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Abstract

Min-max routing problems aim to minimize the maximum
tour length among multiple agents by having agents con-
duct tasks in a cooperative manner. These problems in-
clude impactful real-world applications but are known as
NP-hard. Existing methods are facing challenges, particu-
larly in large-scale problems that require the coordination
of numerous agents to cover thousands of cities. This paper
proposes Equity-Transformer to solve large-scale min-max
routing problems. First, we employ sequential planning ap-
proach to address min-max routing problems, allowing us
to harness the powerful sequence generators (e.g., Trans-
former). Second, we propose key inductive biases that en-
sure equitable workload distribution among agents. The ef-
fectiveness of Equity-Transformer is demonstrated through
its superior performance in two representative min-max rout-
ing tasks: the min-max multi-agent traveling salesman prob-
lem (min-max mTSP) and the min-max multi-agent pick-up
and delivery problem (min-max mPDP). Notably, our method
achieves significant reductions of runtime, approximately 335
times, and cost values of about 53% compared to a com-
petitive heuristic (LKH3) in the case of 100 vehicles with
1,000 cities of mTSP. We provide reproducible source code:
https://github.com/kaist-silab/equity-transformer.

Introduction

Routing problems are combinatorial optimization problems
that are notoriously difficult to solve. The traveling sales-
man problem (TSP) and vehicle routing problems (VRPs)
are representative problems where the objective is to deter-
mine the optimal or shortest tour route(s) for one or multi-
ple agents, such as robots, vehicles, or drones. These prob-
lems are classified as NP-hard, posing significant challenges
(Papadimitriou 1977). Various approaches have been pro-
posed to solve routing problems, including mathematical
programming techniques that aim to achieve provable op-
timality (Gurobi Optimization, LLC 2023; David Applegate
and Cook 2023), task-specific heuristic solvers (Helsgaun
2017; Perron and Furnon 2019), and deep learning-based
methods that provide task-agnostic and fast heuristic solvers
(Khalil et al. 2017; Kool, van Hoof, and Welling 2019). The
deep learning-based methods have shown promising results
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even for large-scale problems that have more than 2,000
cities (Fu, Qiu, and Zha 2021; Qiu, Sun, and Yang 2022;
Sun and Yang 2023; Zhang et al. 2023; Sun et al. 2023).

Min-max routing problems are distinct from standard
(min-sum) routing problems in that they focus on minimiz-
ing the cost of the most expensive route among multiple
agents (i.e., minimizing the total completion time), rather
than minimizing the sum of the costs of routes. These prob-
lems are particularly relevant in time-critical applications
such as disaster management (Cheikhrouhou and Khoufi
2021), where minimizing completion time (or service time)
is crucial. However, min-max routing problems are far more
challenging than min-sum counterparts because algorithms
for min-max routing require coordinated cooperation among
multiple agents to ensure an equitable assignment of work-
load among them. Classical exact algorithms struggle to
solve min-max routing problems due to their NP-hardness
(Franga et al. 1995). Additionally, powerful heuristic ap-
proaches for min-sum problems are not well generalized
to the min-max case (Bertazzi, Golden, and Wang 2015),
particularly for large-scale problems (Kim, Park, and Park
2023), owing to the inherent differences between min-max
and min-sum problems.

Recently, deep learning methods have been utilized to ad-
dress min-max routing problems (Hu, Yao, and Lee 2020;
Cao, Sun, and Sartoretti 2021; Park, Kwon, and Park 2023)
as an alternative to classical approaches. Notably, repre-
sentative min-max routing techniques such as ScheduleNet
(Park, Kwon, and Park 2023) and the decentralized attention
network (DAN) (Cao, Sun, and Sartoretti 2021) aim to han-
dle the min-max nature with event-based parallel planning.
They model a parallel decision-making process among mul-
tiple agents in a decentralized way. The parallel planning
methods can be directly applied as a real-time dispatcher,
which is advantageous in handling dynamic situations where
states contain stochastic changes.

