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Abstract

Learning Granger causality from event sequences is a chal-
lenging but essential task across various applications. Most
existing methods rely on the assumption that event sequences
are independent and identically distributed (i.i.d.). However,
this i.i.d. assumption is often violated due to the inherent de-
pendencies among the event sequences. Fortunately, in prac-
tice, we find these dependencies can be modeled by a topo-
logical network, suggesting a potential solution to the non-
i.i.d. problem by introducing the prior topological network
into Granger causal discovery. This observation prompts us
to tackle two ensuing challenges: 1) how to model the event
sequences while incorporating both the prior topological net-
work and the latent Granger causal structure, and 2) how to
learn the Granger causal structure. To this end, we devise a
unified topological neural Poisson auto-regressive model with
two processes. In the generation process, we employ a variant
of the neural Poisson process to model the event sequences,
considering influences from both the topological network and
the Granger causal structure. In the inference process, we for-
mulate an amortized inference algorithm to infer the latent
Granger causal structure. We encapsulate these two processes
within a unified likelihood function, providing an end-to-end
framework for this task. Experiments on simulated and real-
world data demonstrate the effectiveness of our approach.

Introduction
Causal discovery from multi-type event sequences is impor-
tant in many applications. In the realm of intelligent op-
eration and maintenance, identifying the causal structure
behind alarm sequences can expedite the location of root
causes (Vuković and Thalmann 2022). In social analysis,
recovering the causal structure behind users’ behavior se-
quences can inform the development of effective advertising
strategies (Chen et al. 2020).

Lots of methods have been proposed for causal discov-
ery from multi-type event sequences. They fall into two
main categories: 1) constraint-based methods, which uti-
lize independence-based tests or measures to estimate the
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Figure 1: An example of the topological event sequences
generated by a mobile network in an operation and main-
tenance scenario. In this context, {n1, n2, n3} represent the
network elements, and {v1, v2, v3} denote the event types of
the alarms. The term Pv1

(t1) stands for the distribution of
v1 alarm at t1 timestamp, and so on. Black arrows represent
the correct causal edges, whereas the red arrow represents an
incorrect edge. (a) Generation process of topological event
sequences. The event distribution varies with time and is in-
fluenced by both a topological network (connected by the
solid lines) and a Granger causal structure (depicted in part
(b)). (b) Ground truth of the Granger causal structure. (c)
Granger causal structure learned under i.i.d. assumption.

causal structure, and 2) point process-based methods, which
employ point processes to model the generation process
of event sequences. While the former, including methods
such as PCMCI (PC with Momentary Conditional Indepen-
dence test) (Runge 2020) and transfer entropy-based meth-
ods (Chen et al. 2020; Mijatovic et al. 2021), is founded on
strict assumptions of the causal mechanism assumptions, the
latter, like Hawkes process-based methods (Xu, Farajtabar,
and Zha 2016; Zhou, Zha, and Song 2013) and neural point
process models (Shchur et al. 2021), is based on the con-
cept of Granger causality (Granger 1969). Given the weaker
assumption of Granger causality, identifying the Granger
causal structure just by assessing if a sequence is predictive
of another, point process-based methods often find prefer-
ence in real-world applications (Shojaie and Fox 2022) and
are therefore the focal point of this work.
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However, these existing point process-based methods are
significantly dependent on the i.i.d. assumption to model the
generation process of event sequences. In reality, this as-
sumption often falls short due to the complex dependencies
that permeate sequences. Consequently, the performance of
these methods often leaves much to be desired in real-world
applications. For instance, as illustrated in Fig. 1, non-i.i.d.
alarm sequences in an operation and maintenance scenario
highlight this issue. These event sequences are produced by
network elements interconnected by a topological network,
indicating the event sequences of different elements are de-
pendent on each other, thereby violating the i.i.d. assump-
tion. In this illustrated scenario, the event type v2 in n2 is
only caused by the event types in topologically connected
elements (specifically, v1 in n2). Existing methods would
incorrectly identify the edge v3 → v2 because they erro-
neously treat event sequences on different nodes as inde-
pendent. By considering the prior topological network, we
can correctly learn that v2 is actually caused by v1 and dis-
cern the true causal structure. Therefore, it is vital to exploit
the topological network to model the dependencies among
non-i.i.d. event sequences and accurately recover the causal
structure from them.

