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Abstract

Neural construction models have shown promising perfor-
mance for Vehicle Routing Problems (VRPs) by adopting ei-
ther the Autoregressive (AR) or Non-Autoregressive (NAR)
learning approach. While AR models produce high-quality
solutions, they generally have a high inference latency due
to their sequential generation nature. Conversely, NAR mod-
els generate solutions in parallel with a low inference latency
but generally exhibit inferior performance. In this paper, we
propose a generic Guided Non-Autoregressive Knowledge
Distillation (GNARKD) method to obtain high-performance
NAR models having a low inference latency. GNARKD re-
moves the constraint of sequential generation in AR mod-
els while preserving the learned pivotal components in the
network architecture to obtain the corresponding NAR mod-
els through knowledge distillation. We evaluate GNARKD by
applying it to three widely adopted AR models to obtain NAR
VRP solvers for both synthesized and real-world instances.
The experimental results demonstrate that GNARKD signifi-
cantly reduces the inference time (4∼5× faster) with accept-
able performance drop (2∼3%). To the best of our knowl-
edge, this study is first-of-its-kind to obtain NAR VRP solvers
from AR ones through knowledge distillation.

Introduction
The Vehicle Routing Problem (VRP) is a well-known opti-
mization problem in the field of transportation and logistics
(Kim et al. 2015). VRP has been extensively studied over the
past few decades, leading to the development of numerous
exact (Applegate et al. 2007) and (approximate) heuristics
solvers (Helsgaun 2017). Nonetheless, the adoption of VRP
solvers in the real world remains challenging when (near)
optimal routes need to be determined in real-time with di-
verse and rapidly changing constraints (Carić et al. 2008).
Most conventional VRP solvers are unable to produce high-
quality solutions within a reasonably short time period in
real-world scenarios (Li et al. 2021; Zheng et al. 2021).

As a promising alternative, Neural Networks (NNs) have
been widely applied to solve VRPs in recent years (Hudson
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et al. 2022; Hou et al. 2023; Lu et al. 2023). Most NNs used
to solve VRPs adopt the Transformer architecture (Vaswani
et al. 2017) with an encoder-decoder framework, where the
decoder produces solutions in an Autoregressive (AR) man-
ner by generating each node conditioned on the previously
generated nodes. Although the state-of-the-art (SOTA) mod-
els (Hou et al. 2023) exhibit better performance than con-
ventional VRP solvers. Because the AR process of these
SOTA models is not parallelizable and each node is gen-
erated using a computationally intensive NN (Joshi et al.
2022), their inference speed becomes much slower as the
problem size increases. Furthermore, when employing com-
monly used sampling techniques like beam search, AR mod-
els often suffer from diminishing returns w.r.t. beam size and
exhibit limited search parallelism due to the computational
dependencies between beams (Koehn and Knowles 2017).

In an effort to improve the inference speed of models for
solving VRPs, several Non-Autoregressive (NAR) models
have been developed. These models generate solutions in a
one-shot manner, allowing for highly parallelized inference.
They treat VRP as a link prediction task and adopt Maxi-
mum Likelihood Estimation (MLE) to maximize the edges’
likelihood of being selected in the VRP solution (Joshi et al.
2022). However, most NAR models employ complex Graph
Neural Networks (GNNs) that take both node coordinates
and distances between nodes as the inputs, requiring more
computationally intensive operations compared to Trans-
formers which only rely on node coordinates. Consequently,
the inference speed of NAR models may not meet the an-
ticipated tight timeline. More importantly, NAR models typ-
ically exhibit inferior performance compared to AR mod-
els. This can be attributed to the lack of order-dependent in-
formation during training (Joshi et al. 2022) and the NAR
model’s tendency to make less confident node selections
during inference, as reported in our finding (see Figure 1).

In this paper, we propose a novel method called Guided
Non-Autoregressive Knowledge Distillation (GNARKD)
to boost the performance and computational efficiency of
NAR models. Inspired by Knowledge Distillation (KD),
which involves transforming knowledge from a complex
model (i.e., teacher) to a more compact one (i.e., student).
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GNARKD converts a Transformer-based AR model into an
NAR one using our proposed KD method. Specifically, we
make adjustments only to the input/output part of the AR
decoder during the KD process, eliminating the necessity
for sequential generation of solutions while keeping the AR
encoder intact. This approach enables parallel propagation
while preserving the pivotal components of the AR architec-
ture. Furthermore, we use the solution generated by the AR
model to provide decoding guidance to the NAR model and
supervise its decoding output during training. By introduc-
ing this training method (called guided KD), we enable the
NAR model to learn information about order dependencies
that the conventional NAR models are unable to.

The key contributions of this work are as follows.
i) We show that the subpar performance of NAR models

in solving VRPs can be attributed to their tendency to take
less confident actions during inference. To the best of our
knowledge, our work is the first one reporting this finding in
the VRP field with the support of experimental results.

ii) We propose a novel and generic method named
GNARKD to transform AR models into NAR ones to im-
prove the inference speed while preserving essential knowl-
edge. To the best of our knowledge, GNARKD is first-of-its-
kind to obtain NAR VRP solvers from AR ones.

iii) We apply GNARKD to three widely adopted AR mod-
els and evaluate their performance using the widely used
synthesized and real-world datasets. The experimental re-
sults demonstrate that GNARKD significantly reduces the
inference time and achieves on-par solution quality compar-
ing with the teachers. This finding suggests that the derived
NAR models are suitable for deployment in real-world sce-
narios that demand instantaneous, near optimal solutions.

