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Abstract

Domain model acquisition has been identified as a bottleneck
in the application of planning technology, especially within
narrative planning. Learning action models from narrative
texts in an automated way is essential to overcome this bar-
rier, but challenging because of the inherent complexities of
such texts. We present an evaluation of planning domain mod-
els derived from narrative texts using our fully automated,
unsupervised system, NaRuto. Our system combines struc-
tured event extraction, predictions of commonsense event re-
lations, and textual contradictions and similarities. Evaluation
results show that NaRuto generates domain models of sig-
nificantly better quality than existing fully automated meth-
ods, and even sometimes on par with those created by semi-
automated methods, with human assistance.

Introduction
AI planning generates action sequences, i.e., plans, from the
initial problem state to the goals. To construct such plans,
AI planners require action models in a declarative planning
language, such as the Planning Domain Definition Language
(PDDL) (McDermott et al. 1998). Building action models by
hand is labor-intensive and demands domain expertise, driv-
ing the need for methods that ease this process (e.g., Lin,
Grastien, and Bercher 2023). It is particularly challenging in
applications of planning to narrative generation (e.g., Porte-
ous, Charles, and Cavazza 2013), due to the large variety of
activities that occur in unstructured narrative texts.

Recently, researchers have attempted to extract action
models from narrative texts such as short stories and movie
synopses (Hayton et al. 2017; Huo et al. 2020; Hayton et al.
2020). However, the methods proposed so far either gener-
ate quite simple and highly specific action models, or rely
on human effort to complement or correct automatic extrac-
tion. Fully automated approaches have been applied to in-
structional texts such as recipes, manuals and navigational
instructions (Mei, Bansal, and Walter 2016; Lindsay et al.
2017; Feng, Zhuo, and Kambhampati 2018; Olmo, Sreedha-
ran, and Kambhampati 2021) (or, in some cases, transcrip-
tions of plans generated from a ground truth domain into
text). Such texts, however, lack many of the complexities of
narrative texts, which are typically more colloquial and use
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Input: Bryan hits Jack in the face.

Output:
(:action hit
:parameters (?x - subject ?o - object)
:precondition (and (close-to ?x ?o)

(angry-at ?x ?o)
(in-a-fight ?x ?o))

:effect (and (yell-at ?o ?x)
(injured ?o)
(not (close-to ?x ?o))))

Figure 1: Input: A narrative sentence. Output: The corre-
sponding generated action model.

complex clauses to express, e.g., conditional events. Hence,
narrative texts are more difficult to comprehend, and how
to automatically extract action models from them is still an
open question.

We present NaRuto1 (an abbreviation of “narrative” and
“automated”), a fully automated system that derives plan-
ning action models from narrative texts in two stages: The
first stage extracts structured representations of event occur-
rences from narrative text, and has been described in detail in
a previous paper (Li, Haslum, and Cui 2023). Here, we focus
mainly on the second stage, which constructs action models
by predicting preconditions and effects of extracted events
using commonsense relations. We use a GPT (Radford et al.
2018) and BART (Lewis et al. 2019) based model, fine-tuned
on commonsense knowledge graphs (Sap et al. 2019), which
we call COMET-BM, to predict event preconditions and ef-
fects. Given an event description and a relation type (precon-
dition, effect, or reaction) as input, it generates descriptions
of corresponding concepts with the highest probabilities. We
compare the generated models with the results of previous
methods in two classical narrative planning domains. Re-
sults indicate that NaRuto consistently generates superior
action models, surpassing SOTA fully automated methods
and sometimes even methods that rely on human input.

1The source code of NaRuto system is at https://github.com/
RichieLee93/NaRuto.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20194



Background and Related Work
In narrative texts, events tell us what happened, who or what
was involved, and where. Semantic role labelling (SRL)
(Gildea and Jurafsky 2002) identifies verbs and their argu-
ments, as spans of text, and labels the arguments with their
semantic role (e.g., agent, patient, modal modifier, etc), pro-
viding a basis for event extraction. However, current SRL
methods fail to distinguish certain semantic relations be-
tween events.

