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Abstract

Identifying root causes of anomalies in causal processes is vi-
tal across disciplines. Once identified, one can isolate the root
causes and implement necessary measures to restore the nor-
mal operation. Causal processes are often modelled as graphs
with entities being nodes and their paths/interconnections as
edge. Existing work only consider the contribution of nodes
in the generative process, thus can not attribute the outlier
score to the edges of the mechanism if the anomaly occurs
in the connections. In this paper, we consider both individual
edge and node of each mechanism when identifying the root
causes. We introduce a noisy functional causal model to ac-
count for this purpose. Then, we employ Bayesian learning
and inference methods to infer the noises of the nodes and
edges. We then represent the functional form of a target out-
lier leaf as a function of the node and edge noises. Finally,
we propose an efficient gradient-based attribution method to
compute the anomaly attribution scores which scales linearly
with the number of nodes and edges. Experiments on simu-
lated datasets and two real-world scenario datasets show bet-
ter anomaly attribution performance of the proposed method
compared to the baselines. Our method scales to larger graphs
with more nodes and edges.

Introduction

Understanding the root causes behind anomalies in complex
network systems holds significant importance across vari-
ous disciplines, ranging from science to industry (Dhaou
et al. 2021; Pool et al. 2020; Yi and Park 2021). Once the
causes are identified, one can isolate and implement neces-
sary measures to restore the normal operation of the pro-
cess. Early fault recognition would prevent costly damage
to operations, services, and products. For example, in com-
plex network systems within modern manufacturing indus-
tries and information services, the cost of system failure is
notably high (Ni et al. 2017), reaching as much as $20, 000
per minute of downtime in an automotive manufacturing
plant (Djurdjanovic, Lee, and Ni 2003). The monitoring data
and logs obtained from the processing nodes of these sys-
tems often contain noise attributed to random fluctuations in
nodes and the links between them. In communication sys-
tems, for instance, random delays between nodes can arise
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from bandwidth limitations and network overhead (Zhang,
Branicky, and Phillips 2001). Given the intricate dependen-
cies between monitoring nodes and the substantial volume
of data involved, manual analysis of root causes becomes
impractical.

Recent methods for root cause analysis (RCA) (Bud-
hathoki et al. 2021, 2022) are based on a given causal struc-
ture of the system and a learned functional causal model (Pe-
ters, Janzing, and Scholkopf 2017) to explain the anomalous
observations at a leaf node. These methods work by first de-
tecting the anomalous leaf, then utilising the causal structure
and counterfactual reasoning attribute the outlier scores to
ancestor nodes (Budhathoki et al. 2022). The causal struc-
ture of a system is a powerful tool enabling the formal anal-
ysis of the root cause of unexpected event (Budhathoki et al.
2022). It is a directed acyclic graph (DAG) composed of
nodes representing system components and directed edges
representing causal links or dependency connections from
parent nodes to child nodes. The observational data of nodes
are assumed to have additive noise, the edge connections
are assumed to be noise-free (Budhathoki et al. 2022). How-
ever, in computer networking systems, e.g., the connection
between components can be noisy or faulty due to varying
workloads, faulty hardware, wear and tear, or signal inter-
ference. Therefore, the root cause of an outlier can also arise
from an edge in addition to a node. This raises the question
of whether an anomalous edge could be detected by exist-
ing algorithms. In a recent work, Ni et al. (2017) attempted
to detect faulty edges in those networks. Nevertheless, to the
best of our knowledge, the study of noisy causal links as root
causes has not been considered.

In this paper, we aim to fill this gap by generalising exist-
ing frameworks to allow the detection of anomalous edges as
well as anomalous nodes. We consider changes at both the
individual edges and model them via a Bayesian linear re-
gression, where the noise in the causal edges is represented
as the distribution of the regression weights.

