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Abstract

Fully Observable Non-Deterministic (FOND) planning is a
variant of classical symbolic planning in which actions are
nondeterministic, with an action’s outcome known only upon
execution. It is a popular planning paradigm with applica-
tions ranging from robot planning to dialogue-agent design
and reactive synthesis. Over the last 20 years, a number of
approaches to FOND planning have emerged. In this work,
we establish a new state of the art, following in the footsteps
of some of the most powerful FOND planners to date. Our
planner, PR2, decisively outperforms the four leading FOND
planners, at times by a large margin, in 17 of 18 domains that
represent a comprehensive benchmark suite. Ablation studies
demonstrate the impact of various techniques we introduce,
with the largest improvement coming from our novel FOND-
aware heuristic.

Introduction
Fully Observable Non-Deterministic (FOND) planning is a
variant of classical symbolic planning in which actions are
non-deterministic, the finite set of possible action outcomes
is known a priori, and the realized outcome in a particular
instant is observed following execution of the action (e.g.,
(Daniele, Traverso, and Vardi 1999; Cimatti et al. 2003)).
As with classical planning, FOND planning assumes full ob-
servability, but the uncertainty in the outcome of actions dur-
ing plan generation necessitates a new form of (contingent)
solution – both in terms of representation and plan synthesis.

Since its introduction 20 years ago, FOND has emerged
as a popular and highly versatile computational paradigm
with applications ranging from generalized planning (Il-
lanes and McIlraith 2019; Bonet et al. 2020) and robot plan-
ning (Andrés, de Barros, and Delgado 2020) to dialogue-
agent design (Muise et al. 2019), and reactive synthesis from
logical specification (Camacho et al. 2017). Given the diver-
sity of applications for FOND planning, advances in FOND
planning have the potential for significant impact.

Following the development of the original MBP FOND
planner, based on model checking (Cimatti et al. 2003), we
have witnessed a stream of innovations. In a departure from
MBP, the NDP (Kuter et al. 2008) and FIP (Fu et al. 2011)
planners reformulated the FOND problem into a classical
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planning problem, repeatedly solving this problem, to itera-
tively solve the original FOND problem. In 2012, the PRP
planner emerged as the state of the art in FOND planning,
often showing orders of magnitude improvements in plan
generation time and/or solution size (Muise, McIlraith, and
Beck 2012). Like NDP and FIP, PRP employed classical
planning over a reformulation of the FOND problem, but
much of its performance gains were the result of identifying
and encoding only those aspects of the state that were rel-
evant to plan validity. This was accomplished by represent-
ing families of states as conjunctive formulae and employ-
ing regression rewriting, a form of pre-image computation,
to establish relevance (Waldinger 1977; Reiter 2001; Fritz
and McIlraith 2007). Subsequent techniques explored new
concepts for computing solutions to FOND problems: from
the backwards search of GRENDEL (Ramı́rez and Sardiña
2014), to the SAT encoding of FONDSAT (Geffner and
Geffner 2018), to the policy-based search of MyND and Pal-
adinus (Mattmüller et al. 2010; Pereira et al. 2022). These
new planners were often published with additional bench-
mark problems that showcased the new planner’s potential
and, in a number of cases, their superior performance com-
pared to the incumbent, PRP.

In this work, we introduce PRP Rebooted (PR2), a new
FOND planner that leverages the insights of a generation of
FOND planners to realize a significant advance in the state
of the art. Like NDP, FIP, and PRP before it, PR2 adopts the
approach of repeatedly replanning in a classical planning re-
formulation. Further, it uses a powerful solution represen-
tation inspired by GRENDEL and FONDSAT, while main-
taining the solving strength of PRP to produce this solution.
The novel techniques introduced in the PR2 planner include
better handling of deadends, a preprocessing step to simplify
problems, and a new FOND-aware heuristic for the classical
planning sub-process.

PR2 outperforms the four leading FOND planners
(MyND, FONDSAT, PRP, Paladinus), at times by a large
margin, in 17 of 18 domains that represent a comprehensive
benchmark set (five of 800 problems are solved by PRP, but
not PR2). Through an ablation study, we evaluate the im-
pact of individual technical components on overall planner
performance. Ultimately, PR2 constitutes a significant ad-
vancement in the field of FOND planning and a new state of
the art for the planning formalism.
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Preliminaries
Our notation and definitions largely follow the existing liter-
ature that uses multi-valued variables for representation.

Definition 1 (FOND Task (Muise, McIlraith, and Beck
2012)). A fully-observable non-deterministic (FOND) plan-
ning task is a tuple ⟨V , s0, s∗,A⟩, where V is a set of finite
domain variables, s0 is the initial state (complete setting of
V), s∗ is the goal condition (partial assignment to V), and A
is the set of potentially non-deterministic actions. Each ac-
tion a ∈ A is represented by a tuple ⟨Prea,Eff a⟩, where
Prea is a partial assignment to V that stipulates when the
action is executable and Eff a is a set of outcomes, one of
which will occur at execution. Each outcome o ∈ Eff a is a
partial assignment to V and signifies the updates to the state.