Events as arguments Many verbs can take, or require, a
clausal complement, i.e., an argument of the event verb is
itself an event. For example, consider this variation of the
sentence in Figure 1: “Bryan tries to hit Jack”. Here, the
event verb is “try”, and its argument is the event “[Bryan]
hit Jack”. Clearly, the preconditions and effects of this event
may differ from those shown in the example. Event argu-
ments can be nested: If “Daniel sees Bryan try to hit Jack”,
then the (complex) event “Bryan try ([Bryan] hit Jack)” is
itself the argument of “see”. Since the occurrence of argu-
ment events depends on the main event, we regard the main
and argument events as a whole by merging their verbs (e.g.,
“try” and “hit” become “try to hit”).

Events as conditions Narrative texts frequently mention
events that happen only if or when some condition(s) hap-
pens. For example, in “She will hate me if I tell the truth.”,
the event with the verb “tell” after “if” is a condition. Un-
like argument events, such conditional events are not gen-
erally dependent on the conditioned event. Thus, we distin-
guish such conditional events from their consequent events
and generate actions from them separately.

Action model We target the classical STRIPS formalism
(Geffner and Bonet 2013). A STRIPS action model consists
of four components: the action name, parameters, precondi-
tions, and effects. Precondition and effects are conjunctions
of literals, formed from domain predicates with arguments
drawn from the action’s parameters, representing what must
hold for the action to be applicable, and what becomes true
and false as a result of applying it, respectively.

Action Model Generation From Narratives
Extracting action models from text has recently gained in-
terest in AI planning. Sil and Yates (2011) combined web
text correlations and supervised learning to identify pre- and
post-conditions of verbs. Branavan et al. (2012) used lin-
guistic cues and reinforcement learning to learn action pre-
conditions, while Manikonda et al. (2017) formed incom-
plete action models by extracting plan traces from social me-
dia texts.

Methods of event extraction vary, from using the de-
pendency parse structure to neural language models and
reinforcement learning. However, Branavan et al. (2009),
Yordanova (2016), Lindsay et al. (2017), Feng, Zhuo, and
Kambhampati (2018), Miglani and Yorke-Smith (2020), and
Olmo, Sreedharan, and Kambhampati (2021) focus on in-
structional texts, such as recipes, game-play instructions and
user guides. They avoid much of the complexity of deal-
ing with narrative texts. Hayton et al. (2017) and Huo et al.

(2020) explored narrative texts, yet their action model gener-
ation largely depends on manual interventions. Hayton et al.
(2020) proposed an automated process, but their action mod-
els aim only to mirror the input narrative.

Commonsense Knowledge Graphs

Most events in narratives are common, with their precondi-
tions and effects being commonsense knowledge. Thus, we
can use commonsense knowledge graphs to infer them.

ConceptNet (Speer, Chin, and Havasi 2019) is a knowl-
edge graph of concepts and their relations, which brings to-
gether 3.4M entity-relation tuple information collected from
many sources, including crowdsourced (e.g., DBPedia by
Lehmann et al. (2015)) and curated (e.g., OpenCyc by Lenat
and Guha (1989)). It features relations like Causes and
HasPrerequisite crucial for modeling actions/events. The
ATOMIC (Sap et al. 2019) knowledge graph is made up of
880K tuples linking 24K events to statements using 9 rela-
tions, including causes, effects, social commonsense and so
on. For example, the relation xNeed associates an event/ac-
tion with its prerequisite, such as ”X gets X’s car repaired”
xNeed ”to have money”. ATOMIC-2020 (Hwang et al. 2021)
is a similar but more robust dataset, offering 1.33M tuples
across 23 relations, encapsulating a broader range of com-
monsense knowledge.

NaRuto
An overview of the NaRuto process is shown in Figure 2.
We extract event occurrences, consisting of verbs and their
arguments, using the AllenNLP (Gardner et al. 2018) BERT-
based SRL system (Shi and Lin 2019). We further use
heuristic rules, based on dependency parse and POS tagging
information, obtained using Stanford CoreNLP (Manning
et al. 2014), for detecting phrasal verbs, argument events,
and condition events, and update event structures accord-
ingly (cf., Li, Haslum, and Cui 2023). Action models are
created from the events in two steps: The first employs a
commonsense event relation predictor to generate candidate
precondition and effect phrases; second, these are filtered
using textual similarity and contradiction, so that both pre-
conditions and effects are distinct and consistent.