Related Work
With the emergence of deep learning, numerous NN-based
model have been proposed in recent years to solve VRPs
(Fu, Qiu, and Zha 2021; Zong et al. 2022; Zhang et al.
2022). These models can be generally categorized into neu-
ral improvement type and neural construction type. We fo-
cus on the latter in this paper because the former typically
has longer inference latency (e.g., (Wu et al. 2022)), which
is contrary to our strive for shorter inference time.

Neural construction VRP solvers can be classified as ei-
ther AR (majority) or NAR (minority) based on the con-
struction methods. AR models produce VRP solutions in-
crementally by generating one node at each decoding state.
For instance, Kool, van Hoof, and Welling (2019) proposed
the widely recognized Attention Model (AM) that employs
Transformers to solve VRPs. Kwon et al. (2020) extended
AM by introducing the Policy Optimization with Multiple
Optima (POMO) model and yielded SOTA results.

While AR models yield high-performance results (Jin
et al. 2023; Pan et al. 2023), their sequential approach to gen-
erating solutions typically results in slower inference speed
compared to NAR models (Joshi et al. 2022), primarily be-
cause NAR models generate solutions in a one-shot manner
(Wang et al. 2023). For instance, Joshi, Laurent, and Bresson
(2019) utilized Supervised Learning (SL) to train a GNN-
based model, handling TSP as a link prediction problem,

and employed greedy and beam search algorithms to gen-
erate solutions. However, this NAR model, despite its high
inference speed, neglects the importance of the sequential
ordering in TSP tours, resulting in suboptimal performance.
Xiao et al. (2023) introduced the first Reinforcement Learn-
ing (RL)-based NAR model for solving TSPs and exhibited
satisfactory performance. However, this proposed architec-
ture is only applicable to TSP. Moreover, most NAR mod-
els employ GNNs that consider both node coordinates and
distance matrices as the model inputs, as opposed to Trans-
formers that solely rely on node coordinates. The adoption
of GNN could potentially hinder the acceleration of infer-
ence speed, making it challenging for these models to meet
an anticipated tight timeline. Currently, there is a lack of
Transformer-based NAR model designed to tackle VRPs.

AR and NAR models follow distinct research approaches,
without a well-defined mechanism to leverage their respec-
tive advantages (i.e., high solution quality of the former and
low inference latency of the latter). Therefore, we advocate
for a generic method that leverages the strengths of existing
Transformer-based AR models to improve the performance
of NAR models in solving VRPs.

Preliminaries and Study Motivation
This section presents the formulation of VRPs and intro-
duces the motivation of this study.

VRP Setting

We define a VRP-n instance as a graph comprising n nodes
in the node set V . Each node is denoted as vi ∈ V . The op-
timal solution of a VRP is the tour π∗ that traverses through
all nodes with the shortest overall length. Solving different
VRP variants may be subject to various problem-specific
constraints. This study specifically examines two prominent
VRP variants: TSP and Capacitated VRP (CVRP), due to
their representativeness and widespread applications in var-
ious domains (Kim et al. 2015). In TSP, a feasible tour
entails visiting each node in V exactly once. CVRP ex-
tends TSP by introducing an additional depot node v0, a
capacity constraint, and demand requests of each node that
are smaller than the capacity constraint. A feasible tour for
CVRP consists of multiple sub-tours that each visits a subset
of nodes and serves the demand not exceeding the capacity.
All nodes, except for the depot, must be visited exactly once.

Tour Generation by AR and NAR Models

AR Models. These models are often employed to solve
VRPs using a Markov Decision Process (MDP) and utilize
a Transformer-based encoder-decoder framework as its pol-
icy network. The encoder captures node features and the de-
coder generates a tour π based on the extracted features and
the action history of node selections a1:t−1. At each step t
of the MDP, the decoder takes an action at to choose an un-
visited node, masking invalid nodes (visited and exceeding
capacity) to ensure feasibility, until the tour is completed.
Given a VRP instance s, the AR process can be factorized
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Figure 1: Action probability distribution of TM, GCN and GNARKD-TM when solving a randomly generated TSP-50 instance.

into a chain of conditional probabilities as follows:

PAR(π
AR|s, θAR) =

l∏
t=1

pAR(at|a1:t−1, s, θ
AR), (1)

where pAR denotes the policy parameterized by θAR and l
denotes the number of actions taken to complete the tour.
For TSP, l = n, while l ≥ n for CVRP because the depot is
visited at least once.

Pros and Cons of AR Models. The AR process simulates
the locomotion and observation involved in human decision-
making, and can produce near-optimal VRP solutions. How-
ever, the individual steps of the AR decoder must be exe-
cuted sequentially rather than in parallel, which undermines
the advantage of the Transformer in terms of inference speed
(Gu et al. 2018). Moreover, the sequential nature of AR
models leads to restricted search parallelism and diminish-
ing returns w.r.t. beam size in beam search.