In addition, we propose a causal contribution score called
Bayesian Integrated Gradient of Edge and Node noise (BI-
GEN) to attribute a leaf anomaly score to the ancestor nodes
and edges. First, given observations of outliers, we infer the
noise values of the causal edges represented by Bayesian
linear regression coefficients using the mode of the posterior
distribution (MAP estimate) (Bishop and Nasrabadi 2006).
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Second, we infer the noise values of the nodes and edges
given the outlier observations. Third, we use an attribu-
tion method to compute the contribution of each noise term
to the outlier score. Existing works for explaining outliers
use Shapley-based attribution methods that require summing
over all possible subsets of the ancestor nodes and edges
(Sundararajan and Najmi 2020; Covert and Lee 2021; Bud-
hathoki et al. 2022). This is computationally expensive, even
for approximate methods, when applied to large graphs. In
this work, we apply the integrated gradient (IG) method
(Sundararajan and Najmi 2020) along the path from some
references to the target noise for calculating the attribution
scores. We show that this attribution method is efficient for
scaling to graphs with thousands of nodes in attributing the
root causes, compared to the baseline methods based on
Shapley values (Sundararajan and Najmi 2020).

Our contributions are:

1. A framework for identifying the sources of changes in
both nodes and edges to reduce operational costs.

2. Modelling the causal connections using Bayesian linear
regression to enable the inference of edge noises and apply-
ing the Shapley-based attribution framework.

3. Introducing a new causal contribution score called BI-
GEN to efficiently attribute a leaf anomaly to the ancestor
nodes and edges.

4. Demonstrating the effectiveness of the proposed meth-
ods on random graph datasets and two real-world scenario
datasets.

Preliminaries

Outlier Scores

Based on information theory, Budhathoki et al. (2022) intro-
duced an outlier score that calibrates all probabilistic outlier
scores. The authors defined the outlier score by character-
ising the tail probability of an event X = z based on the
distribution of some score space, such as negative log likeli-
hood or z-score, as follow:

Sx(z) = —log P {—logp(X) > —logp(x)}
or, Sx(x) = —log P{|X — pz| > |z — px|}

ey
@

Functional Causal Mechanisms (FCMs)

Given a causal graph represented as a DAG, its func-
tional causal mechanisms (Pearl 2009; Peters, Janzing, and
Scholkopf 2017) can be described by the following set of
equations. For each node j:

X; = f;(Paj, ;)
or, X; = Z Wi Xi + €5, when f; is linear
icPA;

where PA; is the node indices of the parents of node j.
These equations represent the dependence of a node X; on
its parent nodes Xp,, = {X; : 1 € Paj} and ¢; which
is an additive noise random variable independent of X;.
If we assume f; is linear, given an observation data ma-
trix X, we can fit a linear regression model for this causal
model to learn the weight parameters W;;. A leaf outlier
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X, = fn(Pa,,€,) can be recursively expressed as a func-
tion depending on all the noise variables as follows:

Xn:f(€17~' f(E)
where Pe = P, X -+ X P .

-y €n)

Shapley-based RCA of Outliers

Budhathoki et al. (2022) employed the concept of Shapley
values (Shapley et al. 1953) from cooperative game theory
and randomised experiment to measure the contribution of a
noise term to the target outlier score for an observed outlier
at the leaf. The Shapley value, in the context of a coalition
game, is an axiom-based method which uniquely divides (at-
tributes) a pay-off among the players (the noise variables
{¢;} in our study) (Sundararajan and Najmi 2020).

Shapley Classic The originally proposed Shapley value
(Shapley et al. 1953) for each player j is computed as the
weighted average of its marginal contributions for all possi-
ble coalitions (subsets of players), both with and without the
player j. Let P =1, ..., d denote the set of players, ) C P
be a subset, |Q| denote its cardinality, and v be the value
function. The Shapley value for the player j is defined as:

b= Y QNP —'IQI—l)

, P!
QCP\j

(W(QU) —v(Q))
3)

Sampling This method approximates the Shapley values
as a solution to the weighted least squares problem (Janzing,
Minorics, and Blobaum 2020; Covert and Lee 2021):

Jmin >0 w(Q) (u(@) - (@) )
..... P
d—1
w(Q) - ( d
o )Iela= e

where the weighting function w(Q) depends only on the car-
dinality of the subset Q, and u(S) =}, 4 ¢; represents the
approximation function.