For updating partial or complete states (represented as a
partial or complete assignment to V respectively), we define
the ⊕ operator (where p1 and p2 are (potentially partial) as-
signments to V) as follows:

(p1 ⊕ p2)(v) =

{
p2(v) if p2(v) is defined
p1(v) otherwise

We say that partial states p1 and p2 are consistent (written
p1 ≈ p2) when ∀v ∈ V , either p1(v) = ⊥ or p2(v) = ⊥ or
p1(v) = p2(v), where ⊥ indicates the variable is undefined.
Action a ∈ A can be executed in state s only when s ≈
Prea. If outcome o ∈ Eff a occurs as a result of applying a
in state s, then the updated state is defined as s⊕ o.

In FOND, an initial state s0 and set of actions A in-
duce a set of reachable states. Despite the nondeterminism
in FOND actions, a policy, π, is a mapping from states to
individual actions (rather than an action distribution, for ex-
ample). We restrict our attention to defining this mapping for
the subset of states that are reachable from s0, and as such
we refer to such policies as a partial policy. If every state
reachable by a policy itself has a mapping to an action then
we say that the policy is closed. Here, a plan is a policy that
is guaranteed to achieve a goal, potentially under some as-
sumptions or restrictions. In the context of FOND planning,
a weak plan is one that will reach the goal under some re-
alization of the non-deterministic action effects; it need not
be, and is typically not, closed. A strong plan is a closed
(partial) policy and is guaranteed to reach the goal in a fi-
nite number of steps. Finally, a strong cyclic plan is a closed
(partial) policy where the policy embodies a weak plan for
every state that is reachable by the partial policy. A strong
cyclic plan provides a solution to the FOND planning under
an assumption of fairness (Cimatti et al. 2003). In this paper,
we are concerned with strong cyclic plans.

As is common with several FOND approaches, we use
an all-outcomes determinization. This is a reformulation of
the problem so that every action a ∈ A is replaced with
|Eff a| actions, each corresponding to one of the outcomes
in Eff a. Solving the classical planning problem created by
the all-outcomes determinization gives us a sequence of ac-
tions that achieves the goal under some possible realization
of environmental uncertainty and, thus, is a weak plan. Much
of our work relies on computing relevant conditions for an

action to achieve some partial state. We exploit regression, a
pre-image computation (Waldinger 1977; Reiter 2001).

Definition 2 (Logical Regression). Given a partial state p,
action a ∈ A, and outcome o ∈ Eff a, the logical regression
of p through the action a and outcome o is defined as:

R(p, a, o)(v) =


Prea(v) if Prea(v) ̸= ⊥
⊥ else if p(v) = o(v)

p(v) otherwise

We only define (and apply) regression if p ≈ o. We use
CanR(p) to denote all of the actions and outcomes that have
regression defined for the partial state p:

CanR(p) = {⟨a, o⟩ | a ∈ A, o ∈ Eff a, and p ≈ o}.

Finally, modern FOND planners need to avoid deadends
– reachable states from which the goal is not reachable.
We adopt PRP’s concept of a forbidden state-action pair
(FSAP). An FSAP is a tuple ⟨ps, a⟩, denoting that action
a is forbidden in any state consistent with partial state ps
because it could lead to a deadend. In the algorithms that
follow, fsap = ⟨ps, a⟩ and we use fsap.ps and fsap.a to ref-
erence the corresponding partial state and associated action.

Approach
Similar to NDP, FIP, and PRP, PR2 iteratively solves a deter-
minized version of the FOND planning problem to compute
weak plans, incorporating them into an overall solution. We
view PR2 as an evolution of PRP, as we use a similar high-
level search framework, leveraging regression rewriting for
relevance determination and forbidden state-action pairs for
deadend avoidance. The PR2 planner is also built on top of
the Fast Downward planning system (Helmert 2006) but oth-
erwise shares minimal implementation overlap with PRP.

The overall approach is summarized in Algorithm 1 and
described throughout this section (cf. Appendix A in (Muise,
McIlraith, and Beck 2023) for an expanded version). PR2
incrementally builds a solution, potentially making missteps
along the way. If the found solution is strong cyclic, then we
are done. Otherwise, information is retained on what went
wrong, and the process restarts.

Solution Representation and Construction
Algorithm 1 endeavours to compute a strong cyclic plan by
incrementally building a solution from weak plans in the all-
outcomes determinization. A key component of PR2 is the
internal representation of the incumbent solution in terms
of two structures: (1) a controller - a directed graph whose
nodes capture (among other things) a compact representa-
tion of state-action pairs (i.e., a state the solution can reach
and an action that is applicable in that state), and outgo-
ing edges connecting to successor nodes; and (2) the reach-
able state space explored by the solution to this point, where
nodes are complete state-action pairs. We refer to the first
as CONTROLLER and the second as REACHABLE (i.e., an
incumbent solution sol = ⟨CONTROLLER, REACHABLE⟩),
with the former inspired by GRENDEL and FONDSAT and
the latter similar to MyND, FIP, and Paladinus. Both play
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Algorithm 1: PR2 High-Level Planner