NAR Models. These models eliminate the sequential de-
pendencies between nodes in the tour, resulting in faster in-
ference speed and robust parallelism. NAR models usually
adopt deep learning to generate a score matrix, which quan-
tifies the likelihood of each edge being selected in the tour,
and gradually take an action of choosing an edge to con-
struct a feasible tour. Notably, although almost all existing
NAR VRP models are designed to solve TSPs, they are eas-
ily extensible to solve CVRPs with a trivial modification in
the inference method (see the last subsection of the method
section). The NAR process can be factorized into a product
of independent probabilities as follows:

PNAR(π
NAR|s, θNAR) =

l∏
t=1

pNAR(at|s, θNAR). (2)

Challenge and Motivation
The performance of NAR models in terms of the overall tour
length is usually not satisfactory. To investigate this phe-
nomenon, we analyze the probability distributions of actions
in both AR and NAR models. Specifically, we select the pre-
trained TM (Bresson and Laurent 2021) and GCN (Joshi,

Laurent, and Bresson 2019) models as representatives of AR
and NAR models, respectively. We visualize the probability
distribution of selecting the next node in solving a randomly
generated TSP-50 instance for both models, using the same
inference method of greedy search. Figures 1(a) and 1(b)
show that TM produces a highly deterministic solution (ma-
jority data points are light-colored), while GCN achieves
partial determinism (minority data points are light-colored).
Our statistical analysis indicates that TM’s actions have a
lower bound probability of 0.75, while GCN’s actions have a
much smaller lower bound probability of 0.49. Furthermore,
when using a probability threshold of 0.75 to identify confi-
dent actions, only 76% of the actions in GCN meet the crite-
rion, indicating that the NAR model generates less confident
actions during the construction of tours. Because the pri-
mary objective of training neural construction models is to
increase the probability of generating high-quality solutions
(Hottung, Kwon, and Tierney 2022), the suboptimal qual-
ity of solutions in NAR model can be naturally attributed to
the diminished probability while generating these solutions.
Based on these findings, we propose to leverage the confi-
dent actions of the AR model to enhance the NAR model’s
performance while preserving the fast inference speed.

Guided NAR Knowledge Distillation
To combine the advantages of both AR and NAR models,
we introduce GNARKD, which transforms a Transformer-
based AR model into an NAR one through KD.

We show the architecture of GNARKD in Figure 2. For a
given pre-trained Transformer-based AR model (e.g., TM),
we modify the decoder’s input/output part, eliminating its
constraint of sequential generation (i.e., node selection no
longer depends on the action history). This modification
leads to the development of an NAR model, the student in
our KD approach. Subsequently, we conduct guided KD,
allowing the student to replicate actions generated by the
teacher, while aligning the student’s action probability dis-
tribution with that of the teacher for training.

Architecture of the Student Model
To construct the student model, we convert the network ar-
chitecture of a Transformer-based AR model into its NAR
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Figure 2: The architecture of GNARKD, which transforms the teacher AR model into a student NAR model.

form. Without the loss of generality, in the following sub-
sections, we describe our enhancements to a vanilla Trans-
former architecture that used for most existing AR models.
This architecture includes an encoder and a decoder com-
prising only feed-forward layers and multi-head attention
modules. Thus, the absence of recursive structures such as
RNN eliminates the inherent necessity for sequential execu-
tion, thereby enabling the development of NAR models.

Student Encoder Stack. To facilitate the transformation
of knowledge from the teacher to the student, we refrain
GNARKD from modifying the encoder, thus promoting a
proximity of representations for identical nodes in both
models. Formally, we define the node representation by the
teacher and the student as hte ∈ Rdh×n and hst ∈ Rdh×n,
respectively, both with dh hidden dimensions.

Student Decoder Stack. All three key enhancements are
centered around the decoder as described as follows.
1) The input and output of the decoder. The decoder in AR
models is responsible for generating the action probability
distribution λte

t that aids in selecting the subsequent node at
time t, based on the node representation hte and the action
history of previously selected nodes a1:t−1. This process is
generally described as follows:

λte
t = σT1

(
f te

({
z, if t = 1,

CE(a1:t−1), if t > 1,
,hte

))
, (3)

where λte
t ∈ R1×n, σT1

denotes the Softmax function with
temperature T1, f te denotes the forward propagation func-
tion of the teacher’s decoder, z ∈ Rdh×1 denotes a learn-
able parameter acting as the input placeholder (or the depot

in CVRP), and CE(a1:t−1) denotes the context embedding
based on the action history of node selections a1:t−1. Diff-
erent AR models may compute the context embedding using
different methods with the same purpose of constructing a
query qt ∈ Rdh×1 for selecting node at time t.

To obtain the NAR form of the student decoder that en-
ables parallel propagation, we omit the inclusion of the ac-
tion history information and instead model the correlation
between each node and its immediate successor. Further-
more, we enhance the versatility of GNARKD by adopting
a consistent and simple query construction method across
different GNARKD student models. Specifically, we ap-
ply a shared linear transformation parameterized by weights
W to each node embedding hst

i , denoted as embi =
Whst

i , embi ∈ Rdh×1, which functions as the query for se-
lecting node at time t. Subsequently, the decoder computes
the tightness Ai,j of one node vi connected to another node
vj through the forward propagation function fst of the stu-
dent. This parallel processing is achieved by concatenating
all node representations as follows:

A = fst(W [z,hst
1, . . . ,h

st
n]),A ∈ R(n+1)×n, (4)

where [·, ·, ·] denotes the horizontal concatenation operator.
2) Position encoding. Because the student decoder only
considers individual nodes and not their positions in the
tour (at least within the decoder), we refrain the student
model from using positional encoding that is commonly
used in Transformer-based AR decoders.
3) Unmasked attention. Because the AR model’s output is
constrained by sequential dependencies, its decoder relies on
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masks within the final cross attention layer to avoid revis-
iting selected nodes. Conversely, the student decoder does
not employ such masks because it only relies on the post-
decoder output processing for generating valid solutions.