Structured Event Representation

Event verb and arguments An event occurrence e con-
sists of a (phrasal) verb V (e) and a set of labelled arguments
A(e). Verbs are lemmatized. Events with verb lemmas “be”
or “have” are termed statements, describing facts rather than
occurrences, and we exclude them from action model gen-
eration unless an argument within the statement is an event.
The SRL system follows the PropBank annotation schema
(Bonial et al. 2012), categorizing argument labels into es-
sential action valency arguments (ARG0-ARG5) like agents
or patients, and verb modifiers such as purpose or location.
Argument values are spans of text. “Event Occurrences” in
Figure 2 shows extracted event arguments with their respec-
tive labels as colored chunks.
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Figure 2: Overview and example of the proposed approach for automatically generating action models from narrative text. The
example input is part of a plot summary for the movie “Man Is a Woman”, from Bamman et al. (2013).

Entity resolution We apply a document-level inference-
based LSTM model (Lee, He, and Zettlemoyer 2018) from
AllenNLP to the input narrative text, and substitute the first
mention of any resolved entity for later mentions. For exam-
ple, in Figure 2, “his” in the input text is substituted with the
referenced entity “Simon’s” in the events e1 and e2.

Phrasal verb detection Phrasal verbs, prevalent in En-
glish, are crucial to identify. Their meaning often diverges
from the standalone verb, as “make up” differs from “make”.
Additionally, a phrasal verb like “make up” can have multi-
ple interpretations. The SRL system, however, extracts only
single verbs. We apply the following rule, adapted from (Ko-
mai, Shindo, and Matsumoto 2015), to detect phrasal verbs:
If a word P either (i) has a compound part relation with the
event verb W , or (ii) is adjacent to the event verb W and
has a case or mark relation with W , in the dependency parse
tree, then WP is a candidate phrasal verb; it is accepted if it
appears in a list of known phrasal verbs2.

Argument event detection We use the SRL argument
structure, together with a rule-based method that relies
on the dependency parse information, to determine which
events are arguments of other events. Part or all of an ex-
tracted event, ej , may lie within a span of text that is an ar-
gument of another event, ei. If V (ej) is within an argument
of ei, we say ej is contained in ei. This can be nested. Con-
tained events are candidates for being arguments, but are not
necessarily so. E.g., in Figure 2, the adverbial modifier of e3
contains V (e4) (“marries”), but e4 is not an argument of e3.

We classify the contained event ej as an argument of the
containing event ei if any of the following holds: (i) The

2https://en.wiktionary.org/wiki/Category:English phrasal
verbs

dependency relation V (ei) to V (ej) is clausal complement
or clausal subject. (ii) The dependency relation from V (ej)
to V (ei) is copula or auxiliary. (iii) All of ej is contained in
a purpose modifier of ei.

If an event ei has argument event(s), we take the span of
all the event verbs and words within the range of the verbs as
a verb phrase to be the updated V (ei). As shown in Figure 2,
e2 is an argument event of e1, so they are combined to e1 2,
and V (e1 2) becomes “take great pains to accept”.

Condition event detection Conditional promises, threats,
etc, are common in narrative text, as e4 in Figure 2 shows.
The condition event e4 is not an argument of e3, and should
be removed from e3. Hence, a different mechanism is re-
quired to identify conditions.

We use a variant of a method introduced by Puente et al.
(2010), based on the signal words and phrases “if”, “when-
ever”, “as long as”, “on [the] condition that”, and “provided
that”. For example, in Figure 2 the signal word “if” is in
between the consequence e3 and the condition e4. Event
ej is classified as a condition of ei iff (a) one of the sub-
sequences V (ei) S V (ej) or S V (ej) V (ei), where
S is one of the signal words/phrases, appear in the sentence,
with no other (non-argument) event verb in between; and (b)
the tenses of the event verbs, as determined from their POS
tags, match one of a list of rules. For example, one rule is
that V (ei) is present simple tense and V (ej) is future sim-
ple. Again, we refer to our earlier paper for a full description
(Li, Haslum, and Cui 2023).