However, parallel planning encounters challenges in mod-
eling decentralized decision-making, which necessitates
searching for the joint space of agents’ actions. These chal-
lenges become particularly pronounced when attempting
to apply parallel planning to large-scale routing problems
(Park, Kwon, and Park 2023). On the contrary, sequential
planning presents an alternative approach involving a hierar-
chical decomposition of action choices among agents. This
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Figure 1: Illustration of parallel planning and sequential
planning on min-max VRPs. In sequential planning, when
an action selects a depot index (gray colored a;), the plan-
ning for currently active agent is terminated to start planning
for the new agent that corresponds to the selected depot.
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results in a substantial reduction in modeling complexity
when compared to parallel planning. However, an important
drawback of sequential planning lies in its diminished rela-
tional context between agents due to its sequential represen-
tation, which might lead to imbalanced tours among agents,
i.e., increased tour costs. Figure 1 illustrates the difference
between parallel planning and sequential planning.

To achieve equitable assignment and keep leveraging re-
duced complexity via sequential planning, we propose a
novel sequential planning architecture, Equity-Transformer.
Specifically, we tackle the min-max routing problems
by generating one long sequence via Equity-Transformer,
where each sub-sequence represents a specific agent’s tour.
To contextualize relational decision-making and ensure eq-
uitable workload assignment among the agents, Equity-
Transformer introduces two essential inductive biases as fol-
lows:

¢ Multi-agent positional encoding for order bias. We
introduce virtual orders on agents to model a parallel
decision-making process as a sequence. The homoge-
neous agents are modeled with the precedence (i.e., or-
der bias among agents), we add positional encoding and
inject it into the encoder.

Context encoder for equity. To promote equitable tours
for multiple agents, we incorporate an equity context into
the sequence generator. Equity context considers the tem-
poral tour length, the target tour length, and the desired
number of cities to be visited, which are essential factors
for enhancing the fairness of the generated tours.

Our method performs remarkably well at the min-
max routing problems, outperforming both existing classi-
cal heuristic and learning-based methods. As a highlight,
Equity-Transformer achieves 334 x speed improvement and
53% reduction of solution cost compared to the repre-
sentative classical heuristic solver (LKH3) when solving
the multi-agent TSP with 1,000 cities. Also, our method
achieves 1,217 x faster speed and 9% reduction of solution
cost than the representative learning-based method (Sched-
uleNet) with parallel planning.
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Problem Formulation

In our work, we focus on tackling min-max routing prob-
lems, which involve a scenario where a group of M agents
needs to visit N cities with the objective of minimizing
the maximum tour length among the individual tours of the
agents. In this section, we present the formulation of min-
max routing through the lens of sequential planning.

Problem. A routing problem is defined the set of city lo-
cations and a depot, represented as x {x;}¥, where
x; € R? is the Cartesian coordinates, and z; denotes the
depot. Since the M agents find tours that start from the de-
pot and return to the depot, we add M dummy depot (each
dummy depot assigned to each agent), i.e., txy41 = -+ =
Ty+m = 1. Thus, the sequential planning routing is de-
fined as & = {x;} 7. Remarks that we can expand the
definition of x so that it can include additional features re-
quired for other problems like the capacitated vehicle rout-
ing. For simplicity, we represent locations only.

Action. The sequential planning is represented as an ac-
tion sequence @ = (a1, ..., anya)- This action sequence is
formed by selecting an index from the set of unvisited nodes
atstept,ie.,a; € {1,..., N+M}\{a1,...,at—1}. There-
sulting action sequence is partitioned into M subsequences,
i.e., agent tours (a',...,a?), by splitting a with depot
choosing actions. Thus, each a™ = (af",...,a}' ) starts
with a dummy depot index, i.e., a7* € {N+1,... , N+ M},
followed by subsequent city indices. Please refer to Figure 1.

State. The state s; is defined as the union of the precol-
lected actions aq,...,a;—1 and the problem x, i.e., s1
{x},and sy = {a1,...,a4_1;x} fort > 1.