Guided Knowledge Distillation
To transform the knowledge from AR models to NAR ones
without losing the order dependencies, we introduce guided
KD for the NAR student to preserve the inherent order de-
pendencies of the solutions generated by AR models. Specif-
ically, we employ the teacher’s actions to guide the decoding
process of the student’s output. Thus, the NAR student mod-
els are trained by learning a proxy distribution derived from
the action probability distribution of the AR teacher models,
effectively preserving the order dependencies.

Guided Decoding. We require the student to replicate the
identical sequence of actions πAR generated by the teacher.
Then, for each action at ∈ πAR, we apply the Softmax
function σT2

with temperature T2 to normalize the tightness
Aat,i of the connection between the selected node of that
action and the other node vi, thereby obtain the probability
distribution of actions for the student at time t as follows:

λst
t = σT2

(
Aat,i ⊙

{
−∞, if node vi ∈ sett,
1, otherwise,

)
, (5)

where i ∈ {1, . . . , n}, λst
t ∈ R1×n, ⊙ denotes the element-

wise multiplication, and sett denotes the set of constrained
nodes at time t (see the following subsection for details).

Learning the Proxy Distribution. We use the teacher’s
action probability distribution λte

t as the supervision signals
for training the student. To promote the student’s confidence
in taking actions by learning a leptokurtic probability dis-
tribution (Zhang et al. 2023), we use the Softmax function
with a temperature T1<1 for the teacher model, while set-
ting the student model’s temperature to T2 = 1. Formally,
we optimize the student model’s learnable parameters θ by
minimizing the KL divergence between its action probabil-
ity distribution and that of the teacher as follows:

LKD = EπAR∼PAR(·|s)[KL[PAR(π
AR|s)||PNAR(π

AR|s, θ)]]

= EπAR∼PAR(·|s)

[
KL

[
l∏

t=1

λte
t ||

l∏
t=1

λst
t

]]

=
1

B

B∑ l∑
t=1

n∑
i=1

λte
t,i log(λ

te
t,i − λst

t,i),

(6)
where B denotes the batch size used during training, λte

t,i and
λst
t,i denote the action probability of selecting the node vi at

time t for the teacher and student, respectively. The source
code of GNARKD is accessible online1.

Solving CVRPs in an NAR Manner
To date, only a handful of NAR models have been proposed
to address VRPs (Xiao et al. 2023), all of which focus exclu-
sively on solving TSPs. We introduce the search method that

1https://github.com/xybFight/GNARKD

uses an NAR model to solve CVRPs. Specifically, given the
matrix A output by the NAR model, we generate the VRP
solutions via greedy search at step t as follows:

at =

{
vst, if t = 1,

argmax(λat−1
), otherwise.

(7)

λat = σT2

(
Aat,i ⊙

{
−∞, if node vi ∈ set(t),

1, otherwise,

)
,

(8)
where i ∈ {1, . . . , n}, λat ∈ R1×n, and vst denotes the
starting point of the VRP solution. For TSPs, we add all the
visited nodes to set(t):

set(t) = {a1, a2, . . . , at−1}. (9)

For CVRP, we augment set(t) to incorporate nodes whose
demand exceeds the remaining vehicle capacity, so as to sat-
isfy the relevant constraints:

set(t) = {a1, a2, . . . , at−1} ∪ {
{
ai, if δi>Qt,

∅, otherwise,
}, (10)

where δi denotes the demand of node vi and Qt represents
the remaining vehicle capacity at time t. At time t = 1, Q1

is initialized as Q1 = Q, after which it is updated as follows:

Qt+1 =

{
Q, if vat

= v0,

Qt − δi, otherwise.
(11)

Experimental Results
We comprehensively evaluate the performance of GNARKD
on TSPs and CVRPs, using a computer equipped with an
Intel(R) i5-11400F CPU and an NVIDIA RTX 3060Ti GPU.

Experiment Setup
Teacher. We apply GNARKD to three prominent AR
models, namely AM (Kool, van Hoof, and Welling 2019),
POMO (Kwon et al. 2020) and TM (Bresson and Lau-
rent 2021), and name the obtained NAR models GNARKD-
{AM, POMO, TM}, respectively.

Student. For a fair comparison, we maintain the consis-
tency in the hyperparameter values for each student and its
respective teacher. Furthermore, we initialize the weights of
the student’s encoder with those of its teacher because both
models share the same encoder input and architecture.