The updated event structures after detecting argument and
conditional events are shown in the box labeled with “Struc-
tured Events” in Figure 2.
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Action Model Creation
We generate an action from each structured event, using
the event verb as the action name, or the combined verb
phrase if the event has argument events, as the example in
Figure 2. Each action has one or two parameters, x and o,
representing the subject and (direct) object of the event, se-
lected from the event arguments based on their SRL labels.
We trained a commonsense event/concept relation predic-
tor (COMET-BM) to generate candidate preconditions and
effects from the event text. Candidate preconditions and ef-
fects are filtered to remove semantic duplicate and contra-
dictory phrases, to ensure they are consistent. We also use
textual entailment to infer negated effects and preconditions.

Precondition and effect prediction Our event/ con-
cept relation predictor is trained on the three datasets
ATOMIC (Sap et al. 2019), ATOMIC-2020 (Hwang et al.
2021) and ConceptNet (Speer, Chin, and Havasi 2019), in-
troduced in the background section.

We adopt COMET (Bosselut et al. 2019), which is a GPT
model (Radford et al. 2018) pre-trained on the ATOMIC and
the ConceptNet knowledge graphs, and build a BART-based
(Lewis et al. 2019) variation (COMET-BM) by finetuning it
on a subset of the ATOMIC-2020 dataset. Specifically, we
select triples involving the relations xNeed (precondition for
the subject, x, to undertake or complete the event), xEffect
(effect on the subject, x, of the event), oEffect (effect on the
object, o, of the event), xReact and oReact (reaction, i.e.,
emotional effect, on the subject, x, and object, o, respec-
tively). There are over 472K instances of these relations in
the ATOMIC-2020 dataset. In the COMET-BM training pro-
cedure, we construct tuples ⟨I, T ⟩ from the dataset, where I
is the concatenation of e, the text describing the event, and
r, the relation. T is the textual description denoting the com-
monsense knowledge inferred from I . Following Bhagavat-
ula et al. (2019), we add special tokens <s> and </s> to
mark the beginning and the end of I . The conditional prob-
ability of the nth token of T is defined as:

P (Tn|T[0,n−1]) = softmax(W ∗D(HT[0,n−1]
, E(I)) + b),

where Tn and T[0,n−1] are the nth token and all preceding
(n − 1) tokens in T ; E and D are the encoder and decoder
of the COMET-BM model; HT[0,n−1]

is the decoded hidden
states of all n− 1 tokens; and W and b are learnable weight
and bias parameters, respectively. During training, the ob-
jective function for COMET-BM to minimize is the negative
log-likelihood:

L = −
|T |∑
n=1

logP (Tn|T[0,n−1])

Phrases with the xNeed relation to the event are candidate
preconditions, while others are candidate effects. An action
can have multiple preconditions and effects, thus COMET-
BM works as a generative model: given the event e and re-
lation r it outputs candidate phrase T with an unfixed num-
ber of words. For each e, r, we generate up to K different
outputs with the highest probabilities, from which we re-
tain the ones with a normalized probability greater or equal

to a threshold θr. Based on the probability distributions of
each relation’s predictions, we set K = 6, θxNeed = 0.7,
θxEffect = θoEffect = 0.5, and θxReact = θoReact = 0.2. If any
of the predicted phrases is “none”, all lower-probability pre-
dictions are omitted. In Figure 2, “Predicted Preconditions
& Effects” shows the top predictions for each relation, given
e1 2 as input.