Cost. The cost is the maximum tour length among all
agents’ tours of (a!,...,a™) of given action sequence a,
ie.,

Leost(@; ) := max {E(al; x),..., L(a™; w)} , where
Ly,

L(a™ @) = ||[tap — ap |2+ [[Tap — Tap |[o-
t=2

Policy. The policy mg(a|x) is a composition of segment
policy mg(at|st), generating action sequences for given
problem condition x according to the following expression.

N+M

mo(alz) = [] molalse).

The 6 is the deep neural network parameter of the policy .
The optimal parameter 8* can be determined by solving the
following optimization problem:

0" = al"gemin Ep(2)Ery(alz)Leost(@; ),

where P(x) is the distribution of problem .

Methodology

This section presents the architecture of Equity-Transformer
mg(a|x), which generates an action sequence a
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(a1,...,anypr) for a given problem . Our high-level idea
is to build a transformer model with multi-agent positional
encoding and equity context.

Our architecture has the following forward propagation:

. Multi-agent positional encoding for initial node embed-
ding given problem x.

Employ the encoder of Transformer (Vaswani et al.
2017) to the initial node embedding to obtain H =
[hi,.. ., hnin] € RPXWNEM) "where D is the embed-
ding dimension.

3. Iterative decodingt = 1,..., N 4+ M using

(a) Equity context encoding for ¢; € RP.
(b) Decoding to produce a; ~ mg(a:|H,c;) by using c;
as attention query of decoder.

The encoding and the iterative decoding procedure pro-
cess involving contextual queries have been comprehen-
sively addressed in the previous literature (Kool, van Hoof,
and Welling 2019; Kwon et al. 2020; Li et al. 2021; Kim,
Park, and Park 2022). In this paper, we focus on introduc-
ing new elements designed for min-max routing problems,
which are multi-agent positional encoding and equity con-
text encoding.

Multi-agent Positional Encoding

We begin with partitioning the problem z into two dis-
tinct components: the cities, denoted as .y with elements

{xi}ﬁil, and the agents, represented by ;g With elements

{2;} - In order to facilitate sequential relationships be-
tween the agents, we employ positional encoding fpg to
Tagent- This positional encoding incorporates sine and cosine
functions with differing frequencies, following the work by
Vaswani et al. (2017).

Next, we concatenate the linearly projected vectors of
Zcity and fpg(TLagent) to form the initial node embedding. The
embedding is subsequently fed into the encoder, a structural
component akin to the encoder of AM as illustrated in Fig-
ure 2. It is worth to note that the original AM architecture it-
self is not appropriate for addressing multi-agent problems,
due to its incapability to consider the multi-agent nature.
In contrast, our approach incorporates positional encoding
t0 Tagene With the specific intention of introducing a virtual
order bias. Consequently, we can sequentially generate the
tour sequence of an agent while considering both preceding
and succeeding agents in the assigned order.

Equity Context Encoding

For every decoding step ¢, we utilize four distinct contexts
as ingredients of the equity context, ¢;. Each of the ingredi-
ent contains useful information for equitable decoding, de-
scribed as follows:

* Problem context hP™P™ ¢ RD: The problem context
collects the average of representations

pproblem — 1 SN hy. This aligns with the con-
text embedding of AM, which is primarily intended to
capture the global context of problem x by averaging

each city and agent representation.
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Figure 2: Tllustration of Equity-Transformer. The L stands
for the number of sequential layers, where we set L = 3.
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Figure 3: Illustration of equity context encoding

« Agent context h%™ ¢ RP: We set agent context using
representations of the returning depot and the last visited
city of the current active agent m,. Precisely, h}*™" =
Gagent (RN +m, BRaq, ), Where gugen : R*P — RP repre-
sents a linear projection. This context highlights the cur-
rently active agents.