This gives rise to two ensuing challenges: 1) how to ex-
plicitly model the generation process of topological event
sequences, incorporating both the prior topological network
and the latent causal structure, and 2) how to learn the latent
Granger causal structure from topological event sequences.
To tackle these challenges, Cai et al. (Cai et al. 2022) pro-
pose the topological Hawkes process (THP), which extends
the time-domain convolution property of the Hawkes pro-
cess to the time-graph domain. Nevertheless, THP’s appli-
cability in real-world scenarios remains limited due to the
complex generation process and distribution of real-world
scenarios, which are often too intricate to be accurately rep-
resented by the Hawkes process. Hence, it is crucial to de-
vise a distribution-free generation model for non-i.i.d. event
sequences that can incorporate both the topological network
and the latent Granger causal structure.

In response to these challenges, we develop a uni-
fied Topological Neural Poisson Auto-Regressive (TNPAR)
model, comprising a generation process and an inference
process. In the generation process, we introduce a variant of
the Poisson Auto-Regressive model to depict the generation
process of topological event sequences. By extending the
Auto-Regressive model with Poisson Process and incorpo-
rating both the topological network and the Granger causal
structure, TNPAR effectively overcomes the non-i.i.d. prob-
lem. By representing the distribution using a series of Pois-
son processes with varying parameters, TNPAR displays en-
hanced flexibility compared to existing methods that employ
a single fixed distribution for the entire sequence. In the in-
ference process, we design an amortized inference algorithm
(Zhang et al. 2018; Gershman and Goodman 2014) to ef-
fectively learn the Granger causal structure. By integrating
these generation and inference processes, we establish a uni-
fied likelihood function for TNPAR model, which can be op-
timized within an end-to-end paradigm.

In summary, our main contributions are as follows:

1. We develop a topological neural Poisson auto-regressive
method that accurately learns causal structure from topo-
logical event sequences.

2. By incorporating the prior topological network into the
generation model, we offer a distribution-free solution to
the non-i.i.d. challenge in causal discovery.

3. By treating the causal structure as a latent variable, we
devise an amortized inference method to effectively iden-
tify the causal structure among the event types.

Related work
Temporal Point Process
Temporal point processes are stochastic processes utilized
to model event sequences. They can be bifurcated into two
main categories: statistical point processes and neural point
processes. On the one hand, statistical point processes em-
phasize designing appropriate intensity functions, the pa-
rameters of which often carry specific physical interpreta-
tions. Notable examples of statistical point processes en-
compass the Poisson process (Cox 1955), Hawkes process
(Hawkes 1971), reactive point process (Ertekin, Rudin, and
McCormick 2015), and self-correcting process (Isham and
Westcott 1979), among others. On the other hand, neural
point processes (Shchur et al. 2021) exploit the potent learn-
ing capabilities of neural networks to implement the inten-
sity functions, often outperforming statistical point process
methods in prediction performance.

Granger Causality for Event Sequences
There are many types of methods for Granger causal dis-
covery from event sequences. For instance, the Hawkes-
process-based methods assume that the past events stimu-
late the occurrence of related events in the future if and
only if the former Granger caused the latter. Typical Hawkes
process-based methods (Zhou, Zha, and Song 2013; Xu,
Farajtabar, and Zha 2016) focus on designing appropriate
intensity functions and regularized techniques. Recently, the
THP algorithm (Cai et al. 2022) extends the Hawkes process
to address the non-i.i.d. issue.Other methods like Graphical
Event Models (GEMs) (Bhattacharjya, Subramanian, and
Gao 2018) formalize Granger causality using process inde-
pendence. In contrast, neural point process-based methods
(Xiao et al. 2019; Zhang et al. 2020) do not depend on spe-
cific assumptions of generation functions like the Hawkes
process or GEMs. Instead, they employ neural networks to
model event sequences with Granger causality. In another
vein, our work is also related to the Granger causal discovery
from time series. For instance, Brillinger (Brillinger 1994)
aggregates event sequences into time series, which enables
the analysis of event sequences using auto-regressive mod-
els. The Granger Causality alignment (GCA) model (Li et al.
2023) combines the auto-regressive model with the genera-
tion model to learn the Granger causality. Amortized Causal
Discovery (ACD) (Löwe et al. 2022) trains an amortized
model to infer causal graphs from time series. In addition,
we provide a comparison of our work with related methods
in Appendix A.
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Granger Causal Discovery Using Neural
Poisson Auto-Regressive

Problem Definition
Let an undirected graph GN (N,EN ) represent the topo-
logical network among nodes N, and a directed graph
GV (V,EV ) represent the Granger causal graph among
event types V. Here, EN signifies the physically connected
edges between nodes, and EV denotes the causal edges be-
tween event types. In this context, an event could trigger
its subsequent events in its own node and its topologically
connected nodes. A series of topological event sequences of
length m, symbolized as X = {(vi, ni, ti)|i ∈ {1, . . . ,m}},
are generated by a Granger causal structure GV (V,EV )
within a topological network GN (N,EN ). Each item in
the series consists of vi ∈ V representing the event type,
ni ∈ N representing the topological node, and ti ∈ [0, T ]
representing the occurrence timestamp.