Precondition and effect selection COMET-BM produces
each candidate precondition and effect independently, so
they may not always be semantically unique or consistent
when combined. In Figure 2, for example, the two predicted
preconditions “know about his feelings” and “know about
himself” for event e1 2 are semantically similar, and includ-
ing both is redundant. Hence, we filter COMET-BM out-
puts by deleting lower-probability preconditions that con-
tradict or are similar to ones of higher probability, and like-
wise for effects. We pair the phrases output by COMET-BM
for each of the (up to) six relations, and use two sentence-
transformer (Reimers and Gurevych 2019) models to predict
if they are similar or contradictory. If yes, we eliminate the
one with a lower probability. The textual similarity predic-
tor3 is based on a large pre-trained model for natural lan-
guage understanding and finetuned on over 1B phrase pairs.
We judge two phrases to be redundant if their similarity is
0.5 or higher. The second model4 is finetuned on over 4M
sentence pairs. and ranks whether the relation between two
phrases is most likely to be entailment, neutral or contra-
diction. Both models are selected based on a reported test
accuracy of over 90%.

We also use the textual contradiction classifier to gener-
ate negated action effects and preconditions. If a literal (p ?x
?o) is contradicted by a positive effect (resp. precondition),
then (not (p ?x ?o)) is a candidate negative effect (resp. pre-
condition). We have tried two generating strategies: in full
negation (named global), we apply this test to all predicates
defined in the domain; in restricted negation (named local),
we generate only effects that are negations of literals that
appear in the action’s precondition, and no negated precon-
ditions.

Parameter selection The commonsense relation predictor
expects each event to have a subject, x, and optionally an
object, o. Hence, each generated action has one or two cor-
responding parameters, selected from the event’s arguments
based on their SRL labels. Only arguments with numbered
labels (ARG0–ARG5), which represent the event’s agent,
patient, and so on, are considered; event modifiers can not
instantiate parameters. ARG0, if present, becomes the sub-
ject x, else ARG1. Given the subject is ARGs, we then se-
quentially look for ARGi, for i ∈ [s + 1, 5], as the object,
o.

The action parameter ?x becomes an argument of each
predicates obtained from the xNeed, xEffect and xReact re-
lations; likewise ?o becomes an argument of predicates ob-
tained from the oEffect and oReact relations. However, if the

3https://huggingface.co/sentence-transformers/all-MiniLM-
L6-v2

4https://huggingface.co/cross-encoder/nli-deberta-v3-base
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argument that instantiates the other parameter in the event
appears, literally, in the predicate, it is also removed and re-
placed with the other parameter. For example, given the pre-
diction “X gets X’s car repaired” xReact “X doesn’t like X’s
car”, the generated effect will be (doesnt like ?x ?o).

Evaluation
Few attempts have been made to generate planning mod-
els from narrative text, and even fewer have done so in a
fully automated, unsupervised way. We compare the action
domain models generated by NaRuto to those generated by
Hayton et al. (2017)’s StoryFramer, their 2020 system (Hay-
ton et al. 2020) (abbreviated “H2020”), and the results re-
ported by Huo et al. (2020). Of those, only H2020 is a
fully automated system. The other two rely on a human user
to make key modelling decisions. None of the systems are
available to use, but the domains produced by StoryFramer
for two example stories were provided by its authors, and
we have attempted to replicate the results of H2020 using
the StoryFramer material and the description in their paper.
Huo et al. (2020) provide neither the system nor the domains
generated; we compare the aspects of NaRuto that we can
with data reported in their paper.

For input, we use two short stories that have appeared in
work on narrative planning: the Aladdin story by Riedl and
Young (2010), and the Old American West story by Ware
(2014). Both are hand-written descriptions of plans gener-
ated by narrative planning systems. Hence, there exists a
ground truth, in the form of planning domains used by the
narrative planners. The same stories were also used for eval-
uation in previous work on action model learning from nar-
rative text (Hayton et al. 2017; Huo et al. 2020).

We evaluate three different aspects of the domain mod-
els: First, we evaluate each model’s coverage of the actions
in the source text, by comparing the sets of extracted ac-
tion names with those in the ground truth domain, using
manual alignment of names. The same comparison was also
done by Hayton et al. (2017) and Huo et al. (2020). Sec-
ond, we conducted a (blind) expert assessment of the inter-
nal consistency of each domain definition, asking planning
experts to rate the appropriateness of each action’s precon-
ditions and effects, relative to the predicates defined in the
domain. Third, we evaluate the generality of each domain
model, by applying a planner to problem instances for each
domain with varied initial states and recording the number
and variety of plans generated.