Scale context h{¥® ¢ RP: We incorporate the ratio be-
tween N; and M; as a scaling context, where N; rep-
resents the number of remaining cities and M; denotes
the current number of un-used agents at the depot, i.e.,
N;/M,; € R. We then generate h$% = gy (N; /M),
where gseale : R — RP represents a linear projection.
This context offers valuable insights into the approxi-
mate number of cities an agent should visit to achieve
equity. Consequently, the scale ratio can provide the ef-
fective information to decide whether to continue visiting
additional cities or return to the depot.

Distance context his* ¢ R”: We make use of dy-
namic changes in the agent’s tour length and the dis-
tance of remaining cities from the depot at the current
step ¢. Firstly, we employ d;°*"*°, which represents the
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current tour length of the active agent. Secondly, we
utilize di"*®, which denotes the maximum distance be-
tween the depot and the remaining unvisited cities. Sub-
sequently, we form RSt = gyq (d5°U° @ d}"**"), where
gaist : R? — RP is a linear projection. This informa-
tion holds significant importance in terms of the equity of
tour length among agents in the min-max routing prob-
lem. The context prompts the decoders to consider the
agent’s current tour length and remaining tasks, aiding
in the decision-making process of whether to stop visit-
ing (i.e., return to the depot) or continue the tour while

considering the min-max tour length.

The context encoder fcg : R*P — RP, which is a multi-
layer perception (MLP), produces equity context c¢; using
these four contexts, i.e.,

c = fCE(hproblem ey hzgem @ hicale o) h(tiisl).

We adopt an approach similar to that of Kool, van Hoof,
and Welling (2019), where use ¢; as a contextual query for
the attention-based decoder 7y (a;|H, c;), as shown in Fig-
ure 3. This utilization of task-equity information from the
equity context enables the decoder to sequentially generate
balanced tours.

Training Scheme

The Equity-Transformer is trained with REINFORCE
(Williams 1992) with the shared baseline scheme similar to
Kwon et al. (2020) and Kim, Park, and Park (2022). The
shared baseline with symmetric samples makes symmetric
exploration for the combinatorial solution space. The train-
ing loss with the symmetric shared baselines is as follows:

Ltrain (0) - EP(E)ETFQ (a|m)£cosl(a§ $)7

V Liain (0) ~ ZB: ZL: ( Losst (a(m‘); w<i>) — byare d) 7

i=1j=1

where bghareq := 1/L Zle Leost(@®); (D). Each ) is
sampled sequence from training solver given L symmetric
x: mp(alTi(x™)), ..., m9(al T (@), where T1,..., Ty
are symmetric transformation of problem instance (). See
Kim, Park, and Park (2022) for a detailed training scheme.

Experiments

In this section, we present the experimental results of the
Equity-Transformer model on two min-max routing prob-
lems: the multi-agent traveling salesman problem (mTSP)
and the multi-agent pick-up and delivery problem (mPDP).

Training Setting. we use uniform distribution for the
problem distribution P(x), following Kool, van Hoof, and
Welling (2019). For the training hyperparameters we set ex-
actly the same hyperparameters for every task and exper-
iment; see Appendix B. We train Equity-Transformer on
N = 50, and finetune it to target distribution of N
200, 500. The training time for the min-max mTSP is ap-
proximately one day, while for the min-max mPDP, it takes
around four days.
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Experiments Metric. It is important to carefully mea-
sure the performance comparison between methods, as often
there is a trade-off between run time and solution quality.
To this end, we present time-performance multi-objective
graphs to compare tradeoffs between performance and com-
putation time. In the result tables, we present the average
cost achieved within a specific time limit, recognizing that
every method has the potential to reach optimality given an
unlimited amount of time.

Target Problem Instances. To evaluate the performance
of our methods, we report results on randomly gener-
ated synthetic instances of min-max mTSP and min-max
mPDP at different problem scales of N and M. We gen-
erate the 100 problems set with a uniform distribution of
node locations per scale. We conduct experiments with
N = 200, 500, 1000, 2000, 5000 and set M such that 10 <
N/M < 20 by referring practical setting of min-max rout-
ing application (Ma et al. 2021).

