mo v Mg Moy Wy e woy W Wy e
) e ®
e ® o e ® o
e ®
T Ty o e o ®
+ e}

Figure 6: Sketch of the combination of two traces as in
Lemma 8. The lower part depicts the variables and z’.

(i) If z is not a precondition of a in 4, then z ¢ v wit-
nesses that x is not a precondition of a in ¢’. This cor-
responds to proposition (4) of Lemma 3. If x is a pre-
condition of a in 4, then = € v§, 3 such that z is al-
ways present when a is executed and therefore x is a
precondition of a in min A(t(9)) by <-minimality.

Let 7' < t(0), and let (a;); be the enumeration
of A(d). Note that no a; modifies a p,; or qq;. In
min A(t(9)), g requires the variable g,_, and there-
fore q,_, € A(x’). Similarly, q,, requires the ex-
ecution of p,, and pg,,, requires the execution of
qq;- It follows pg,,qq., € A(x’) for all i. Further-
more, pre(g) 2 add(a_1), pre(qq;) 2 add(a;), and
pre(pa,.,) 2 add(a;). It follows 7" = £(9),. 0O

(iii)

Trace Combination

As the final preliminary result, we show that, regarding the
computational complexity, there is no difference between
learning from a single trace and learning from multiple
traces. For given traces 7 and 7/ we construct a trace 7 A 7/
that combines 7 and 7/ in the sense that 7 A 7/ is justified if
and only if both 7 and 7’ are justified.

Lemma 8. For any two traces 7,7’ there exists a trace
7 A 7’ such that the following are equivalent.

(i) There exists a domain & € A(T A7T') in which T AT’ is
well-justified (perfectly justified).

(ii) There exists a domain 6 € A(7)NA(7") in which both
7 and T’ are well-justified (perfectly justified).

Proof. Let 7 = (m,v) and 7' = («/,v') and w.lo.g. let
m_1 # w’_,. Besides the actions and variables from 7 and
7/, 7 A 7' uses the action g and the variables x and z’.

7 A 7' is constructed from (1) a copy of 7 except that the
last state is replaced by { x }, followed by (2) a copy of 7/
except that the last state is replaced by {2’ } and all other
states additionally contain the variable z, followed by (3)
another copy of 7’ except that the last action is replaced by
g and all other states additionally contain the variable z’.
The construction is shown in Figure 6.

Utilizing Lemma 6, we can restrict ourselves to the do-
mains min A(7 A 7') and min(A(7) N A(7')).

(i) — (4%): A counterexample to the well-justification
(perfect justification) of 7 or 7/ induces a counterexample to
the well-justification (perfect justification) of 7 A 7/ as we
can simply leave out the same actions in 7 A 7/.

(i) — (i): Note that 7 A 7’ is constructed in a way
that ensures that no actions other than 7_; and 7/, can

20032

modify z or z’. Let ©/ be a counterexample to the well-
justification (perfect justification) of 7 A 7/. 7" must contain
7' asz’ € pre(g) and add™*(2') = { «’_, }. Then, it must
also contain 7_; as z € pre(n’ ;) andadd ' (z) = {7_1 }.
Now the first, the second, or the third component, as delim-
ited by m_1, 7’4, and g, of 7" induces a counterexample to
the well-justification (perfect justification) of 7 or 7’. O

With the operation A we can combine an arbitrary number
of traces. And, if we use a simple heuristic, we can avoid an
exponential blowup of the constructed trace. A consequence
of this is that domain learning with a single trace is polyno-
mially equivalent to domain learning with multiple traces.

Definition 13 (Domain Learning — Multiple Traces). Given
a set of traces T' = { 1; }4, find a domain 6 € (; A(7;) such
that all T; are well-justified (perfectly justified) in 6.

Lemma 9. Given a set of traces T, we can construct \T in
polynomial time.

Proof. The trick is to duplicate the smaller of two traces
when combining. The number of additional variables is lin-
ear in |T'| and the construction requires no expensive oper-
ations. We show that the length of A7 = A, 7; is at most
twice the sum of the lengths of the 7; using induction.

k+1 k y
A il = [\ 7|+ el + min{ | A 7 74|}
i=1 i=1 =t
k+1
O

k
< QZM\ + 2 |Tpy| =2
i=1

Il
i=1

Computational Complexity

Well-equipped with the results from the previous section,
we can now work out the main results of this paper. We will
show that the complexity of domain learning is P for well-
justification and coNP-C for perfect justification and there-
fore equivalent to that of checking plan justification (Lem-
mata 1 and 2). We also show that imposing additional con-
straints in the form of a propositional logical formula on the
domain to be found increases the complexity to NP%, where
¢ is the complexity of the basic domain learning problem.