The next section describes the comparison systems in
more detail. The following three sections present the details
and results of each of the three evaluations.

Comparison Systems
StoryFramer (Hayton et al. 2017) is a partially automated
domain modelling tool. Given a narrative source text, it au-
tomatically extracts candidate action verbs, candidate pred-
icates based on properties, and candidate objects (nouns).
The remaining modelling task is left to the user, who must
assign types to objects and action parameters, identify dupli-
cates, and, crucially, select which predicates to use as pre-

conditions and effects for each action. A user can also over-
ride or edit any system suggestion (e.g., add/remove candi-
date predicates, objects, etc). Hayton et al. (2017) applied
StoryFramer to the Aladdin and Old American West stories.
We couldn’t replicate their process due to system unavail-
ability and lack of user edit details, but the authors provided
their final domain files.

Their recent system (Hayton et al. 2020) (“H2020”) is au-
tomatic, but also unavailable to us. However, since its event
extraction mechanism is very similar to StoryFramer, ex-
cept for a new co-reference resolution method, we approx-
imate its result by supposing it would extract the same ac-
tion signatures (names and parameters) as StoryFramer, and
constructing the corresponding action models following the
method described in the paper. The action models created by
H2020 aim to mirror the input narrative sequence.

Huo et al. (2020) propose a partially automated system to
learn a planning domain model, applied to natural disaster
contingency plans. They use POS tagging to extract ⟨ ac-
tion name, subject, object⟩ triples, representing actions tak-
ing place. Their system also involves human users to refine
the action model. Because neither the system nor its outputs
are available to us, we can only compare with the results
included in their paper.

The Old American West text by Ware (2014) consists in
fact of several story variants; since H2020 depends on the
order of events in the source text, we apply it to the longest
of them (plan G). The other systems use the concatenation
of all story variants as inputs.

Identification of Narrative Actions
Table 1 lists the action names extracted by StoryFramer
(Hayton et al. 2017), Huo et al.’s (2020) system and NaRuto.
These are compared with actions defined in the hand-written
narrative planning domains from Ware’s (2014) thesis (West
story) and from Riedl and Young (2010) (Aladdin). Results
for StoryFramer and Huo et al.’s (Huo et al. 2020) system
are from the respective papers. Note that Huo et al. did not
try their system on the Aladdin story.

There is no perfect match between action names defined
in the ground truth domains and those extracted from the
narrative texts because the texts use different words to de-
scribe them; for example, the action give in the Aladdin
story is described as “Aladdin hands the magic lamp to
King Jafar”, so the automatically extracted action name is
hand. For Ware’s (Ware 2014) Old American West story,
the events “use” and “anger” are not actions in the ground
truth planning domain, but are represented in the effects
of other actions, e.g., the action heal requires the charac-
ter who performs it to have medicine, which is used up as
part of the action’s effects. These events occur in descrip-
tions of those actions, in the story sentences “Carl the shop-
keeper healed Timmy using his medicine” and “Hank stole
antivenom from the shop, which angered sheriff William”.
Our detection of argument events is seen in, for example, the
actions “get bitten” or “intend to shoot”, where StoryFramer
only extracts “intended” from the sentence “Sheriff William
intended to shoot Hank for his crime” and Huo et al.’s sys-
tem only extracts “got” from “Hank got bitten by a snake”.
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GT StoryFramer Huo et al. NaRuto
Domain 1: An Old American West Story

die ✓died ✓died ✓die
heal ✓healed ✓healed ✓heal
shoot ✓shot ✓shot ✓shoot
steal ✓stole ✓stole ✓steal
snakebite ✓bitten ✓–got ✓get bitten

✓–intended ✓intended to heal ✓intend to heal
✓intended to shoot ✓intend to shoot
∗ using ∗ use
∗ angered ∗ anger