We can consider the topological event sequences X as a
set of counting processes {Cvi,nj (t)|vi ∈ V, nj ∈ N, t ∈
[0, T ]}, where Cvi,nj (t) denotes the count of event type vi
that has occurred up to t at nj . In this work, we divide
the continuous interval [0, T ] into ⌈T/∆⌉ small intervals,
where ∆ ∈ R+ can be determined according to real-world
applications. Then, the occurrence numbers of the count-
ing processes can be denoted as OV,N = {Ovi,nj

t |t ∈
{1, . . . , ⌈T/∆⌉}, i ∈ {1, . . . , |V|}, j ∈ {1, . . . , |N|}},
where O

vi,nj

t = Cvi,nj
(t × ∆) − Cvi,nj

((t − 1) × ∆)
represents the occurrence number of vi at nj within ((t −
1)×∆, t×∆]. Within each interval, we assume the count-
ing process follows a Poisson process (Stoyan et al. 2013)
with parameter λvi,nj

t . Thus, the probability of Ovi,nj

t can
be expressed as follows:

P(O
vi,nj

t =o)=
(λ

vi,nj

t ∆)o

o!
e−λ

vi,nj
t ∆; o = 0, 1, ... (1)

Consequently, we can formulate the problem of causal
discovery from topological event sequences as:
Definition 1 (Granger causal discovery from topologi-
cal event sequences). Given the occurrence numbers of
topological event sequences, OV,N = {Ovi,nj

t |t ∈
{1, . . . , ⌈T/∆⌉}, i ∈ {1, . . . , |V|}, j ∈ {1, . . . , |N|}},
and the prior topological network GN (N,EN ), the goal of
Granger causal discovery from topological event sequences
is to infer the Granger causal structure GV (V,EV ) among
the event types.

In the following, we propose the TNPAR model to solve
the above problem, comprising a generation process and an
inference process.

Generation Process of the Event Sequences via
Topological Neural Poisson Auto-Regressive Model
TNPAR’s generation process is depicted using solid lines
in Fig. 2. In this process, Ovi,nj

t is determined by a com-
bination of historical data {OV,N

t−1 ,O
V,N
t−2 , . . . ,O

V,N
t−Ω}, the

causal matrices A0:K , and the topological matrices B0:K .
Here, A0:K represents a set of matrices {A0,A1, . . . ,AK},
where Ak is a |V| × |V| binary matrix that indicates the

𝐎!"#
$,& , 𝐎!"'

$,& , … , 𝐎!"(
$,&

𝐀):+ 𝐁):+

𝑂!
,,-

Generation

Inference

Figure 2: An illustration of the generation and inference pro-
cesses for TNPAR. In this figure, A0:K represents the causal
matrices of GV , and B0:K represents the topological matri-
ces of GN . Solid lines signify the generation process for the
data Ov,n

t , and dashed lines correspond to the inference pro-
cess for the causal matrices A0:K . Observed variables are
denoted by the solid circles, with the latent variables repre-
sented by the dashed circles.

Granger causality between event types at a geodesic distance
(Bouttier, Di Francesco, and Guitter 2003) of k within GN .
Let Ai,j

k denote the element in row i and column j of Ak.
Then, if Ai,j

k = 0, it implies that, at a geodesic distance of
k, event type vi does not have a Granger causality with vj .
Otherwise, Ai,j

k will be 1. Similarly, B0:K corresponds to
another set of matrices {B0,B1, . . . ,BK}, each of which
Bk is a |N| × |N| binary matrix that indicates the phys-
ical connections of nodes at a geodesic distance of k. Let
Bi,j

k denote the element in row i and column j of Bk. If the
geodesic distance between node ni and nj is k in GN , then
Bi,j

k = 1. Otherwise, Bi,j
k will be set to 0.