Theorem 1. Given a trace T, deciding whether there exists
a domain 6 € A(T) in which T is well-justified is in P.

Proof. 1t suffices to check whether 7 is well-justified in
min A(7) (Lemma 6). We can iterate over all potential coun-
terexamples 7' < 7, and check if 7’ € II(min A(7)) in
polynomial time.

For the next result, we adapt a construction originally in-
troduced by Fink and Yang (1992).

Theorem 2. Given a trace T, deciding whether there exists
a domain in which T is perfectly justified is coNP-complete.

Proof. Membership: It suffices to check whether 7 is per-
fectly justified in min A(7) (Lemma 6). We can guess a po-
tential counterexample ©’ < 7, and check whether 7’ €
II(min A(7)) in polynomial time.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Hardness: Given a propositional formula () in con-
junctive normal form, we construct a domain § and a plan
« such that ¢ is satisfiable if and only if 7 is not perfectly
justified. Then there exists a domain in which t(6) AT(d,)
is perfectly justified if and only if ¢ is unsatisfiable (Lem-
mata 7 and 8).

For constructing and 7, we use the actions i, r, and g
and state variables ¢*, and g. For every propositional variable
number j we use the action y; and the state variables yj and
ij For every literal number d in clause number k, we use
the actions 1y, q and the variables ¢, and [, 4. Let

©p = /\\/Ek,d» where gk,d S {yj,ﬁyj }j
k d

=@ (760) "0 (7 70) @
J k d
and let § be such that
pre(i) =0 del(i) =0 (below)
pre(y;) =0 del(y;) = {y; } add(y;) = {y; }
pre(r) = {y; }; del(r) = {lpa}txa add(r) ={y;};
(below) del(lk,)= 0 ad(l(lk,d) = {lk,d, Ck}
(below) del(g) =0 add(g) =0
and

add(i) = {i* } U {lna beaU{y; };
e = {211 27,
pre(g) = {i" } U {lka }x.aU{cx }n-

Claim: If ¢ is satisfiable, then 7 is not perfectly justi-
fied in 6.

Lety:{y; }; = {L, T} besuch that vy |= ¢ and let
V={(@) 7)) =T}
L={(1krda) |7 FEldlrd
" =WV (D (@)

For each clause number k there is a d such that v =
i q and therefore (1 4) € L. Let j be such that ¢ 4 €
{y;,~y; }. Itholds £ g = y; <= (y;) € Y such that
1j,q4 is executable as it occurs in 7r’. Therefore, g is also ex-
ecutable as it occurs in 7’ and 7’ is a counterexample to the
perfect justification of 7 in §.

Claim: If 7 is not perfectly justified in §, then ¢ is satis-
fiable.

Let 7’ < be such that 7’ € II(4). We start by show-
ing that i € A(x’) and r ¢ A(x’). First, i € A(n')
follows from i* € pre(g) and add™'(i*) = {i}. Sec-
ond, suppose 7’ contained r. Then 7’ also contains all y; as
y; € pre(r) and addfl(y;) = {y, }. Furthermore, 7’ con-
tains all 1, 4 as I 4 € pre(g), addfl(lk,d) ={1,1f,4 }and
li,a € del(r). It follows 7" = 7, which contradicts 7’ < 7.

From i € A(n’) and r ¢ A(x’) follows that 7’
(1)" (T Y) (T L) (g) for some Y C {(y;)}; and
L C{(1k,a) tra-

20033

Figure 7: Counterexample to the perfect justification of
T'(d,) corresponding to ¢ = (yo V y1) A (—yo V y1) as
in the proof of Theorem 2.

We now lety : {y; }; = {L, T } be such that

. (v ey
otherwise.

T

v ={ |

For each clause number k, because ¢, € pre(g), there is a
d such that (15 4) € L. Let j be such that ¢, 4 € { y;,~y; }.
It holds (y;) € ¥ <= lq = y; <> 7v(y;) = T and
therefore v |= (), 4. It follows v = . O

Domain Learning with Expert Knowledge

Realistically, a domain learning process does not rely solely
on the provided traces. The learner might also have access to
knowledge that does not come from given traces but from a
domain expert. We want to investigate how such additional
knowledge can affect the complexity of domain learning.