Speed Evaluation. All experiments were performed us-
ing a single NVIDIA A100 GPU and an AMD EPYC 7542
32-core processor as the CPU. Comparing the speed per-
formance of classical algorithms (CPU-oriented) and learn-
ing algorithms (GPU-oriented) poses a significant challenge
(Kool, van Hoof, and Welling 2019; Kim, Park, and Kim
2021), given the need for a fair evaluation. While certain ap-
proaches exploit the parallelizability of learning algorithms
on GPUs, enabling faster solutions to multiple problems
than classical algorithms, our method follows a serial ap-
proach in line with the prior min-max learning methods
(Park, Kwon, and Park 2023; Kim, Park, and Park 2023).
Note that when we leverage the parallelizability of our
method, our approach can achieve speeds more than 100x
faster; refer to Appendix A.

Performance Evaluation on mTSP

Baselines for mTSP. We consider two representative deep
learning-based baseline algorithms: the ScheduleNet (Park,
Kwon, and Park 2023) and Neuro Cross Exchange (Kim,
Park, and Park 2023) for min-max mTSP. For conciseness,
We denote them as SN and NCE, respectively. We have
also included two classical heuristic methods, namely LKH3
(Helsgaun 2017) and OR-Tools (Perron and Furnon 2019),
with respective time limits of 60 seconds and 600 seconds
per instance. Specifically, LKH3 utilizes A-opt improvement
iterations to enhance the solution within the given time bud-
get. The time limit directly influences the number of it-
erations performed (following the approach in Xin et al.
(2021b)). Similarly, OR-Tools incorporates an iterative lo-
cal search procedure for solution improvement, with a time
limit governing the iterations of the local search.

Results. The results in Table 1. demonstrate that the
Equity-Transformer (denoted as ‘ET’ in tables and figures)
outperforms all baselines with impressive speed. As the
problem scale increases, the performance gap between ET
and other methods widens further. Specifically, for N =
1000 and M = 100, ours achieves a cost of 2.05, signif-
icantly better than LKH3 (2.92) and NCE (2.16). More-
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Classic-based

Learning-based

N M LKH3(60) LKH3(600) OR-Tools(60) OR-Tools (600) SN NCE ET (ours)
10 2.52 (60) 2.08 (600) 4.97 (60) 2.22 (600) 2.35 (9.70) 2.07 (5.07)  2.05 (0.36)

200 15 239(60)  2.03 (600) 4.82 (60) 2.15 (600) 2.13(1052) 197 (5.07) 1.97 (0.37)
20 22960)  2.02 (600) 3.74 (60) 2.04 (600) 2.07 (11.40)  1.96 (5.07)  1.96 (0.37)

30 331(60)  2.70 (600) 7.90 (60) 6.44 (600) 2.16 (171)  2.07(520)  2.02 (0.87)

500 40  3.10(60)  2.55 (600) 7.46 (60) 6.69 (600) 2.12(276)  2.01(5.38)  2.01(0.90)
50 2.93(60)  2.48 (600) 8.50 (60) 7.26 (600) 2.09217)  2.01(5.05) 2.01(0.92)

50  445(60)  3.77 (600) 11.65 (60) 9.89 (600) 2.26 (2094)  2.13 (15.05) 2.06 (1.72)

1000 75  3.71(60) 3.26 (600) 13.16 (60) 11.50 (600) 2.17 (1678)  2.07 (15.05) 2.05 (1.80)
100 3.23 (60) 2.92 (600) 10.79 (60) 8.93 (600) 2.16 (1588)  2.05 (15.01) 2.05 (1.79)

100 6.60 (60)  4.61 (600) 20.99 (60) 18.85 (600) OB 2.85(43.96)  2.09 (3.49)

2000 150  5.08(60)  4.02 (600) 14.00 (60) 13.17 (600) OB 2.83 (44.77)  2.08 (3.41)
200 4.13 (60) 3.36 (600) 11.00 (60) 10.41 (600) OB 2.08 (30.30)  2.08 (3.60)

300 12.30(60)  7.87 (600) 17.00 (60) 17.00 (60) OB 297 (290)  2.40 (8.78)