In this work, we devise a model, combining the neural
auto-regressive model and the Poisson process, to describe
the above generation process. To initiate, we introduce a tra-
ditional neural auto-regressive model with Ω time lags:

Ovi
t = g(OV

t−1:t−Ω) + ϵvit , (2)

where OV
t−1:t−Ω = {OV

t−1,O
V
t−2, . . . ,O

V
t−Ω} represents a

set of historical data, g(·) is a nonlinear function imple-
mented by a neural network that generates data in the t-
th time interval based on the historical data, and ϵvit de-
notes the noise term for event type vi in the t-th time in-
terval. In order to incorporate the topological relationships
of nodes into our model, we extend OV

t−1:t−Ω to include
the topologically connected historical data, using the func-
tion fGN

nj
(OV,N

t−1:t−Ω,B0:K). This function applies a filter to
set the non-topologically connected data for node nj to
0 in OV,N

t−1:t−Ω based on B0:K , which effectively removes
the non-topologically connected information in the genera-
tion process of Ovi

t . Building upon this, our auto-regressive
model, incorporating topological information, can be ex-
pressed as follows:

O
vi,nj

t = g(fGN
nj

(OV,N
t−1:t−Ω,B0:K)) + ϵ

vi,nj

t . (3)

Furthermore, to incorporate the Granger causal structure
into the above model, we substitute OV,N

t−1:t−Ω in Eq. (3)
with a function fGV

vi (OV,N
t−1:t−Ω,A0:K). This function acts as
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a filter to set the historical data that do not have a Granger
causality with vi to 0 in OV,N

t−1:t−Ω based on A0:K . By in-
corporating both the topological network and the Granger
causal structure, we propose the following model for gener-
ating topological event sequences:

O
vi,nj

t =g(fGN
nj

(fGV
vi

(OV,N
t−1:t−Ω,A0:K),B0:K))+ϵ

vi,nj

t . (4)

Inference Process of the Granger Causal Structure
via Amortized Inference
The inference process of TNPAR is depicted using dashed
lines in Fig. 2. As shown in the diagram, the causal matri-
ces A0:K are inferred based on a combination of the cur-
rent occurrence number Ovi,nj

t , historical occurrence num-
bers OV,N

t−1:t−Ω and the topological network B0:K . Note that
the causal relationship is invariant across the varying sam-
ples. This nature inspires us to implement the inference pro-
cess with amortized inference (Zhang et al. 2018; Gershman
and Goodman 2014), in which a shared function is employed
to predict the varying posterior distribution of each sample.
Consequently, we consider the generation process function,
defined in Eq. (4), as the shared function and designate the
causal matrices as the function’s parameter to implement the
amortized inference process.

In more detail, to amortize the inference of the shared
function, we optimize an inference model to predict the
distribution of causal matrices. Given the data O

vi,nj

t and
OV,N

t−1:t−Ω, as well as the topological network B0:K , we use
qϕ(A0:K |Ovi,nj

t ,OV,N
t−1:t−Ω,B0:K) to approximate the true

distribution pθ(A0:K |Ovi,nj

t ,OV,N
t−1:t−Ω,B0:K). Here, ϕ and

θ represent the variational and generation parameters, re-
spectively. The value of θ and ϕ can be learned by maxi-
mizing the ensuing likelihood function for each O

vi,nj

t :

log P(O
vi,nj

t |OV,N
t−1:t−Ω,B0:K)

=DKL(q
A
ϕ ||pAθ )+L(θ, ϕ;Ovi,nj

t |OV,N
t−1:t−Ω,B0:K),

(5)

where qAϕ = qϕ(A0:K |Ovi,nj

t ,OV,N
t−1:t−Ω,B0:K), pAθ =

pθ(A0:K |Ovi,nj

t ,OV,N
t−1:t−Ω,B0:K). In Eq. (5), the right-

hand side’s (RHS) first term represents the Kullback-Leibler
(KL) divergence of the approximate posterior from the true
posterior, and the RHS’s second term is the variational evi-
dence lower bound (ELBO) on the log-likelihood of Ovi,nj

t .
By defining the ELBO as Le and considering the KL diver-
gence is non-negative, we can deduce from the Eq. (5) that:

log P(O
vi,nj

t |OV,N
t−1:t−Ω,B0:K) ≥ Le

=EqA
ϕ
[− log qAϕ + log pθ(O

vi,nj

t ,A0:K |OV,N
t−1:t−Ω,B0:K)].

(6)
The ELBO can be further expressed as:

Le =EqA
ϕ
[log pθ(O

vi,nj

t |A0:K ,OV,N
t−1:t−Ω,B0:K)]

−DKL(q
A
ϕ ||pθ(A0:K)).

(7)

Building upon this equation, the goal of the inference task
is to optimize Le with respect to both ϕ and θ, thereby ob-
taining the posterior distribution of latent Granger causal
structure given the data and the topological network.