Training and Hyperparameters. We maintain a consis-
tent distillation environment for all students to simplify and
standardize training conditions. Specifically, we set the tem-
perature T1 of teacher to 0.1 based on preliminary experi-
mental results. Each training epoch consists of 1000 batches
of 100 instances generated randomly on the fly. The total
number of training epochs varies according to the prob-
lem size, with 500 and 1000 epochs used for n = 50 and
n = 100, respectively. We use the outputs of the teacher in
“greedy mode” as the supervisory signals for its student. We
utilize Adam optimizer with a fixed learning rate of 1e–5.
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Teacher and
Student

Inference
mode

n = 50 n = 100
Learning

gap ↓
Acceleration

ratio (S) ↑
Acceleration
ratio (T) ↑

Learning
gap ↓

Acceleration
ratio (S) ↑

Acceleration
ratio (T) ↑

T
SP

AM
GNARKD-AM

G 1.90% 6.58× 11.7× 3.06% 7.33× 22.47×
S, B =1000 -0.13% 3.59× 101.70× 0.18% 4.54× 69.39×
S, B =2000 -0.15% 3.51× 76.80× 0.14% 5.95× 57.04×

POMO
GNARKD-POMO

G, no aug 0.26% 3.62× 2.93× 0.69% 3.77× 4.50×
G, ×8 aug 0.01% 3.31× 3.47× 0.11% 3.35× 5.23×

TM
GNARKD-TM

G 1.06% 9.12× 4.38× 6.34% 9.89× 9.57×
S, B =1000 -0.02% 6.83× 156.86× 0.00% 11.25× 179.40×
S, B =2000 -0.02% 9.81× 159.51× -0.02% 17.43× 170.18×

C
V

R
P

AM
GNARKD-AM

Greedy 10.28% 3.12× 7.03× 12.03% 3.15× 5.88×
S, B =1000 1.68% 1.83× 97.87× 4.26% 2.55× 71.44×
S, B =2000 1.43% 2.13× 56.36× 3.95% 3.54× 52.62×

POMO
GNARKD-POMO

G 3.02% 2.04× 3.52× 7.10% 2.27× 4.97×
G, ×8 aug 1.73% 2.06× 3.92× 4.51% 3.35× 4.96×

Average 1.61% 4.42× 52.77× 3.25% 6.03× 50.59×

Table 1: Performance of GNARKD on solving VRPs with comparisons. The learning gap is obtained by taking the difference
between the solution quality of the student and that of the teacher with reference to the teacher; the acceleration ratio is obtained
by the student relative to the teacher in terms of solving time for a single instance (S) and for total 10,000 instances (T). Because
TM lacks a dedicated method for solving CVRPs, we exclude all the corresponding comparisons regarding CVRP in this paper.
Moreover, due to the GPU memory limitation (8GB) and the ability to simultaneously process multiple input instances of each
model, we run them with the largest batch size possible for all the comparisons in this paper when solving all 10,000 instances.

Inference. We adopt the two standard inference modes,
namely “greedy” (G) and “sampling” (S), for both the stu-
dents and teachers following (Bresson and Laurent 2021).
Besides, in our comparison of POMO and its student, we
employ the greedy multiple rollouts technique with and
without ×8 augments as used in POMO.

Performance Analysis of GNARKD
We apply GNARKD to AM, POMO and TM for perfor-
mance evaluations, each time using a test dataset compris-
ing 10,000 randomly generated VRP instances, following
the same approach of (Hudson et al. 2022).

Table 1 presents the performance gap between students
and their respective teachers in the same inference mode.
The performance evaluation metrics include solution qual-
ity, time required to solve a single instance and all 10,000
instances. Note that because neural construction models si-
multaneously handle multiple input instances, the time re-
quired to solve 10,000 instances is significantly shorter than
the time required to solve an arbitrary instance for 10,000
times. It is worthy highlighting that the three teachers em-
ployed in this study have previously demonstrated as achiev-
ing the fastest inference speed (Bi et al. 2022). However,
as shown in Table 1, the GNARKD students, especially
GNARKD-AM and GNARKD-TM, exhibit faster inference
speed than their respective teachers and even achieve higher
solution quality. The overall performance of GNARKD is
beyond expectation considering that the students are under
full supervision of their respective teachers. One key rea-
son why GNARKD obtains high-performance student mod-
els is we set a low temperature when distilling the teach-

ers, whereby the students correctly learn a more leptokur-
tic action probability distribution, leading to the selection
of more confident actions (see ablation study results in
the last subsection). Our experimental results showcase the
efficacy of GNARKD in transforming an AR model into
an NAR one, resulting in significantly improved inference
speed while achieving on-par solution quality. Additionally,
Figures 1(a) and 1(c) provide evidence of the successful
knowledge transformation from the teacher to the student,
manifested by the remarkable similarity between their ac-
tion probability distributions. Specifically, in comparison to
GCN, GNARKD-TM exhibits significantly greater confi-
dence, with 96% of its action probabilities exceeding the
probability threshold of 0.75.

Table 2 presents a comparison of the performance be-
tween the GNARKD students and other baselines, includ-
ing the exact solvers such as Concorde (Applegate et al.
2007) and LKH3 (Helsgaun 2017), and SOTA neural con-
struction models such as MDAM (Xin et al. 2021), GCN
(Joshi, Laurent, and Bresson 2019), and NAR4TSP (Xiao
et al. 2023). As shown in Table 2, despite being limited by
the performance of their respective teachers, the GNARKD
students achieve competitive results with a significant in-
ference speed advantage comparing to other baselines. For
TSPs, GNARKD-TM even achieves SOTA results for TSP-
50. Although the GNARKD students do not outperform the
baselines in terms of solution quality for CVRPs, the differ-
ence is negligible. Furthermore, the GNARKD students con-
stitute a pioneer successful attempt to solve CVRPs using
NAR approaches, providing a valuable baseline for future
studies. Our results demonstrate that GNARKD students
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Method Type Inference
mode