5000 400 8.85(60)  6.15 (600) 13.00 (60) 13.00 (600) OB 2.92(204)  2.21 (8.61)
500  7.14(60)  5.37 (600) 11.00 (60) 11.00 (600) OB 2.89 (198)  2.19(9.02)

Table 1: Results on min-max mTSP. Every performance is average performance among 100 instances. The bold symbol indi-
cates the best performance. Average running times (in seconds) are provided in brackets.
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Figure 4: Time-performance trade-off graph for mTSP. The left and bottom indicate the Pareto frontier.

over, our method is 15.01/1.79 ~ 8.39x faster than NCE
and about 600/1.79 ~ 335x faster than LKH3. The time-
performance trade-off analysis shown in Fig. 4 confirms that
our method outperforms every baseline and provides the
Pareto frontier on multi-objective of time and cost.

For the large-scale problem of N = 5000, the Schedu-
leNet suffers from the complexity inherent in the parallel
planning, failing to produce a solution within 10,000 sec-
onds per problem, making it out-of-budget (OB). While
LKH3 and OR-Tools methods can provide solutions within
the allotted time, their performance is inadequate due to the
inherent difficulty of large-scale problems, requiring a sig-
nificantly higher number of improvement iterations for low-
cost solutions. On the other hand, the NCE surpasses classi-
cal approaches, but ours outperforms NCE by a substantial
margin of approximately 290/8.78 ~ 33 faster speed and
(2.97 — 2.40)/2.97 ~ 19% reduced cost.
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Performance Evaluation on mPDP

Baselines for mPDP. We consider representative two deep
learning-based baseline algorithms: AM (Kool, van Hoof,
and Welling 2019) and heterogeneous AM (Li et al. 2021),
denoted as HAM. We retrain AM, and HAM using min-
max objective; the details are provided in Appendix B. We
also marked { by giving more trials for inference solutions
such as sampling width (Kool, van Hoof, and Welling 2019)
and augmentation width (Kwon et al. 2020). We include
a heuristic method, OR-Tools (Perron and Furnon 2019),
while LKH3 (Helsgaun 2017) for min-max mPDP. We ex-
clude the multi-agent PDP (MAPDP) model (Zong et al.
2022) due to the inaccessible source code.

As shown in Table 2, our methods (i.e., ET and ETT)
outperform all other baselines, aligning with the findings
from the mTSP experiments. Compared to OR-Tools, ET?
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Classic-based

Learning-based

N M OR-Tools AM AMT HAM HAM' ET (ours)  ET' (ours)
10 2096 (60) 18.76 (600) 15.88(0.33)  15.65(0.67)  5.69 (0.33) 530055  5.03(0.54)  4.68(0.55)

200 15 13.96(60) 8.46(600)  15.88(0.33)  15.57(0.69)  5.21(0.34) 5.09 (057 391055  3.65(0.56)
20 10.67(60) 5.70 600)  15.88(0.35)  15.55(0.71)  5.21(0.35) 5.09 (0.61)  3.390.56) 3.18 (0.61)

30 16.99 (60) 16.99 (600) 26.98 (0.82)  26.15(3.10)  9.10 (0.84) 8.86(1.92)  4.38(1.33) 4.1 (1.55)

500 40 12.99 (60) 12.65(600) 26.98 (0.86)  26.14 (3.17)  9.10(0.84) 8.87(1.95  3.75(1.36)  3.52(1.62)
50  10.99 (60) 10.41(600) 26.98 (0.85)  26.14 (3.20)  9.10 (0.88) 8.87 (195  3.44 (138  3.23(1.66)

50  21.00 60) 21.00(600) 40.86(1.61) 39.63(11.28) 15.12(1.63) 14.58 (6.35) 4.91 (2.63) 4.73 (3.56)

1000 75 14.00 (60) 14.00 (600) 40.86 (1.68) 39.61 (11.44) 15.12(1.70)  14.59 (6.41)  3.96 (2.65)  3.77 (3.63)
100 11.00(60) 10.98 (600) 40.86 (1.69) 39.63 (11.24) 15.12(1.72)  14.61(6.61) 3.56(2.75)  3.38 (3.80)