Permutation This method approximates the Shapley val-
ues using Monte Carlo samples of data and random permuta-
tions (gtrumbelj and Kononenko 2014). It first draws a ran-
dom instance €™ from the data, then chooses a random per-
mutation of the independent variables, and finally computes
the marginal contribution as:

™)) 5)

€—j

1 M
05(v) = 37 D_ (v(ely) = o

where v(€';) is the prediction for ¢, but with a random num-
ber of variables replaced by the values from €™, except for
€j, and v(e;) similarly, but ¢; is also replaced by €.
Value Function The value function v in this study is the
outlier score S(x,,) at a leaf node (Budhathoki et al. 2022).
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Methods

We first present our framework for RCA of an observed
anomaly at a leaf node. We formulate a noisy mechanism to
model the noise in the edge connection between component
nodes. This allows the leaf node to be expressed as a func-
tion of both node and edge noise dependent model. Finally,
we present the integrated gradient (IG) based contribution
score of ancestor edge and node noises.

Framework

For concreteness, let us consider a computer network sys-
tem' as a running example. We have continuous observa-
tions from the network components represented as the vari-
ables Xy,...,X,. The causal relationships between these
component variables are known and given in the form of a
directed acyclic graph (DAG). There is edge noise in each
connection from X; to parent to describe potential noise be-
tween each parent-child pair. As example, this can be a ran-
dom delay in the connection between two servers due to a
router malfunction in between. Based on the causal mech-
anism (Peters, Janzing, and Scholkopf 2017), we introduce
noise to each causal link from each parent node X; € Pa; to
X in the causal graph to create a noisy mechanism, where
Pa; is the set of parent nodes of node j.

Definition 1. Noisy Causal Mechanisms.
For node 7 , a noisy mechanism is a generative process,

£5 ~N(©0,a7'T) (6)
Wi=pj+&; (7
e; ~N(0,571) ®)
Xj = Fi(W5 Xe,) + ¢ ©

where f; can be a nonlinear function, £.; and €; are Gaussian
edge and node noises with fixed variances o' and S~
(o and 8 are the precision parameters), u.; is the mean of
p(W.;) with W;; being the causal link from node ¢ to node
j for i € Pa;, and we use - (dot) to denote the index varying
in the set of parent node Pa;.

We use this noisy mechanism to model the generative pro-
cess of the system during normal operations. During testing,
suppose some node or edge of the system behave strangely,
either the node noise ¢; or some edge noise &;; is interfered
with, causing anomalous observations at downstream nodes
and leaf nodes.

Definition 2. Abnormal Causal Mechanism

An abnormal causal mechanism of a node j is a simi-
lar generative process as the noisy causal mechanism of the
node j in Definition 1 but with the noise distribution p(e;)
or p(&;;) interfered.

During abnormal operation, as defined in Definition 2, the
underlying anomalous noises &;; and €; render the genera-
tive processes defined in Eq. 9 to generate anomalous obser-
vations of the system. The RCA module then collects these

'Our method is applicable to all structural causal processes,
e.g., in a manufacturing process with sensor readings at each nodes
as the variables.
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anomalies along with their ancestors’ observations, denoted
as X', for analysing and identifying the root causes using an
attribution algorithm. Note that this generalises the approach
presented in (Budhathoki et al. 2022) which only considers
node anomalies.