Theoretical Analysis
In this subsection, we will theoretically analyze the identi-
fiability of the proposed model. To do so, according to the
definition in (Tank et al. 2018), we begin with the definition
of the Granger non-causality of multi-type event sequences
as follows:

Definition 2 (Granger non-causality of multi-type event
sequences). Given data OV during time interval t ∈
{1, . . . , ⌈T/∆⌉}, which is generated according to Eq. (2).
For the original sample values of historical variables
Ov1

t−1:t−Ω, ...,O
v|V |
t−1:t−Ω, let Ôvi

t−1:t−Ω represent the differ-
ent sample values of the historical variables Ovi

t−1:t−Ω, (i.e.,
Ovi

t−1:t−Ω ̸= Ôvi

t−1:t−Ω). We can determine the Granger
non-causality of event type vi with respect to event type vj ,
if the following condition holds for all t:

g(Ov1

t−1:t−Ω, ...,O
vi

t−1:t−Ω, ...,O
v|V |
t−1:t−Ω)

=g(Ov1

t−1:t−Ω, ..., Ô
vi

t−1:t−Ω, ...,O
v|V |
t−1:t−Ω).

That is, Ovj

t is invariant to Ovi

t−1:t−Ω with g(·).
By extending the above definition to the topological event

sequences, we define the notion of Granger non-causality of
topological event sequences as follows:

Definition 3 (Granger non-causality of topological event se-
quences). Assume that the occurrence numbers of event se-
quences are generated by Eq. (4). For the original sample
values of historical variables Ov1,n1

t−1:t−Ω, ...,O
v|V |,n|N|
t−1:t−Ω , let

Ôvi,nk

t−1:t−Ω represent the different sample values of the his-
torical variables Ovi,nk

t−1:t−Ω, (i.e., Ôvi,nk

t−1:t−Ω ̸= Ovi,nk

t−1:t−Ω).
We can determine the Granger non-causality of event type
vi with respect to event type vj under topological network
GN , if the following condition holds for all t:

g(Ov1,n1

t−1:t−Ω, ...,O
vi,n1

t−1:t−Ω, ...,O
vi,n|N|
t−1:t−Ω, ...,O

v|V |,n|N|
t−1:t−Ω )

=g(Ov1,n1

t−1:t−Ω, ..., Ô
vi,n1

t−1:t−Ω, ..., Ô
vi,n|N|
t−1:t−Ω, ...,O

v|V |,n|N|
t−1:t−Ω ).

That is, O
vj ,nk

t is invariant to Ovi,n1

t−1:t−Ω, ...,O
vi,n|N|
t−1:t−Ω

with g(·) across all nodes in topological network GN .

Definition 3 implies that if two event types are Granger
non-causality among a topological network, then they are
Granger non-causality across all nodes. Based on this defi-
nition, we can derive a proposition about the identification
of the model as follows.

Proposition 1. Given the Granger causal structure
GV (V,EV ), the topological network GN (N,EN ) and the
max geodesic distance K, along with the assumption that
the data generation process adheres to Eq. (4), we can de-
duce that vi → vj /∈ EV , if and only if Avi,vj

k = 0 for every
k ∈ {0, ...,K}.

The proof of Proposition 1 is provided in Appendix B.
This proposition inspires a methodology for TNPAR to iden-
tify Granger causality, which involves evaluating whether
the elements of A0:K are zero.
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Algorithm and Implementation
Inference Process of TNPAR
In this subsection, we employ an encoder to implement
the above inference process of TNPAR. Here, the O

vi,nj

t

and OV,N
t−1:t−Ω are used jointly as inputs to the encoder,

with B0:K serving as a mask. The output is the variational
posterior of the Granger causal structure, represented as
qϕ(A0:K |Ovi,nj

t ,OV,N
t−1:t−Ω,B0:K).

To elaborate, each element within OV,N
t−1:t−Ω is initially

filtered in accordance with both B0:K and nj . The result-
ing values are then combined with O

vi,nj

t and converted
into a vector, where each item denotes the representation of
the occurrence numbers at a geodesic distance of k for nj .
Following this, the encoder applies a multilayer perception
(MLP) (Hastie et al. 2009) to the input, which facilitates the
propagation of input information across multiple layers and
nonlinear activation functions. Ultimately, the encoder gen-
erates the posterior distribution of Granger causal structure
qϕ(A0:K |Ovi,nj

t ,OV,N
t−1:t−Ω,B0:K).