100 21.00(60) 21.00 600) 62.85(3.24) 61.31(24.98) 25.68(3.40) 25.06(15.17) 5.15(522) 4.91(9.22)

2000 150 14.00 (60) 14.00 (600) 62.85(3.34) 61.28 (25.43) 25.68 (3.40) 25.04 (1626) 4.17 (5.31)  3.97 (9.50)
200 11.00(60) 11.00 (600) 62.85(3.35) 61.33(26.33) 25.68(3.50) 25.06 (16.47) 3.79 (543)  3.62 (10.01)

300 17.00(60) 17.00 (600) 114.73 (8.30) 112.84 (180) 54.07 (34.65) 53.46 (279) 4.81(52.66) 4.60 (79.23)

5000 400 13.00(60) 13.00 (600) 114.73 (8.31) 112.90(182) 54.07 (34.44) 53.43 (283) 4.33(54.86) 4.11 (82.59)
500 11.00(60) 11.00(600) 114.73 (8.33) 112.83(186) 54.07 (34.46)  53.45(286) 4.12(54.77) 3.88 (82.87)

Table 2: Results on min-max mPDP. Every performance is average performance among 100 instances. The bold symbol indi-
cates the best performance. Average running times (in seconds) are provided in brackets.
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Figure 5: Time-performance trade-off graph for mPDP. The left and bottom indicate the Pareto frontier.

exhibits a remarkable speed improvement of 600/0.55 =
1901 x, while reducing the objective cost by approximately
(18.76 — 4.68)/18.76 =~ 75% at N = 200, M = 10. More-
over, as shown in Figure 5, ours consistently presents the
Pareto frontier compared to others.

Importantly, in certain instances, both AM and HAM pro-
duce identical cost values as the number of agents M in-
creases. For instance, when N = 500, AM and HAM
yield the same scores for M = 30,40, 50. These meth-
ods were primarily designed to address min-sum problems
(with HAM especially focusing on min-sum mPDP), suffer-
ing from considering equity among agents unlike ours.

Ablation Study

To assess the influence of each component within our
methodology on performance enhancement, we conducted
an ablation study. As illustrated in Table 3, both compo-
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nents of our approach yielded significant performance im-
provements. Notably, the () configuration, which represents
the absence of these components, resulted in the poorest
performance, indicating that a straightforward application
of sequential planning to the min-max routing problem is
not inherently promising. However, when we combined the
multi-agent positional encoder (MPE) and the context en-
coder (CE), we observed substantial performance improve-
ments, particularly in larger-scale scenarios.

Ablation Study for Order Bias. As depicted in Figure 6,
MPE contributes to inducing an order bias among agents
by generating cyclic sub-tours in the Euclidean space with
specific orders. This can be interpreted as successful model-
ing of tour generation from multiple agents in the sequence
space, which is the primary goal of MPE.
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N 100 200

M 5 10 15 10 15 20
0 286 212 212 292 290 2.90
{MPE} 235 197 196 251 233 2380
{CE} 252 197 195 228 201 198
{MPE,CE} 235 196 195 215 199 198

Table 3: Ablation study for the combination of our compo-
nents. The () represents the original AM.

[@)

N\

€
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\

(a) With MPE

(b) Without MPE

Figure 6: Ablation study for the multi-agent positional en-
coding (MPE) on mTSP with N = 100 and M = 10.

Additional Experiments

We conducted several additional experiments in the Ap-
pendix C and Appendix D. First, we validate the perfor-
mance of the Equity-Transformer in a real-world bench-
mark dataset (Appendix C). Among the baseline methods,
Equity-Transformer demonstrates superior performance in
almost all instances. Moreover, we assessed the robustness
of Equity-Transformer under various problem distributions
(Appendix D.1) and different N/M ratios (Appendix D.2),
comparing it with LKH3. These experiments confirmed the
robustness of Equity-Transformer to the changes in problem
distributions and N/M ratios. Lastly, we compared Equity-
Transformer with two competitive two-stage mTSP solvers
(Hu, Yao, and Lee 2020; Liang et al. 2023), and ours outper-
formed them in terms of performance (Appendix D.3).