In order to capture potentially complex constraints, we
utilize propositional logical formulas. The atoms of these
formulas shall be of the form = € rel(a), where z is a
state variable, a is an action, and rel € {pre,del,add }.
We say § = 1 if the formula 1) is valid in the domain .
This way, we can, for example, model the expert knowl-
edge that the action a has either z or y as a precondition:
(x € pre(a) Vy € pre(a)) A =(z € pre(a) Ay € pre(a)).

Domain learning with expert knowledge is related to both
domain modification (Lin and Bercher 2021) and model rec-
onciliation (Sreedharan, Bercher, and Kambhampati 2022),
which has the same setting as domain modification but addi-
tionally requires that the given plan is optimal in the modi-
fied domain. The constraint that the domain to be found can
have at most k£ modifications from the base domain can also
be expressed as a propositional logical formula. k-bounded
model reconciliation is Eg-complete; their results are, how-
ever, orthogonal to ours as we assume full observability,
while in their setting only the initial and the goal state can
be observed.

First of all, we see that constraining the domain to satisfy
a monomial, i.e. a conjunction of atoms and negated atoms,
does not change the computational complexity.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Lemma 10. Given a trace T and a monomial 1), deciding
whether there exists a domain 6 |= 1 in which T is well-
Jjustified (perfectly justified) is in P (coNP-complete).

Proof. We can construct a <-minimal domain that is con-
sistent with both 1) and 7 in polynomial time (if it exists). It
suffices to check well-justification (perfect justification) in
such domain. Hardness is implied by Theorems 1 and 2. [

When allowing arbitrary formulas, however, the complex-
ity increases. In fact, we will show that the resulting com-
plexity is NP%, where € is the complexity of the basic do-
main learning problem.

Theorem 3. Given a trace T and a formula 1), deciding
whether there exists a domain 6 |= 1 in which T is well-
Jjustified is NP-complete.

Proof. Membership: Guess an interpretation of) and apply
Lemma 10.

Hardness: Let 7 = ((),()). This trace is well-justified
in any domain. We can transform the atoms x; of a given
propositional logical formula ¢, into atoms of the form x; €
add(a). Then the resulting formula ¢} is satisfiable if and
only if ¢ is satisfiable and if and only if there exists a domain
d = 9 (in which 7 is well-justified). O

Theorem 4. Given a trace T and a formula), deciding
whether there exists a domain § |= 1 in which T is perfectly
justified is Y25 -complete.

Proof. Membership: As in the proof of Theorem 3.

Hardness: Given a propositional formula ¢(Z;7%) in con-
junctive normal form, we construct a formula) and a trace 7
such that there exists an assignment x : {xz; }; — { L, T}
such that o[y] is unsatisfiable if and only if 7 is perfectly
justified in some 0 |= 1.

We use the actions and variables as in the proof of The-
orem 2 and additionally the action x and the variable z*
as well as for every x-variable number ¢ the variables x;-
and z; . Let

Y= /\\/gkvd with £x.q € {y;, ~y; }; UL @i, @i b

k d

= (T60) @ (77 0)) e

7 k d

Let our domain be as in the proof of Theorem 2 except
that r now also adds the variables { z;,z; };, x adds the
variable z*, and g has x* as a precondition. Additionally,
we constrain x to add either one of x;- or x; for all i. We
encode the domain and constraint in the formula).

Note that the trace 7 of 7 in our domain does not depend
on which z;- or] are added by x. These additions cannot
be observed. See Figure 8 for an example trace.

Claim: There exists x : { z; }; — { L, T } such that p[x]
is not satisfiable if and only if there exists a domain § =
in which 7 is perfectly justified.

In any § = 1, the add effects of x correspond to a
truth assignment y of the x-variables. Any counterexam-
ple to the perfect justification of 7 in such § must be of

20034

—
e

(e}
[l

[
=

=

=]

-

o | R
O | ™
o
o

+ o

Figure 8: The trace of 7 corresponding to ¢ = (yo V xg) A
(y1 V —zg) as in the proof of Theorem 4. This trace is not
perfectly justified in any domain § = .

the form 7’ = (1)~ (7 Y) ~(x)” (" L) ~(g) for some
Y C {(yj)};» L € {(1k,4) }k,a such that 7’ witnesses
the satisfiability of ¢[x] and vice versa. The validity of
37Z.—3y.¢[Z, 7] is therefore equivalent to the existence of a
domain ¢ |= ¢ in which 7 is perfectly justified. O

Conclusion

We gave a formal definition of domain learning and pre-
sented a theoretical analysis. Finding a domain that is con-
sistent with a given trace is simple, but the possible infer-
ences are limited if the given traces are not assumed to
be justified. Regarding the problem of deciding whether
there exists a domain such that a given trace is justified,
we showed that it suffices to consider the most restrictive
domain, which maximizes preconditions and deletions and
minimizes additions. For well-justification, the problem has
been shown to be in P. For perfect justification, however,
the problem is coNP-complete. Additional expert knowl-
edge encoded in a propositional logical formula can increase
the complexity to NP-C and X5, respectively.