In a manner similar to variational inference for categor-
ical latent variables, we assume that the posterior distri-
bution of each causal edge in the Granger causal struc-
ture follows a Bernoulli distribution. More specifically, the
encoder produces a latent vector Z ∈ [0, 1]|V|×|V|×K ,
where zi,j,k, the (i × j × k)-th element of Z, represents
the parameter of Bernoulli distribution for corresponding
edge. Consequently, qϕ(A0:K |Ovi,nj

t ,OV,N
t−1:t−Ω,B0:K) can

be expressed as:

qϕ(A0:K |Ovi,nj
t ,OV,N

t−1:t−Ω,B0:K)

=

|V|∏
i=1

|V|∏
j=1

K∏
k=0

qϕ(A
vi,vj
k |zi,j,k)

with qϕ(A
vi,vj
k = 1|zi,j,k) = σβ(zi,j,k).

(8)

Here, σβ(x) = 1/(1 + exp(−βx)) denotes the sigmoid
function with an inverse temperature parameter β.

Furthermore, for backpropagation through the discrete
distribution qϕ(A0:K |Ovi,nj

t ,OV,N
t−1:t−Ω,B0:K), we employ

the Gumbel-Softmax trick (Jang, Gu, and Poole 2017) to
generate a differentiable sample as:

Â
vi,vj
k =

exp(log(qϕ(A
vi,vj
k =1|zi,j,k) + ε1)/τ)∑1

e=0 exp(log(qϕ(A
vi,vj
k =e|zi,j,k) + εe)/τ)

, (9)

where each ε∗ is an i.i.d. sample drawn from a standard
Gumbel distribution, while τ is the temperature parameter
controlling the randomness of Âvi,vj

k .

Generation Process of TNPAR
Next, we propose a decoder to implement the generation
process of OV,N

t . In this part, OV,N
t−1:t−Ω is filtered according

to both Â0:K and B0:K , as specified in Eq. (4). This filtered
result is then used as input to the decoder. Notably, for neural
network training, we treat Â0:K as a weight matrix during
training, and as a mask during testing. This can be accom-
plished using soft/hard Gumbel-Softmax sampling. Similar
to the encoder, an MLP is used in the decoder.

Aligning with numerous works on counting pro-
cesses that assume the distribution of occurrence num-
bers O

vi,nj

t in each time interval is stationary (Stoyan
et al. 2013; Babu and Feigelson 1996), we model each
pθ(O

vi,nj

t |OV,N
t−1:t−Ω,A0:K ,B0:K) using a Poisson process

as denoted in Eq. (1). In this context, the conditional distri-
bution of Ovi,nj

t can be formalized as:
pθ(O

vi,nj
t |OV,N

t−1:t−Ω,A0:K ,B0:K)

=
(λ

vi,nj
t ∆)O

vi,nj
t

O
vi,nj
t !

e−λ
vi,nj
t ∆,

(10)

where λ
vi,nj

t , provided by the output of the decoder, repre-
sents the intensity parameter of the Poisson process.

Optimization of TNPAR
Based on the above analysis, we adopt the ELBO Le, de-
fined in Eq. (7), as the objective function to estimate ϕ and
θ and infer the Granger causal structure. To adapt to real-
world scenarios, we further introduce acyclic constraint and
sparsity constraint into the objective function.

In many real-world applications, the causal structure GV

is acyclic. For instance, based on experts’ prior knowledge,
the causal structure in the aforementioned operation and
maintenance scenario of a mobile network is a DAG (Di-
rected Acyclic Graph). With this in mind, we introduce an
acyclic constraint proposed by (Yu et al. 2019), denoted as:

h(G) ≡ tr((I+
1

|V|G)|V|)− |V| = 0, (11)

where G is a matrix in which Gi,j = 0 signifies that vi has
no Granger causality with vj . Conversely, Gi,j > 0. The
function tr(·) calculates the trace of an input matrix. Then,
a causal structure G is acyclic if and only if h(G) = 0; Oth-
erwise, h(G) > 0. In this study, we set Gi,j =

∑K
k=0 A

vi,vj

k
and populate the diagonal of G with 0, which implies
that self-excitation is permitted in an acyclic graph. Subse-
quently, we design an acyclic regulared term Lc as:

Lc = Eqϕ [tr((I+
1

|V|G)|V|)− |V|] = 0. (12)

Because the causal structure tends to be sparse in most
real-world applications, we employ a ℓ1-norm sparsity con-
straint as follows:

Ls = Eqϕ [

|V|∑
i=1

|V|∑
j=1

K∑
k=0

A
vi,vj
k ] ≤ κ, (13)

where κ is a small positive constant. Therefore, the training
procedure boils down to the following optimization:

max Le s.t. Lc = 0, Ls ≤ κ.