Domain 2: The Tale of Aladdin

travel ✓travels ✓travel
slay ✓slays ✓slay
pillage ✓takes ✓take
give ✓gives ✓hand
summon ✗ ✓summon
love-spell ✓casts ✓cast
fall-in-love ✗ ✓fall-in
marry ✓wed, married ✓wed

∗ confined ∗ be-confined
∗ rubs ∗ rub
∗ sees ∗ see

∗ make
∗ be-not-confined

Table 1: Action names extracted from the two input sto-
ries by StoryFramer (Hayton et al. 2017), Huo et al.’s sys-
tem (Huo et al. 2020), and NaRuto. Ground truth (GT)
lists action names in the narrative planning domain files by
Ware (2014) and Riedl & Young (2010). ✗: action is not
detected; ✓–: action partially extracted or incomplete; ∗: ac-
tion not present in the ground truth domain but occurs in the
story.

Moreover, StoryFramer misses the actions “summon” and
“fall-in-love” in the Aladdin story, which NaRuto finds.

Expert Assessment of Action Models
A direct comparison of action models’ “correctness” across
generated domains is difficult, because domain models use
very different sets of predictes. Instead, we asked experts to
rate the appropriateness of each action’s preconditions and
effects, relative to the predicates that are defined in that do-
main model. This holistic assessment of the use of the do-
main model’s predicates across its actions gives us a mea-
sure of the internal consistency, or soundness, of our gener-
ated domain models. This evaluation covered all models of
both domains, including ground truth and models generated
by StoryFramer, H2020, and NaRuto.

We recruited 9 AI planning experts familiar with PDDL
domain modeling. Each expert was given the four different
models of one, or in a few cases both, of the domains, and
asked to rate the appropriateness of each precondition and
each effect of each action in all four domain versions, using
a 5-point Likert scale: 1=not appropriate; 2=probably/maybe
not appropriate; 3=undecided; 4=probably/maybe appropri-
ate; 5=appropriate. The models were formatted to appear as

similar as possible (e.g., comments were removed from the
ground truth domain models, indentation was made uniform,
etc). Experts knew only that the models were “automatically
learned from narrative text”. Each expert received the mod-
els in random order. We received N=6 responses for each
domain (stories).

From each response, we determine three metrics: (1) av-
erage ratings of all preconditions and effects within each do-
main model; (2) percentage of ratings considered in agree-
ment (i.e., 4 or 5); and (3) percentage of ratings in disagree-
ment (i.e., 1 or 2), within each domain model. Metrics are
averaged over the N = 6 responses per domain. The domain
model generated by NaRuto in the evaluation is with full
(global) negations, named NaRuto(G). We calculate mea-
sures for the version with restricted (local) negations, called
NaRuto(L), by omitting the negated preconditions and ef-
fects that would not be present in this model.

Results are summarized in Table 2. Box-and-whiskers
plots showing the distribution of average scores across re-
sponses for both of the domains are in Figure 3. Unsurpris-
ingly, the hand-written domain models receive the highest
average and percentage-in-agreement scores, as well as the
lowest percentage-in-disagreement scores. The StoryFramer
domain models also score well on both measures. Again,
this is not surprising, since the selection of each action’s
preconditions and effects in these domain models was done
manually (and presumably by a user with knowledge of
the story they intend to model). However, using NaRuto(L),
our generated model of the Old American West domain
is rated better than the StoryFramer model and our model
of the Aladdin domain is rated second-best. This indicates
that the precondition and effects predictor captures well the
commonsense knowledge of actions in these domains. The
global negations strategy (NaRuto(G)) aims to capture the
ramifications of positive action effects. However, the domain
model with restricted negations (NaRuto(L)) scores consis-
tently better, indicating that the positive effects and precon-
ditions play a more important role than those negated ones.
The domain models generated by H2020 score lower on both
measures, indicating that its encoding of the sequence of
events in the original story is not perceived by experienced
domain modellers as appropriate for a planning domain.

We also note that in all generated models, the average
rating of actions’ preconditions is consistently higher than
that of their effects, sometimes significantly so (3.61% to
74.80%). This suggests generating appropriate effects is a
harder problem.