Input: FOND planning task, Π = ⟨V, s0, s∗,A⟩
Output: Policy

1 incumbent = make empty solution(); FSAPS = ∅;
2 while !incumbent.is strong cyclic() do
3 sol = make empty solution({s0});
4 while sol.REACHABLE contains unhandled nodes do
5 n = sol.REACHABLE.pop unhandled node();

6 switch analyze node (n) do
7 case 0: skip if strong cyclic(n)
8 case 1: skip if poisoned(n)
9 case 2: match complete state(n)

10 case 3: apply predefined path(n)
11 case 4: match complete state(n)
12 case 5: find and update weak plan(n)
13 case default (case 6) do
14 record deadend(n);
15 if n.state == s0 then
16 return make policy(incumbent.CONTROLLER);

17 if sol.success rate() ≥ incumbent.success rate() then
18 incumbent = sol;

19 return make policy(incumbent.CONTROLLER);

an essential role to PR2: the dual representation allows PR2
to maintain the inner-loop search progress with the reach-
able state space while maintaining a compact controller rep-
resentation of the partial solution. Intuitively, REACHABLE
represents the search progress of PR2, including the open
nodes that must be extended for a final solution, while CON-
TROLLER is a compact representation of a partial solution,
including the conditions under which it is guaranteed to
achieve the goal. For both graphs, we use outcome(n1, n2)
to label the edge between n1 and n2 with the outcome –
from the set of effects of the action of n1 in this context.
More formally, the nodes in CONTROLLER are as follows.

Definition 3 (SolStep). A SolStep, ss, is a node in the CON-
TROLLER represented by a tuple, ss = ⟨ps, a, in, out, sc⟩
where ps is a partial state, a is an action, in is a list of Sol-
Steps that are connected to ss through an incoming edge
(i.e., predecessors), out is the list of successors (directly cor-
responding to the outcomes of a), and sc is a Boolean flag
that indicates if the SolStep is “strong cyclic” (discussed be-
low). Every SolStep in (the possibly empty) ss.in is defined,
but some in ss.out may be undefined.

In Figure 1, we show the CONTROLLER and REACHABLE
representations. We may not explore every complete state
reachable by the solution – unlike planners that rely solely
on representations like REACHABLE – as we only continue
exploring if CONTROLLER is not guaranteed to succeed.
While a single node in REACHABLE corresponds to exactly
one SolStep (i.e., node in CONTROLLER), it is often the
case that a single SolStep corresponds to several nodes in
REACHABLE. We use REACHABLE(ss) to refer to the set of
nodes in REACHABLE that are associated with SolStep ss,
and CONTROLLER(n) to refer to the single SolStep in CON-

Figure 1: CONTROLLER (left) and REACHABLE (right) rep-
resentations. In the CONTROLLER, green represents the ini-
tial SolStep to execute, gold the goal, and blue corresponds
to SolSteps that have been established as strong cyclic (and
thus a solution is guaranteed from that point on).

TROLLER that is associated with node n in REACHABLE.
Algorithm 1 determines how a node in the search space

should be handled via a single case analyze node (line
6) and a final catch-all case for nodes that are deadends (line
13). Next, we summarize how each case is identified and
maintains the two components of our incumbent solution.

Case 0: Strong Cyclic Nodes As a base case, if the search
node we pop from the open list is handled by a node in CON-
TROLLER that is strong cyclic, then nothing need be done.

Case 1: Poison Nodes A node is “poisoned” if it, or one
of its ancestor in CONTROLLER, is flagged as a forbidden
state-action pair (FSAP). In this situation, we do not process
the node further and the search continues. The poisoning of
nodes happens in Case 6 with details in Section 15.

Case 2: Complete State Match In this case, we have an ex-
act match of the state that corresponds to the popped node
and a node in REACHABLE. At this point, we can assume
that the search for a solution from this state has already
run its course, and we connect things appropriately in both
CONTROLLER and REACHABLE. This may involve creating
a new edge in CONTROLLER but not introducing new nodes.

Case 3: Predefined Path In this case, there is already a pre-
defined path for the search node: the SolStep associated with
the parent search node in CONTROLLER has an edge de-
fined for the outcome that has led to this particular search
node. We, therefore, simply add all of the successor nodes
to REACHABLE according to the action specified in CON-
TROLLER. This situation arises when the REACHABLE be-
ing constructed stumbles upon a part of the CONTROLLER
solution that already contains enough information to handle
those newly reached complete states. It is effectively over-
laying new complete states in the expanded REACHABLE
on top of existing SolSteps in CONTROLLER. If the CON-
TROLLER nodes were marked strong cyclic, then this node
would have been handled with Case 0.