By leveraging the Lagrangian multiplier method, we de-
fine the total loss function Ltotal as:

Ltotal = −Le + λcLc + λsLs, (14)

where λc and λs denote the regularized hyperparameters.
In summary, our proposed model is trained using the fol-

lowing objective:
(ϕ⋆, θ⋆) = argmin

ϕ,θ
Ltotal. (15)

For model training, we can adopt Adam (Kingma and Ba
2015) stochastic optimization.
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Experiment
In this section, we apply the proposed TNPAR method and
the baselines to both simulated data and metropolitan cel-
lular network alarm data. For all methods, we employ five
different random seeds and present the results in graphical
format, with error bars included. Our evaluation metrics for
the experiments include Precision, Recall, F1 score (Powers
2011), Structural Hamming Distance (SHD), and Structural
Intervention Distance (SID) (Peters and Bühlmann 2015).
Specifically, Precision refers to the fraction of predicted
edges that exist among the true edges. Recall is the frac-
tion of true edges that have been successfully predicted. F1
score is the weighted harmonic mean of both Precision and
Recall, and is calculated as F1 = 2×Precision×Recall

Precision+Recall . SHD
represents the number of edge insertions, deletions, or flips
needed to transform a graph into another graph. SID is a
measure that quantifies the closeness between two DAGs
based on their corresponding causal inference statements.

Dataset
Simulated Data The simulated data is generated as fol-
lows: a) a Granger causal structure GV and a topological
network GN are randomly generated; b) root event records
are generated via the Poisson process using a base inten-
sity parameter µ in the Hawkes process. These root event
records are spontaneously generated by the system; c) based
on the root event records, propagated event records are dis-
cretely generated according to both the time interval ∆ and
the excitation intensity α. Here, α represents the event exci-
tation intensity in the Hawkes process. Given that the event
sequences can be quite sparse in real-world data, we offer a
time interval parameter ∆ to the generation process, divid-
ing the time domain [0, T ] to small intervals with indexes
as {1, . . . , ⌈T/∆⌉}. Then, the event records can be summa-
rized within the same timestamp. Note that the ∆ ≥ 0. If
∆ = 0, it implies the use of the original event sequences.

All simulated data are generated by varying the parame-
ters of the generation process one at a time while maintain-
ing default parameters. We set these default parameters ac-
cording to the data generation process used in the PCIC 2021
competition1, inclusive of the additional parameter ∆, as fol-
lows: #nodes = 40, #event type = 20, #sample size =
20000, µ = [0.00003, 0.00005], α = [0.02, 0.03], ∆ = 2.

Metropolitan Cellular Network Alarm Data This real-
world dataset is collected in a business scenario by a multi-
national communications company and is available in the
PCIC 2021 competition. The data comprises a series of
alarm records generated within a week according to both a
topological network GN and a causal structure GV . Specifi-
cally, the topological network GN includes 3087 network el-
ements. The alarm records encompass 18 alarm event types,
totaling 228, 030 alarm event records. It is noteworthy that,
due to the characteristics of the equipment and as confirmed
by experts, the collected timestamps of alarm events exhibit
certain time intervals.

1https://competition.huaweicloud.com/information/
1000041487/dataset

Baselines and Model Variants
The following causal discovery methods are chosen as
baseline comparisons in our experiments: PCMCI (Runge
2020), ACD (Löwe et al. 2022), MLE SGL (Xu, Fara-
jtabar, and Zha 2016), ADM4 (Zhou, Zha, and Song 2013),
and THP (Cai et al. 2022). In order to assess the compo-
nents of our proposed method, we also introduce three vari-
ants of our method, namely TNPAR NT, TNPAR NC, and
TNPAR MG. Specifically, TNPAR NT does not incorporate
topological information and treats each event sequence in-
dependently. TNPAR MG also does not introduce the topo-
logical network and takes the event sequences in all nodes
as one single sequence. TNPAR NC is a variant that ex-
cludes both acyclicity and sparsity regularization from the
loss function. Detailed information about the baselines and
variants can be found in Appendix C.

Results on Simulated Data
The F1 scores of different methods on the simulated data are
depicted in Fig. 3. Due to space limitations, results pertain-
ing to Precision, Recall, SHD, and SID on the simulated data
can be found in Appendix D.

As shown in Fig. 3, when compared with the results of
PCMCI, ACD, ADM4, and MLE SGL (which do not con-
sider the topological network behind the event sequences),
both TNPAR and THP achieve superior performance across
all cases. These results suggest that incorporating the topo-
logical network assists in learning Granger causality. More-
over, TNPAR and its variants significantly outstrip other
baselines under most cases, demonstrating that the neural
point process approach is powerful for modeling the genera-
tion process and the amortized inference technique is effec-
tive for Granger causal discovery.