Alternative Plan Generation
For each generated domain model, the event sequence, ex-
tracted from the story text, constitutes a valid plan with a
suitable initial state and goal. To evaluate the extent to which
each domain model supports the generation of new story
plans, we created new problem instances with modified ini-
tial states, and used the Fast Downward (Helmert 2006) sys-
tem to generate plans.

For each domain model, we extract the minimal set of ini-
tial facts that are required for the original action sequence
to be executable as the base initial state, and the set of facts
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Method Type Score ↑ Agreement ↑ Disagreement ↓

West

GT (Ware 2014) Manual 4.34 82.7% 10.7%
StoryFramer (Hayton et al. 2017) Semi-auto 3.26 42.5% 26.3%
H2020 (Hayton et al. 2020) Auto 2.54 17.7% 41.2%
NaRuto(G) Auto 2.98 43.0% 39.3%
NaRuto(L) Auto 3.57 60.8% 25.3%

Aladdin

GT (Riedl and Young 2010) Manual 4.84 97.3% 1.2%
StoryFramer (Hayton et al. 2017) Semi-auto 4.04 74.8% 17.3%
H2020 (Hayton et al. 2020) Auto 2.81 38.2% 48.8%
NaRuto(G) Auto 3.03 41.0% 38.3%
NaRuto(L) Auto 3.34 52.0% 29.5%

Table 2: The average scores over all the respondents for all actions’ preconditions and effects within each domain model; and
the average percentage in agreement and disagreement scores. “Type” indicates if the domain model is generated manually or
by a semi-automated or (fully) automated system. Note that both manual and semi-automated systems involve human expertise
in action model creation. Bold numbers indicate the best results and underline denotes the second-best results.

Figure 3: Distribution, over respondents, of the average
scores for all actions’ preconditions and effects within each
domain model. The thick line shows the median, box shows
the interquartile range. Whiskers extend to the full range of
values.

made true at the end of its execution, but not initially true, as
the candidate goal facts. We exclude from the goal any fact
that can be achieved by only one action instance, so as not
to over-constrain the problem. We create modified instances
by removing one fact from the initial state, keeping the goal
fixed.

We applied this process to the domain models generated
by NaRuto and StoryFramer. We did not apply it to the
H2020 domain models, because due to the way these are
constructed, the modified instances will always either be un-
solvable, or admit a trivial variant of the input plan that only
substitutes a different object for one parameter of one action.
Table 3 shows the number of resulting problems solved, and
the number of distinct plans generated. Both models gener-
ated by NaRuto show better generalizations than those by
StoryFramer. Notably, in the Aladdin domain, both NaRuto
models have a 100% solving rate and generate 8 unique
plans, while the StoryFramer model becomes unsolvable
when any fact is removed from the initial state required by
the original story plan.

Total Solvable Distinct
Method Tasks Tasks Plans

West
NaRuto(G) 12 4 (33.33%) 1
NaRuto(L) 11 2 (16.66%) 2
StoryFramer 9 2 (22.22%) 1

Aladdin
NaRuto(G) 17 17 (100%) 8
NaRuto(L) 17 17 (100%) 8
StoryFramer 30 1 (3.3%) 1

Table 3: For each domain and system, the total number of
tasks and how many of them are solvable, and the number of
unique solvable plans.

The planner configuration used in this experiment finds
only one, arbitrary, plan per task. Hence, the number of dis-
tinct plans found may be lower than what is possible. Using
a different configuration, that explicitly searches for diverse
solutions, we found there exist at least two distinct plans for
each solvable instance in the NaRuto models of the West
domain.

Conclusion
Narrative text is complex yet offers deep insights into events
and actions. We introduced NaRuto, an autonomous system
creating planning-language-style action models from narra-
tive texts. Ultimately, this will enable the generation of plan-
ning models at a scale to support open-world, creative nar-
rative planning. In evaluation, our generated action models
outperform those by comparable fully automated methods,
and sometimes even surpass partially-automated ones with
manual interventions. There are still some challenges, such
as selecting appropriate negative action effects and taking
story context into account when predicting preconditions/-
effects, which will direct our future work.
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