Case 4: Hookup Solution Steps Case 4 arises when the
complete state corresponding to the current search node can
be handled by a SolStep in CONTROLLER. Formally, for
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Figure 2: New path corresponding to a weak plan in the
CONTROLLER (left) and REACHABLE (right). In the CON-
TROLLER, highlighted edges show the new path, and dan-
gling edges correspond to parts of the solution yet to be ex-
plored. In the REACHABLE, the newly added nodes are high-
lighted, and white nodes correspond to search nodes that are
still on the stack in Algorithm 1.

node n and SolStep ss, this means that ∀v ∈ V , if ss.ps ̸= ⊥
then n.state(v) = ss.ps(v). When this holds, a new edge is
created from the previous search node’s SolStep to this new
matching one along the corresponding outcome. Case 4 can
be seen as a generalization of Case 2. When these new con-
nections are made, the CONTROLLER is updated through the
fixed-point regression procedure defined in Section 19 that
ensures that the partial states associated with each SolStep
in CONTROLLER capture precisely what must hold in order
for the solution to be strong cyclic from that point on.

Case 5: Find and Update Weak Plan If the previous cases
fail to capture the current search node (and associated state),
we turn to finding another weak plan. We take the state as-
sociated with the current node in the search and first at-
tempt to “plan locally” before computing a new plan for
the goal. Planning locally is a strategy adapted from PRP,
where the goal is temporarily set to the partial state of the
SolStep in CONTROLLER that the parent SolStep expected
to be in – every time a weak plan is produced, one outcome
is chosen in the all-outcomes determinization, and this dic-
tates the temporary goal for planning locally. Figure 2 illus-
trates a new (short) path that was found for a Case-5 node.
Note that find and update weak plan will add new
nodes and edges to both the CONTROLLER and REACH-
ABLE graph. It also adds all of the successors of node n to
the REACHABLE so that they may be subsequently consid-
ered. Our weak planning procedure also includes (1) stop-
ping the search when a state is reached such that some Sol-
Step in the CONTROLLER matches (and thus we have a so-
lution); (2) recording and generalizing all deadends found
(cf. Section 15); and (3) using an FSAP-aware heuristic that
takes non-determinism into account (cf. Section 15).

Case 6: Deadend In the final case, there is no weak plan to
take us to the goal from the current node’s state. We flag the
current state as a deadend, generalize and apply regression
if possible, and then poison the parent of this node and all of
the parent’s descendants in REACHABLE (cf. Section 15).

Figure 3: New connection in Fixed Point Regression

The final task of Algorithm 1 (line 19) is to convert the
solution’s CONTROLLER into a policy. For a complete state
s, assume ss is the SolStep closest to the goal among all
consistent SolSteps (i.e., s ≈ ss.p). The action executed by
make policy(CONTROLLER) for state s would thus be ss.a.

Strengthening & Fixed-Point Regression
Ideally, our CONTROLLER embodies the conditions required
for a solution fragment to achieve the goal. Specifically, each
node n in CONTROLLER has a partial state associated with
it that captures what must be true in order for the CON-
TROLLER to be a strong cyclic solution for a complete state
that is consistent with n.p. When a new connection is made
in the CONTROLLER, we must apply regression on that con-
nection. This, in turn, may alter the partial state associated
with the new connection’s source node, which then neces-
sitates the repeated regression recursively back through the
CONTROLLER until no further updates are made.

Figure 3 shows the situation where we have a new blue
connection being made in CONTROLLER between SolSteps
src and dst (assuming dst is not already in src.out). The
recursive call is made with src and dst, and is shown in Al-
gorithm 2. The blue edge between src′ and dst is the newly
formed link, and the green edges between anc1 (anc2) and
src′ show the recursive calls made on Algorithm 2’s line 12.

The algorithm repeatedly strengthens the conditions on
the nodes found in CONTROLLER, and leaves the strength-
ened version as a new copy. We create new copies rather than
overwrite the original since different paths in REACHABLE
may overlay the same nodes in CONTROLLER and there is
no guarantee that the states on the other paths will be con-
sistent with the newly computed partial states.

Due to space, we forgo elaborating on the finer details of
the process, including optimizations for when we can avoid
cloning src, bookkeeping that removes unused aspects of
the CONTROLLER, and proper maintenance of the strong
cyclic property on nodes in CONTROLLER.

Full Strong Cyclic Marking
Because of the complex ways modifications are made to the
CONTROLLER, we re-establish the strong cyclic property
of the CONTROLLER nodes every time there is a modifica-
tion that may change their status. The property captures a
guarantee that the goal will be reached if the state of the
world matches the partial state associated with a node in
the CONTROLLER marked “strong cyclic”. The procedure
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Algorithm 2: Fixed-Point Regression, fpr

Input: Two nodes src and dst in CONTROLLER that
should be connected, along with the associated
REACHABLE nodes nsrc and ndst.

// If either src or dst are poisoned, then return since this
part of the CONTROLLER will be discarded.