Related Work
Vehicle Routing Problems

After Vinyals, Fortunato, and Jaitly (2015) suggested the
Pointer Networks, which constructively generate permuta-
tion sequences as routing solutions, termed constructive
solver, Bello et al. (2017) turns it into deep reinforce-
ment learning. Kool, van Hoof, and Welling (2019) reinvent
the Pointer Network using a transformer, termed attention
model (AM), which becomes standard architecture for solv-
ing vehicle routing problems. By extending AM into vari-
ous applications, including those outlined in recent research
(Li et al. 2021; Jiang et al. 2022; Ma et al. 2021; Xin et al.
2021a; Ma et al. 2021, 2022), several challenges within the
field of vehicle routing are addressed. In recent studies, there
has been a notable emphasis on assessing the robustness of
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neural solvers concerning both scale shift (Hottung, Kwon,
and Tierney 2021; Son et al. 2023) and distributional shift
(Jiang et al. 2022; Bi et al. 2022; Zhou et al. 2023).
Independent of constructive solution generation, other
studies try to solve VRPs by learning to revise the solu-
tion iteratively, terms improvement solver. Chen and Tian
(2019); Li, Yan, and Wu (2021); Kim, Park, and Kim (2021);
Wang et al. (2021) leverages local solver to rewrite partial
tour to improve solution. Some studies train existing local
search solvers such as 2-opt heuristic (da Costa et al. 2020;
Wu et al. 2021), large neighborhood search (Hottung and
Tierney 2020), iterative dynamic programming (Kool et al.
2021), and LKH (Xin et al. 2021b) using deep learning.
Some studies use fine-tuning schemes focused on test-time
adaptation in iterative learning (Hottung, Kwon, and Tier-
ney 2021; Choo et al. 2022). While a constructive solver is
invaluable for quickly generating an initial feasible solution,
an improvement solver plays a crucial role in refining the so-
lution to achieve enhanced optimality. These two approaches
are fundamentally distinct and orthogonal in their objectives.

Min-Max Vehicle Routing Problems

Most deep learning-based VRPs studied focus on min-
sum routing which focuses on minimizing total tour length
among multiple agents. The min-max routing problem fo-
cuses on minimizing the maximum tour length among mul-
tiple agents, making it highly relevant for time-critical tasks
such as disaster management and vaccine delivery. The min-
max routing method considers the equity of tours among the
multiple agents (Franca et al. 1995).

In constructive approaches, Cao, Sun, and Sartoretti
(2021) and Park, Kwon, and Park (2023) advocate for a
constructive solver that models decentralized parallel deci-
sions made by multiple agents. Additionally, in addressing
the specific challenge of min-max mTSP with time windows
and rejections, Zhang et al. (2022) introduced a constructive
solver leveraging a graph neural network in conjunction with
meticulous training and inference strategies.

On the other hand, in improvement-based methodologies,
Kim, Park, and Park (2023) propose an enhancement solver
that learns to optimize tour components through cross-
exchanges. Meanwhile, Hu, Yao, and Lee (2020) and Liang
et al. (2023) advocate a two-stage solver approach, wherein
the initial stage employs a constructive solver, followed by
an improvement solver that refines the solution further.

Conclusion

This paper introduced Equity-Transformer, sequential mod-
els for min-max routing problems. Our method outper-
formed the existing classic methods and state-of-the-art neu-
ral solvers, achieving a Pareto frontier in balancing cost and
runtime on representative tasks like mTSP and mPDP. Our
method demonstrates its scalability, handling large-scale
cities with up to N = 5000 nodes and agent fleets of up to
M = 500. Equity-Transformer holds potential for broader
applications in general min-max vehicle routing problems,
which we identify as a promising avenue for future research.
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