Beyond the formulation as in this paper, one can find
many research directions and open questions. One could
consider stronger notions than well- or perfect justification,
e.g. by presupposing optimality, i.e. that there exists no
shorter plan that reaches the goal. Verifying optimality is,
as perfect justification, coNP-complete (Lin et al. 2024). In
a preliminary analysis we obtain the same complexities for
domain learning under optimality as with perfect justifica-
tion. Instead of changing the assumptions on the given traces
one could also impose additional constraints on the domain
to be found such as limiting the number of preconditions or
effects. Ultimately, we can also change the underlying plan-
ning problem to obtain a more expressive formalism. For
example, we could allow conditional effects or parametrized
actions. This could also help to align our analysis with the
settings found elsewhere in the literature. We plan to inves-
tigate partially observable and unobservable states next.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

References

Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence, 275: 104-137.

Arora, A.; Fiorino, H.; Pellier, D.; Métivier, M.; and Pesty,
S. 2018. A Review of Learning Planning Action Models.
The Knowledge Engineering Review, 33e20: 1-25.

Benson, S. 1996. Learning Action Models for Reactive Au-
tonomous Agents. Ph.D. thesis, Stanford University.

Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence,
69(1-2): 165-204.

Cresswell, S.; and Gregory, P. 2011. Generalised Domain
Model Acquisition from Action Traces. In Proceedings of
the 21st International Conference on Automated Planning
and Scheduling (ICAPS 2011), 42-49.

Fikes, R.; and Nilsson, N. 1971. STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving.
Artificial Intelligence, 2(3—4): 189-208.

Fink, E. 1992. Justified Plans and Ordered Hierarchies.
Master’s thesis, University of Waterloo.

Fink, E.; and Yang, Q. 1992. Formalizing Plan Justifications.
In Proceedings of the 9th Canadian Conference on Artificial
Intelligence, 9—14.

Fink, E.; and Yang, Q. 1993. A Spectrum of Plan Justifica-
tions. In Proceedings of the AAAI 1993 Spring Symposium,
23-33.

Gregory, P.; and Lindsay, A. 2016. Domain Model Acqui-
sition in Domains with Action Costs. In Proceedings of the
26th International Conference on Automated Planning and
Scheduling (ICAPS 2016), 149-157.

Jimenez, S.; De La Rosa, T.; Fernandez, S.; Fernandez, F.;
and Borrajo, D. 2012. A Review of Machine Learning for
Automated Planning. The Knowledge Engineering Review,
27(4): 433-467.

Juba, B.; Le, H. S.; and Stern, R. 2021. Safe Learning of
Lifted Action Models. In Proceedings of the 18th Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning (KR 2021), 379-389.

Kambhampati, S. 2007. Model-lite Planning for the Web
Age Masses: The Challenges of Planning with Incomplete
and Evolving Domain Models. In Proceedings of the 22nd
National Conference on Artificial Intelligence (AAAI 2007),
1601-1604.

Lin, S.; and Bercher, P. 2021. Change the World - How Hard
Can that Be? On the Computational Complexity of Fixing
Planning Models. In Proceedings of the Thirtieth Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2021), 4152-4159.

Lin, S.; Olz, C.; Helmert, M.; and Bercher, P. 2024. On the
Computational Complexity of Plan Verification, (Bounded)
Plan-Optimality Verification, and Bounded Plan Existence.
In Proceedings of the 38th AAAI Conference on Artificial
Intelligence (AAAI 2024).

20035

Sreedharan, S.; Bercher, P.; and Kambhampati, S. 2022. On
the Computational Complexity of Model Reconciliations. In
Proceedings of the Thirty-First International Joint Confer-
ence on Artificial Intelligence (IJCAI 2022), 4657-4664.

Stern, R.; and Juba, B. 2017. Efficient, Safe, and Probably
Approximately Complete Learning of Action Models. In
Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence (IJCAI 2017), 4405-4411.

Wang, X. 1995. Learning by Observation and Practice: An
Incremental Approach for Planning Operator Acquisition. In
Proceedings of the 12th International Conference on Ma-
chine Learning (ICML 1995), 549-557.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-

els from plan examples using weighted MAX-SAT. Artifi-
cial Intelligence, 171(2-3): 107-143.