n = 50 n = 100
Average
length ↓ Gap ↓ Time∗

(sec) ↓
Average
length ↓ Gap ↓ Time∗

(sec) ↓

T
SP

Concorde exact - 5.689 0.00% 0.04, 3.63× 102 7.765 0.00% 0.17, 1.45× 103

MDAM AR S, B =30 5.690 0.03% 18.52, 4.74× 102 7.798 0.42% 32.46, 1.56× 103

GCN NAR S, B =1280 5.710 0.37% 0.07, 1.45× 102 7.920 2.00% 0.19, 6.31× 102

NAR4TSP NAR S, B =1000 5.705 0.28% 0.05, 1.88× 101 7.827 0.80% 0.11, 7.26× 101

AM AR S, B =2000 5.714 0.45% 0.14, 1.39× 103 7.934 2.18% 0.40, 3.98× 103

GNARKD-AM NAR S, B =2000 5.706 0.30% 0.04, 1.81× 101 7.945 2.32% 0.07, 6.98× 101

POMO AR G, ×8 aug 5.689 0.02% 0.06, 3.21× 101 7.771 0.09% 0.10, 1.17× 102

GNARKD-POMO NAR S, B =1000 5.691 0.05% 0.03, 9.70× 100 7.790 0.33% 0.07, 3.58× 101

TM AR S, B =2000 5.690 0.02% 0.42, 2.99× 103 7.799 0.44% 1.4, 1.22× 104

GNARKD-TM NAR S, B =2000 5.689 0.01% 0.04, 1.88× 101 7.797 0.42% 0.08, 7.17× 101

C
V

R
P

LKH3 exact - 10.360 0.00% 34.12, 2.81×104 15.646 0.00% 65.85, 5.27× 104

MDAM AR S, B =30 10.498 1.34% 19.94, 5.98× 102 16.033 2.47% 38.24, 1.93× 103

POMO AR G, ×8 aug 10.699 3.28% 0.10, 3.85× 101 15.750 0.69% 0.17, 1.40× 102

GNARKD-POMO NAR S, B =1000 10.737 3.64% 0.08, 1.62× 101 16.240 3.80% 0.14, 5.12× 101

AM AR S, B =2000 10.602 2.34% 0.18, 1.76× 103 16.182 3.43% 0.51, 5.02× 103

GNARKD-AM NAR S, B =2000 10.754 3.81% 0.08, 3.13× 101 16.821 7.51% 0.14, 9.54× 101

Table 2: Experiment results of GNARKD student models and baseline models on solving VRPs. The gap is computed w.r.t. the
exact solvers Concorde (for TSP) and LKH3 (for CVRP); ∗For the computation time, we report the average time to solve one
single instance before the comma and the total time to solve all 10,000 instances.

can be readily deployed in real-world scenarios demand-
ing near-optimal VRP solutions with immediate availability,
e.g., warehouses operated by autonomous mobile robots.

Inference Speed Analysis of GNARKD
To highlight the remarkably fast inference speed of the
GNARKD students, we conduct two more sets of experi-
ments. First, we compare the solving time of the student
and teacher models for VRP instances of varying sizes us-
ing the greedy mode. Secondly, we compare the solving time
of the student and teacher models for a predetermined VRP
instance using beam search with varying widths. We repeat
each experiment for 100 times and report the average results
in Figure 3. As shown, the GNARKD students have a signif-
icantly faster inference speed across all experiments when
compared to their respective teachers. The speed further el-
evates with the increase of an instance size or beam width.
These results showcase the speed advantages of employing
the student model over the teacher model, again indicating
its great potential for deployment in real-world scenarios.

Further Performance Analysis of GNARKD
To further evaluate the performance of GNARKD in real-
world scenarios, we randomly choose 20 real-world TSP in-
stances (node sizes ranging from 51 to 159) from TSPLIB
as the test cases. In addition to reporting the solution length,
we also report the execution time for a comprehensive com-
parison. Furthermore, we use the exact solver Concorde that
produces optimal results as the baseline.

As shown in Table 3, both AM and TM do not exhibit any
advantage in terms of solution quality and execution time

(a) TSPs, varying sizes (b) CVRPs, varying sizes

(c) TSPs, varying widths (d) CVRPs, varying widths

Figure 3: Comparison on the execution time between
GNARKD students and their respective teachers. Because
POMO uses the multiple greedy rollouts instead of beam
search, we only report the time taken by GNARKD-POMO
using the same inference method. Moreover, constrained
by GPU memory, POMO is unable to solve TSP instances
larger than 850 and CVRP instances larger than 1,000.

compared to Concorde. In this case, the use of Concorde
is more preferable than employing these two models. Con-
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Algorithms
Average

gap ↓
Time

(Sec)↓
Concorde 0.00% 0.178

AM G 7.96% 0.153
S, B =2000 6.93% 0.456

GNARKD-AM G 10.98% 0.024
S, B =2000 5.88% 0.075

TM G 8.60% 0.281
S, B =2000 5.17% 1.565

GNARKD-TM G 11.92% 0.027
S, B =2000 3.89% 0.076

POMO G, no aug 3.41% 0.090
G, ×8 aug 2.53% 0.103

GNARKD-POMO G, no aug 6.41% 0.036
G, ×8 aug 4.49% 0.037

Table 3: Performance comparison on 20 TSPLIB instances

versely, the GNARKD students exhibit significantly shorter
inference time compared to Concorde. This finding indicates
that GNARKD improves the effectiveness of these two mod-
els, emphasizing the significance of our method.