1 if is poisoned(src) or is poisoned(dst) then
2 return

// Compute the combined regression
3 ps = src.p⊕R(dst.p, src.a, outcome(src, dst));

4 if ps == src.p then
5 return // Nothing to update

// Clone src and add it to CONTROLLER

6 src′ = ⟨ps, src.a, src.in, src.out ∪ {dst}, src.sc⟩;
7 CONTROLLER.add node(src′);

// Update the graph mappings
8 CONTROLLER (nsrc) = src′;
9 REACHABLE (src) = REACHABLE (src) \ {nsrc};

10 REACHABLE (src′) = {nsrc};

// Recurse backwards
11 for anc ∈ nsrc.in do
12 fpr(CONTROLLER(anc), src′, anc, nsrc);

for re-establishing the strong cyclic property of all nodes
is given in Algorithm 3, and it assumes SolSteps in CON-
TROLLER default to having the .sc property be false.

The algorithm relies on a few key assumptions. One is
that the conditions associated with a SolStep are sufficient
for executing from that point on, regardless of future action
outcomes. This is guaranteed by the fixed-point regression
procedure discussed in Section 19. The other property is that
the .sc property of a SolStep is monotonic, in the sense that
once it becomes true, it will stay true during the construction
of CONTROLLER.

Intuitively, this is a safe assumption to make because of
the manner in which the CONTROLLER is constructed – a
SolStep is added only if there is a path to the goal, and
no modification removes this property. Seen another way, if
there is some sequence of actions and outcomes that follows
from a SolStep in CONTROLLER and leads to an unhandled
outcome, then that final SolStep n would necessarily have
n.sc = false. Inductively, this property would apply all the
way back through its predecessors. The nodes that remain
in (unmarked \ notSC) on line 14 must then have a path
to the goal down every possible extension and can safely be
marked as strong cyclic.

Deadend Handling & Poisoning
If there is any point during the search when we discover a
deadend as part of the solution, we take an aggressive strat-
egy to immediately invalidate any aspect of the search that
is impacted. The strategy has two components: (1) deadend
generalization and regression and (2) node poisoning.

We first employ deadend generalization in the same way

Algorithm 3: Strong Cyclic Marking

Input: Incumbent CONTROLLER

// Identify all of the nodes not marked strong cyclic
1 unmarked = {n | n ∈ CONTROLLER and ¬n.sc};

// Flag not strong cyclic those with an unhandled successor
2 notSC = ∅;
3 Q = ∅;
4 for n ∈ unmarked do
5 if |n.out| ̸= |Eff n.a| then
6 notSC.add(n);
7 Q.add(n);

// Recurse backwards, marking more non-strong cyclic
8 while Q is not empty do
9 n = Q.pop();

10 for n′ ∈ n.in do
11 if n′ /∈ notSC then
12 notSC.add(n′);
13 Q.add(n′);

// Finally, mark all remaining ones as strong cyclic
14 for n ∈ (unmarked \ notSC) do
15 n.sc = true;

as SixthSense and PRP (Kolobov, Mausam, and Weld 2010;
Muise, McIlraith, and Beck 2012): variables are progres-
sively relaxed as long as a delete-relaxed (Bonet and Geffner
2001) deadend remains, and the final partial state represents
a generalization of the complete-state deadend that was de-
tected. Similar to PRP, the generalized deadend de is then re-
gressed through every action and outcome that is consistent
with de, in order to produce a set of forbidden state-action
pairs (FSAPs) used in subsequent search iterations:

FSAPs(de) = {⟨R(de, a, o), a⟩ | ⟨a, o⟩ ∈ CanR(de)}.

Second, given the node n that was determined to be a
deadend, we poison the portion of the REACHABLE search
space corresponding to the parent of n and all the parent’s
descendants. As described in Case 6 above, a poisoned node
is subsequently ignored in this iteration. This reasoning fol-
lows from how the top-level search proceeds: if we can-
not guarantee the goal is reachable from a node, then future
passes should skip this part of the search entirely. PR2 stops
looking for a solution down a path that will be skipped in a
future iteration, thus saving search effort.

FSAP-aware FF Heuristic
FOND planners based on weak planning procedures carry
very little of the FOND setting to the classical planner sub-
calls (Pereira et al. 2022). PR2 addresses this issue in several
ways. Similar to PRP, PR2 (1) stops searching when the in-
cumbent solution recognizes the state, and (2) does not con-
sider forbidden actions when expanding a search node. PR2
further employs a custom classical heuristic that uses infor-
mation from the FSAPs found so far to re-weight the hFF

heuristic computation (Hoffmann 2001).
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The hFF heuristic operates by finding a plan in the delete
relaxation of the classical planning problem – all delete ef-
fects are ignored (in our case, a variable can take on multiple
values). The actions at the start of this delete-relaxed plan are
called helpful actions. Two key changes were made to the FF
heuristic to take the FSAPs into account. First, when com-
puting the helpful actions for a state, we only allow those
that are not forbidden. Second, we change the heuristic value
by adding a penalty to any potentially forbidden action that
is used in the computation of the heuristic. This “potentially
forbidden” property is calculated by observing which FSAPs
have their conditions satisfied by the propositions reachable
in the delete relaxation. Such actions may not truly be for-
bidden by the time they are needed/used. Thus, removing
them entirely may cause the state to be mistakenly presumed
to be a deadend. Thus, we only treat their presence with a
penalty to the heuristic value (i.e., “pay a price” for needing
an action that may potentially be forbidden). See Appendix
B in (Muise, McIlraith, and Beck 2023) for further details.