Traversing the value of parameters α, µ, and ∆, the F1
scores of the TNPAR are generally better than those of other
methods. These results signify that our method is relatively
insensitive to the parameters of the generation process. Un-
der settings with varying sample sizes, or changing num-
bers of event types or nodes, TNPAR achieves the highest F1
scores, illustrating the robustness of TNPAR. Even in cases
with small sample sizes or high dimensional event types,
TNPAR still outperforms other methods, corroborating the
effectiveness of TNPAR.

Among the baseline methods, THP delivers the best
results as it considers the topological network. Both
ADM4 and MLE SGL outperform PCMCI and ACD, which
demonstrates the efficacy of the point process methods in
causal discovery for event sequences.

Results on Metropolitan Cellular Network Alarm
Data
The experimental results of all algorithms on real-world
data are presented in Table 1. From these results, it can
be seen that the models incorporated the topological net-
work (including TNPAR, TNPAR NC, THP) outperform
that those rely on the i.i.d. assumption. Specifically, the F1
score of TNPAR is higher than that of THP, demonstrating
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Figure 3: Results on the simulated data

Algorithm Prec. Rec. F1 SID SHD
ACD 0.25 0.32 0.27 230.0 127.0

MLE SGL 0.39 0.12 0.18 263.0 100.0
ADM4 0.49 0.34 0.40 292.0 95.0
PCMCI 0.47 0.31 0.37 306.0 102.0

THP 0.58 0.35 0.44 266.0 85.0
TNPAR NT 0.31 0.48 0.38 257.0 150.4
TNPAR NC 0.41 0.60 0.49 271.3 123.5
TNPAR MG 0.35 0.31 0.33 272.5 115.2

TNPAR 0.46 0.65 0.54 241.6 105.5

Table 1: Result on real-world data

that TNPAR can achieve the best trade-off between Preci-
sion and Recall without needing a prior distribution assump-
tion. Although the Precision of TNPAR is marginally lower
than that of THP, PCMCI, and ADM4, TNPAR exhibits the
highest Recall. These results indicate that TNPAR is rela-
tively insensitive to the weak Granger causal strength be-
tween event types, which accounts for the slightly higher
SHD of TNPAR compared to other baselines. Moreover,
TNPAR attains the best SID relative to other methods except
ACD. These results underscore TNPAR’s superior capabil-
ity for causal inference (Peters and Bühlmann 2015).

Ablation Study
Ablation experiments were conducted on both simulated and
real-world data to assess the effectiveness of incorporat-
ing topological information and regularization in TNPAR.
The experimental results given in Fig. 3 reveal a significant
improvement in the performance of TNPAR compared to
TNPAR NT, TNPAT MG, and TNPAR NC. These results
underscore the importance of incorporating topological in-
formation, as well as acyclicity and sparsity regularization.
Additionally, in most instances, TNPAR NT, TNPAR MG,
and TNPAR NC perform comparably to THP, despite the

fact that the THP fully leverages topological information and
sparsity constraint. These results demonstrate the robustness
of TNPAR.

Case Study
In the real-world data experiment, our method successfully
infers the Granger causality across the nodes of the topologi-
cal network, aligning with experts’ knowledge. From the re-
sults, we observe that the count of causal edges diminishes
as the geodesic distance, denoted as k, increases. This find-
ing aligns with our intuition that some events are influenced
solely by their node. For instance, the causal relationship
BD STATUS → TU AIS is only valid for k = 0. Here,
BD STATUS represents a device disconnecting from a
node, and TU AIS signifies that some tasks running on this
node have been disrupted. Another notable discovery is that
some edges exclusively transit across nodes, suggesting that
these event types are triggered only by their neighbors. For
example, consider ETH LINK DOWN → MW LOF ,
where ETH LINK DOWN denotes an error on the Eth-
ernet interface in a downstream node, and MW LOF indi-
cates disconnection of an upstream node.

Conclusion
In this paper, we studied the Granger causal discovery prob-
lem on the topological event sequences. By leveraging the
prior topological network and regarding the causal struc-
ture as a latent variable, we successfully addressed the chal-
lenge of unified modeling the topological network and latent
causal structure, which enable us to propose the amortized
causal discovery method. The experimental results on both
simulation and real-world data demonstrate the effectiveness
of our proposed method. TNPAR offers a viable solution for
causal discovery in real-world settings with non-i.i.d. data.
To further enhance its effectiveness, our future work will fo-
cus on improving sample efficiency, integrating prior knowl-
edge, and so on.
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