Although POMO exhibits remarkable performance, its so-
lution is generated by multiple greedy rollouts, demand-
ing greater computational resources than the single greedy
rollouts used in conventional AR models. In contrast,
GNARKD-POMO generates solutions exclusively within
the output matrix A, resulting in substantial saving in com-
putational resources. To assess this disparity, we examine
the maximum node size that POMO and GNARKD-POMO
can handle. Our findings, constrained by an 8GB GPU mem-
ory limitation, indicate that POMO can solve TSP instances
with a maximum of 1,000 nodes when employing multiple
greedy rollouts, while GNARKD-POMO can solve TSP in-
stances with up to 9,000 nodes. When using multiple greedy
rollouts with ×8 augments, POMO’s capacity is restricted
to TSP instances of up to 500 nodes, whereas GNARKD-
POMO can solve TSP instances with up to 3,100 nodes.
These findings substantiate that our student model is more
suitable for practical applications with limited resources.

Ablation Study of GNARKD
To assess the effectiveness of the distillation temperature and
the guided KD, we conduct two ablation studies as follows.

Sensitivity on Distillation Temperature. We conduct ab-
lation studies on VRP-50 to analyze whether the KD
temperature significantly affects the performance of the
students. Specifically, we use different values of T1 ∈
{0.1, 0.5, 1, 5, 10} during training and the results indicate
that for low temperatures T1 ∈ {0.1, 0.5, 1}, the perfor-
mance difference among the students trained at different
temperatures are insignificant, primarily due to the leptokur-
tic probability distribution of actions observed in the teach-
ers. Conversely, using a higher temperature T1 ∈ {5, 10}
for distillation leads to a notable decline in the perfor-
mance of the students. Furthermore, we analyze the action

SL RL Guided KD

GNARKD-AM 9.30% 2.42% 0.36%

GNARKD-TM 7.69% 1.83% 0.01%

GNARKD-POMO 7.35% 1.99% 0.05%

Table 4: Gap of student models trained with different meth-
ods using beam (1000) search for TSP-50s

probability distribution of GNARKD-TM trained at diff-
erent temperatures when solving a randomly generated TSP-
50 instance. Our statistical analysis on the action proba-
bility distribution indicates that the lower bound probabil-
ities of actions taken by GNARKD-TM trained at a low
temperature T1 ∈ {0.1, 0.5, 1} are significantly higher
({0.65, 0.64, 0.53}) compared to GNARKD-TM trained at
a high temperature T1 ∈ {5, 10}, which exhibit lower
bound probabilities of {0.28, 0.07}. Furthermore, when us-
ing a probability threshold of 0.75 to identify confident ac-
tions, GNARKD-TM trained at a varying temperature T1 ∈
{0.1, 0.5, 1, 5, 10} shows proportions of confident actions at
96%, 92%, 92%, 14% and 4%, respectively. These results
substantiate the efficacy of GNARKD in training students to
learn an accurate leptokurtic action probability distribution,
resulting in enhanced performance.

Effectiveness of Different Training Methods. We com-
pare the performance of the student models trained with
different methods for TSP-50 to evaluate the effectiveness
of our guided KD. Specifically, we utilize the SL and RL
training methods outlined in prior studies (Joshi, Laurent,
and Bresson 2019) and (Xiao et al. 2023), respectively, for
training our student models. Both training methods are con-
ducted within the same training environment utilized for
the proposed guided KD. The results presented in Table 4
demonstrate that the models trained using SL yield subop-
timal performance, whereas those trained using RL show
significant performance improvements. However, the mod-
els trained with guided KD outperforms them both. These
results demonstrate the high efficacy of training students us-
ing our guided KD training method.

Conclusion and Future Work
This paper proposes GNARKD, a technique for transform-
ing the knowledge of Transformer-based AR models into
NAR models, which effectively utilize the high parallelism
of the Transformer during inference. We apply GNARKD to
three prominent AR models and present comprehensive ex-
perimental results with comparisons. The results show that
GNARKD significantly improves the inference speed while
maintaining competitive solution quality.

The current version of GNARKD may not perform well
with complex constraints, and the student’s performance is
inevitably limited by its respective teacher. Going forward,
we plan to 1) model the constraints on NAR models directly
on the decoder instead of post-processing the model output
and 2) use multiple teachers to train students for further per-
formance gain.
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Carić, T.; Galić, A.; Fosin, J.; Gold, H.; and Reinholz, A.
2008. A modelling and optimization framework for real-
world vehicle routing problems. InTechOpen.
Fu, Z.; Qiu, K.; and Zha, H. 2021. Generalize a small pre-
trained model to arbitrarily large TSP instances. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
7474–7482.
Gu, J.; Bradbury, J.; Xiong, C.; Li, V. O.; and Socher, R.
2018. Non-Autoregressive Neural Machine Translation. In
Proceedings of International Conference on Learning Rep-
resentations.
Helsgaun, K. 2017. An extension of the Lin–Kernighan–
Helsgaun TSP solver for constrained traveling salesman and
vehicle routing problems. Roskilde: Roskilde University,
24–50.
Hottung, A.; Kwon, Y.-D.; and Tierney, K. 2022. Efficient
Active Search for Combinatorial Optimization Problems. In
Proceedings of International Conference on Learning Rep-
resentations.
Hou, Q.; Yang, J.; Su, Y.; Wang, X.; and Deng, Y. 2023.
Generalize Learned Heuristics to Solve Large-scale Vehicle
Routing Problems in Real-time. In Proceedings of Interna-
tional Conference on Learning Representations.
Hudson, B.; Li, Q.; Malencia, M.; and Prorok, A. 2022.
Graph neural network guided local search for the traveling
salesperson problem. In Proceedings of International Con-
ference on Learning Representations.
Jin, Y.; Ding, Y.; Pan, X.; He, K.; Zhao, L.; Qin, T.; Song,
L.; and Bian, J. 2023. Pointerformer: Deep reinforced multi-
pointer transformer for the traveling salesman problem. In