Redundant Object Sampling
Prior to attempting to solve a problem, PR2 will explore
simplifications to the instance by attempting to remove re-
dundant objects.1 This sound-but-incomplete transformation
comes from the following observation: if we delete some of
the objects in a problem, and the resulting instance has a
strong cyclic plan, then it must be a plan to the original
problem. Intuitively, removing objects has an impact equiv-
alent to disallowing or deleting several actions, thus not in-
validating any plans that remain – all remaining (ground)
actions exist identically in the unmodified domain. The goal
remains unchanged as well. Therefore, a solution to the sim-
plified problem is also one for the original problem. This is a
simple pre-processing step that could, in theory, be used with
any FOND planner. Further details on the object sampling
and the hyperparameters chosen (i.e., how many objects to
remove and how long to search for a solution) can be found
in Appendix C of (Muise, McIlraith, and Beck 2023).

Force 1-safe Weak Plans
When a weak plan is found (cf. Case 5 of Algorithm 1),
rather than immediately adding the newly found nodes to
both CONTROLLER and REACHABLE, we confirm that no
immediate extension leads to a deadend. This is a simple
process that involves (1) computing every state reachable
from the actions in the plan (which will eventually become
open nodes in REACHABLE); (2) checking if any such states
are deadends; (3) recording the relevant generalized dead-
ends and FSAPs, and then re-running the weak planning pro-
cedure if a deadend is detected. We are guaranteed to find a
different weak plan if step (3) is taken, since the weak plan-
ning procedure will avoid the deadend discovered in step (2)
due to new FSAPs. This optimization can potentially lead to
far fewer updates to the CONTROLLER and REACHABLE.

1We forgo introducing objects in the paper, as it is only this one
contribution that makes use of them. Intuitively, actions are param-
eterized by objects, allowing us to represent the domain specifica-
tion compactly. Cf. (Haslum et al. 2019) for more details.

Theoretical Properties
The non-deterministic planning techniques exploited in PR2
yield a number of interesting theoretical properties. In what
follows, we provide the proof sketches for two of the most
important results: the soundness and completeness of the
PR2 planner.

Theorem 1 (Soundness). For a given FOND task T , if a
strong cyclic plan CONTROLLER is produced by PR2, then
it is a strong cyclic plan for T .

Proof sketch. The soundness of the approach rests on
the CONTROLLER representation, and what it means for
incumbent.is strong cyclic() to return true in Algorithm
1. This check amounts to inspecting the sc property of the
SolStep that corresponds to the initial state, and Algorithms
2 + 3 combine to ensure that this initial SolStep is marked
strong cyclic only if the full CONTROLLER is.

Note that in Algorithm 3, nodes that are marked on the
final line will be those that (1) have all their successors
defined (cf. the first for-loop) and (2) cannot reach some
unmarked node (cf. the second for-loop). Because every
node in CONTROLLER marked sc cannot reach an unmarked
node, we can conclude that a node newly marked sc can al-
ways reach the goal under the assumption of fairness.

The final step is to consider the continued executability
of actions used when following CONTROLLER. By using
the combined regression in Algorithm 2, we are guaranteed
that for any SolStep ss, executing ss.a in a state s where
s |= ss.ps, the outcome taken will lead to a state s′ that
corresponds to the successor SolStep. This invariant on the
CONTROLLER that ties together neighbouring SolSteps is
the same one that leads to the soundness of the FONDSAT
and GRENDEL planners. □

Theorem 2 (Completeness). For a given FOND task T , if a
strong cyclic plan exists, then PR2 will eventually find one.

Proof sketch. Completeness intuitively follows from the
eventual discovery of all required FSAPs. If REACHABLE
leads to a place in the search space where no strong cyclic
solution exists, then a deadend will be discovered and new
FSAPs created. The outer-loop of Algorithm 1 will repeat as
long as new FSAPs are discovered, and so we need only con-
sider the final round (assuming the FSAPs found are correct
and only finitely many may exist – a natural consequence of
the finite nature of the domain).

The correctness of the identified FSAPs (cf. Section 15)
is established inductively by the correctness of the deadends
they lead to. If a deadend is correct, then any FSAP that
covers an action leading to it is also correct. If all actions
executable in a state are forbidden by correctly identified
FSAPs, then that state is itself a deadend, and the process
proceeds backwards.

In the final round, the FSAP avoidance will mean the
search for weak plans will only be in a space where strong
cyclic solutions exist (otherwise we would have a contra-
diction in this being the final round). Since weak plans will
always be found to build the policy, every node reached will
have some solution found and included. Because of the ex-
haustive nature of processing nodes in REACHABLE, even-
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tually, a CONTROLLER will be computed such that it is de-
tected as being strong cyclic. □

Evaluation
Our objective is to understand the performance of PR2 com-
pared to other FOND planners in terms of coverage, solu-
tion size, and solve time. We implemented PR2 on top of the
Fast Downward planning system (Helmert 2006) and used
very little of the released code for PRP: specifically, much of
the translation and scripts were re-used, as is the case with
other FOND planners (e.g., MyND and FONDSAT use the
same parsing mechanism). The code, benchmarks, and de-
tailed analysis can be found at mulab.ai/pr2 .

We compare against the state of the art in FOND planning:
MyND (Mattmüller et al. 2010), FONDSAT (Geffner and
Geffner 2018), PRP (Muise, McIlraith, and Beck 2012), and
Paladinus (Pereira et al. 2022). We configured each planner
to its best settings based on aggregate performance across all
domains, including using a modern SAT solver for FOND-
SAT (improving its coverage by a fair margin). Planners
were given 4Gb of memory and 60min to solve an instance,
and evaluations were run on a PowerEdge C6420 machine
running Ubuntu with an Intel 5218 2.3GHz processor.

To evaluate our planners, we collected all of the bench-
marks employed for evaluation of the FOND planners listed
above, representing a total of 18 domains. Across the 18 do-
mains, there is a wide disparity in the number of instances,
from 8 in the smallest (acrobatics) to 190 in the largest
(faults-new). Consequently, we normalize the coverage on
a per-domain basis to be a maximum of 1.

Planner Comparison
In Table 1 we show the normalized coverage across all do-
mains and planners. PR2 performs at least as well, and often
better, than every other planner in virtually every domain.
The one exception is for blockworlds-new, where the prob-
lem size for a single instance grows to an extent that PR2
runs out of memory while PRP just barely does not (it is
the largest instance PRP is capable of solving). Addition-
ally, there are four instances in forest-new that PRP solves
and PR2 does not (though, several other instances that PR2
solves and PRP does not). Not only does PR2 perform well
on the older benchmarks where PRP was known to be state
of the art, but it also handles every one of the new benchmark
domains – islands, miner, tire-spiky, and tire-truck.

We should note that in the domain ‘doors’ for PRP (cf.
(*) in Table 1), a bug in PRP led it to incorrectly declare the
three simplest problems have no solution. Presumably, if this
bug were fixed, the performance would increase by 0.2 to
match PR2 and FONDSAT with a perfect score. We have re-
moved the instances (7 from firstresponders-new and 3 from
the original tireworld) for which no strong cyclic solutions
exist; while PR2 correctly returns that no strong cyclic so-
lutions exist for these instances, some other planners fail in
unpredictable ways. We did not detect any further erroneous
behaviour among the planners and domains.

We report on the time and solution size comparison in
Figures 4a and 4b. PR2 consistently outperforms the other

domain (size) pr2 prp fsat pala mynd
acrobatics (8) 1.00 1.00 0.50 1.00 1.00
beam-walk (11) 1.00 1.00 0.27 0.82 1.00
bw-new (50) 0.82 0.84 0.16 0.36 0.42
chain (10) 1.00 1.00 0.10 1.00 1.00
earth-obs (40) 1.00 1.00 0.17 0.65 0.78
elevators (15) 1.00 1.00 0.47 0.53 0.93
faults-new (190) 1.00 1.00 0.04 0.12 0.84
first-new (88) 0.99 0.99 0.06 0.06 0.09
forest-new (100) 0.94 0.88 0.10 0.18 0.16
tidyup-mdp (10) 1.00 0.00 0.10 0.40 1.00
tire (12) 1.00 1.00 1.00 1.00 1.00
tri-tire (40) 1.00 1.00 0.10 0.20 0.17
zeno (15) 1.00 1.00 0.33 0.53 0.60
doors (15) 1.00 (*) 0.80 1.00 0.93 0.73
islands (60) 1.00 0.52 0.95 1.00 0.22
miner (51) 1.00 0.25 0.98 1.00 0.00
tire-spiky (11) 1.00 0.09 0.91 0.91 0.18
tire-truck (74) 1.00 0.28 0.99 0.65 0.20
TOTAL (800) 17.75 13.65 8.23 11.34 10.33

Table 1: Normalized Coverage for all planners and domains.

planners on both measures. However, PRP produces smaller
solutions as the problem size grows (the PRP planner uses a
solution representation not shared by any of the other plan-
ners), and is also faster in a handful of problems. Finally, in
Figure 4c, we show the normalized coverage over time to
give a sense of how quickly the solutions are found. After
roughly 0.5 seconds, PR2 surpasses PRP in terms of cover-
age and remains dominant.