Proceedings of the AAAI Conference on Artificial Intelli-
gence.
Joshi, C. K.; Cappart, Q.; Rousseau, L.-M.; and Laurent, T.
2022. Learning the travelling salesperson problem requires
rethinking generalization. Constraints, 27: 70–98.
Joshi, C. K.; Laurent, T.; and Bresson, X. 2019. An effi-
cient graph convolutional network technique for the travel-
ling salesman problem. In Proceedings of INFORMS Annual
Meeting, Session on Boosting Combinatorial Optimization
using Machine Learning, 1–17.
Kim, G.; Ong, Y.-S.; Heng, C. K.; Tan, P. S.; and Zhang,
N. A. 2015. City Vehicle Routing Problem (City VRP): A
Review. IEEE Transactions on Intelligent Transportation
Systems, 16: 1654–1666.
Koehn, P.; and Knowles, R. 2017. Six Challenges for Neu-
ral Machine Translation. In Proceedings of Association for
Computational Linguistics Workshop, 28–39.
Kool, W.; van Hoof, H.; and Welling, M. 2019. Attention,
Learn to solve routing problems! In Proceedings of Interna-
tional Conference on Learning Representations.
Kwon, Y.-D.; Choo, J.; Kim, B.; Yoon, I.; Gwon, Y.; and
Min, S. 2020. POMO: Policy Optimization with Multiple
Optima for Reinforcement Learning. In Proceedings of Ad-
vances in Neural Information Processing Systems, 21188–
21198.
Li, K.; Zhang, T.; Wang, R.; Qin, W.; He, H.-h.; and Huang,
H. 2021. Research reviews of combinatorial optimization
methods based on deep reinforcement learning. Zidonghua
Xuebao/Acta Automatica Sinica, 47: 2521–2537.
Lu, H.; Li, Z.; Wang, R.; Ren, Q.; Li, X.; Yuan, M.; Zeng,
J.; Yang, X.; and Yan, J. 2023. ROCO: A General Frame-
work for Evaluating Robustness of Combinatorial Optimiza-
tion Solvers on Graphs. In Proceeding of International Con-
ference on Learning Representations.
Pan, X.; Jin, Y.; Ding, Y.; Feng, M.; Zhao, L.; Song, L.; and
Bian, J. 2023. H-TSP: Hierarchically Solving the Large-
Scale Traveling Salesman Problem. Proceedings of the
AAAI Conference on Artificial Intelligence, 37: 9345–9353.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you Need. In Proceedings of Advances in Neu-
ral Information Processing Systems, 6000–6010.
Wang, R.; Shen, L.; Chen, Y.; Yang, X.; Tao, D.; and
Yan, J. 2023. Towards One-shot Neural Combinatorial
Solvers: Theoretical and Empirical Notes on the Cardinality-
Constrained Case. In Proceedings of International Confer-
ence on Learning Representations.
Wu, Y.; Song, W.; Cao, Z.; Zhang, J.; and Lim, A. 2022.
Learning improvement heuristics for solving routing prob-
lems. IEEE Transactions on Neural Networks and Learning
Systems, 33(9): 5057–5069.
Xiao, Y.; Wang, D.; Li, B.; Chen, H.; Pang, W.; Wu, X.;
Li, H.; Xu, D.; Liang, Y.; and Zhou, Y. 2023. Reinforce-
ment Learning-based Non-Autoregressive Solver for Trav-
eling Salesman Problems. arXiv:2308.00560.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20282



Xin, L.; Song, W.; Cao, Z.; and Zhang, J. 2021. Multi-
Decoder Attention Model with Embedding Glimpse for
Solving Vehicle Routing Problems. In Proceeding of the
AAAI Conference on Artificial Intelligence, 12042–12049.
Zhang, Q.; Cheng, X.; Chen, Y.; and Rao, Z. 2023. Quanti-
fying the Knowledge in a DNN to Explain Knowledge Dis-
tillation for Classification. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45: 5099–5113.
Zhang, Z.; Zhang, Z.; Wang, X.; and Zhu, W. 2022. Learning
to solve travelling salesman problem with hardness-adaptive
curriculum. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 9136–9144.
Zheng, J.; He, K.; Zhou, J.; Jin, Y.; and Li, C.-M. 2021.
Combining Reinforcement Learning with Lin-Kernighan-
Helsgaun Algorithm for the Traveling Salesman Problem.
In Proceedins of the AAAI Conference on Artificial Intelli-
gence, 12445–12452.
Zong, Z.; Zheng, M.; Li, Y.; and Jin, D. 2022. MAPDP: Co-
operative multi-agent reinforcement learning to solve pickup
and delivery problems. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 9980–9988.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20283