Ablation Studies
We briefly report on the performance impact of several of the
features of PR2. Corresponding to Sections 12 - 15, we dis-
abled each feature and measured the impact on normalized
coverage in the PR2 planner:

(section) Disabled Feature Drop in coverage
(12) Full Strong-Cyclic Marking -0.757
(15) Poisoning -0.743
(15) FSAP Heuristic -2.839
(15) Object Sampling -0.743
(15) Forcing 1-safe Plans -1.570

First, we note that no instance unsolved by PR2 was
solved by disabling one of the features. Thus, their pres-
ence never hurts the planner in terms of coverage. To place
the reduction of coverage in perspective, a drop of 1.0 indi-
cates (roughly) a full domain’s worth of instances that can-
not be solved. In the supplementary material, we provide a
full table similar to Table 1, but the key takeaways are: (1)
removing any one of the features drops the coverage in the
tireworld-truck domain substantially (from nearly 1.0 down
to 0.2-0.3); (2) the drop in coverage for poisoning, object
sampling, and full strong-cyclic marking is entirely due to
this one domain; (3) disabling the FSAP heuristic and forc-
ing 1-safe plans reduced performance greatly in the triangle
tireworld domain; and (4) disabling the FSAP heuristic de-
graded performance in the islands and miner domains.
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(a) Time comparison. (b) Size comparison. (c) Coverage over time.

Figure 4: Comparison of time (left), size (middle), and coverage (right). Time: a log-log plot showing the PR2 runtime against
the other planners, over all problems. Anything below the x=y line is an improvement. Size: similar to time, but measured in the
solution size produced by each planner. Coverage: “Survival plot” that shows the normalized coverage achieved as a function
of time for each of the planners. Note the log scaling on the x-axis.

We can conclude that every one of the introduced features
provides a net benefit to the planner, which (at times) is cru-
cial to achieving peak performance. Moreover, the FSAP-
aware heuristic appears to have the biggest impact on the
results of the PR2 planner. We note that removing any sin-
gle feature leaves PR2 with a planner that still outperforms
all previous FOND planners.

Related Work
The closest related work is the FOND planner, PRP (Muise,
McIlraith, and Beck 2012). PR2 falls under the same cate-
gory of FOND planner approach as PRP, along with FIP and
NDP (Fu et al. 2011; Kuter et al. 2008). The strategy PR2
uses to leverage regression is similar to PRP, including the
handling of conditional effects (Muise, McIlraith, and Belle
2014), while many of the generalization methods are shared
across a broader set of planners (e.g., the deadend relaxation
introduced by SixthSense (Kolobov, Mausam, and Weld
2010)). Concretely, very little implementation is shared be-
tween PRP and PR2. Beyond the implementation, the so-
lution representation (interplay between CONTROLLER and
REACHABLE) and the algorithms surrounding them are also
novel. From the custom FSAP-aware heuristic to the pro-
cedures for strengthening and marking CONTROLLER, all
techniques detailed in Sections 19 - 15 are novel.

The CONTROLLER representation is shared by the
FONDSAT and GRENDEL planners (Geffner and Geffner
2018; Ramı́rez and Sardiña 2014). Having a controller with
regressed conditions associated with the nodes strikes a
powerful balance between representation size and general-
ity. Nonetheless, the three planners (PR2, FONDSAT, and
GRENDEL) take strikingly different approaches to com-
puting the solution. Whereas PR2 uses the replanning ap-
proach pioneered by NDP and extended by FIP and PRP,
FONDSAT uses a SAT encoding of a structure very close to
the CONTROLLER, and GRENDEL uses backwards search
through the space of controllers. Finally, there is a similarity
between the fixed-point regression performed by PR2 on the
CONTROLLER and GRENDEL’s approach to re-establish
the conditions needed for strong-cyclic solutions.

The final category of FOND solvers is the policy-space
search of MyND and Paladinus (Mattmüller et al. 2010;
Pereira et al. 2022). By many measures, Paladinus represents
the state of the art for this class of solution strategy. Particu-
larly on the newer domains, it outperforms MyND by a large
margin. These planners operate by searching through the
space of reachable policies, incrementally adding to them
until a strong cyclic policy is found.

Concluding Remarks
The release of PRP in 2012 marked a significant jump in our
ability to solve FOND problems, opening the door to new
application areas, and inspiring the development of contin-
gent (Muise, Belle, and McIlraith 2014), probabilistic (Ca-
macho, Muise, and McIlraith 2016) and LTL-FOND (Cama-
cho et al. 2017) variants. We present a new FOND planner,
PR2, that similarly advances the state of the art in FOND
planning. The PR2 planner was designed from the ground up
using many of the best-known techniques for FOND plan-
ning. We introduced a suite of novel techniques that help
PR2 achieve its high performance, and the planner itself is
amenable to extension and further research.

A promising direction for such work is in the further
development of novel heuristics for FOND planning. The
FSAP-aware heuristic proposed here (cf. Section 15) is a sig-
nificant improvement over previous methods, but it is only
one idea in the arena of FOND-aware heuristics. From a
more theoretical viewpoint, there is a growing recognition
that the solution representation of a FOND problem plays
a critical role in computing and executing plans (Armstrong
and Muise 2023; Messa and Pereira 2023). The merits of the
representational power of the CONTROLLER as compared to
the partial state-action pairs of PRP or the complete state-
action mappings found in other FOND planners, deserves
further study. Finally, our results show that FOND planning
has achieved a notable leap in performance. New benchmark
problems, perhaps from adjacent fields such as reactive syn-
thesis (De Giacomo and Vardi 2015; Camacho et al. 2017),
should be assembled in service of a modern suite of chal-
lenge domains, afforded by these new capabilities.
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