Fitting the Noisy Mechanism In this paper, we model a
noisy mechanism using Bayesian linear regression, allowing
us to compute its posterior analytically. We use training data
collected during the normal operation of the system to fit
the posterior of the noisy mechanism, as described in the
following theorem.

Theorem 3. Posterior distribution of noisy mechanism

For each node j, let (Xp,;, X;) be the set of input-output
observations of the noisy mechanism as defined in Defini-
tion 1. Assuming fixed o, and [ precision parameters. If the
prior for the weights of the causal links and the regression
output are respectively:

W, ~N (uf)j, a ')
X; ~ N (WEXpa,,87'),

then the posterior distribution of the weight vector W.; of
the mechanism j is given by:

WX ~ N (., H) for
= H! (au?j + ﬁx,z;jxj)
H = al + BXp, Xpa,-

Proof. Refer to Section 3.3 in (Bishop and Nasrabadi 2006).
O

Proposition 4. MAP estimate of the noisy mechanism
Given the data and the prior in Theorem 3, the maximum
a posteriori (MAP) estimate of the weights W_; is

Proof. By definition, the MAP estimate is the mode of the
posterior distribution (Bassett and Deride 2019). Since the

posterior is a Gaussian, its mode coincides with its mean.
O

Noise Dependent Reparametrisation

When considering RCA of a leaf outlier X,
fn(Pay, €,,€.,), it is convenient to re-parameterise X,, as
a function of the node and edge noises (¢, £) to facilitate the
attribution algorithms later on. We can recursively rewrite
each ancestor of X,, in Eq. 9 up to the root node and arrive
at a function of these noises

where P. = [], P.,, and Py = [] P, are independent
noises. Using this re-parameterisation, we can attribute the
root cause of these anomalies directly to these noise vari-
ables. Given a batch of abnormal values X’ with x/, being
the observed anomaly at the leaf node X,,, we first infer the
noise &', and € as follows.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Edge noise estimation We employ the MAP estimate of
the posterior from Proposition 4 to compute the new edge
weights W’J for each mechanism j. We then use the pos-
terior weights estimated from the training data as the new
prior. Finally, the estimated edge noise is defined as:

¢ =W, —W, (11

Note that if X’ comes from the same distribution as X,
i.e., the generative process is normal, the new edge weights
W'J will coincide with the mode W.; of the fitted edge
weight posterior, rendering the edge noise being close to a
Zero vector.

Node noise estimation We use Eq. 9 to estimate the node
noise as

€ = X; = f; (W Xp,) (12)

Integrated Gradient of Edge and Node Noises

We introduce a Bayesian Integrated Gradient of Edge and
Node noise (BIGEN in short) to attribute a leaf anomaly
score to ancestor nodes and edges. Instead of using sub-
sets as in Shapley values methods, we use noise reference to
explain the root cause. This approach offers a performance
gain compared to previous methods. Specifically, we select
a reference node noise ¢ from the normal dataset and the
mean edge noise ¢’ = W. Additional reference points can
also be chosen to calculate multiple contribution scores, fol-
lowed by averaging, to enhance the accuracy of the score.
Let f be the score function in Eq. 1 which is a continuous
and differentiable function. Then ¢;(x, 2, f) is defined as
the integral of the gradient of f along the straight-line path
between x and x’. Formally, we define the path between x
and 2’ as v(t) = tx + (1 — ¢)a’ for ¢t € [0,1]. Then, the
Integrated Gradient (IG) for the ith feature x; is defined as:

LAf(v(t) 9v(t)

IGZ(.’IJ, l‘/, f) = (fE — .CC/) /t_o Wﬁdt
_ N [T Of(@ +t(a —at))
= (x; — x;) /t:() oz, dt
13)

This score integrates the gradient along the path from the
reference to the inferred noise to calculate the attribution of
each node and edge towards the observed anomaly score. In
our case, with two noise variables € and £, computing the IG
for one requires marginalising over the other noise variable.
Therefore, we adjust this IG to fit into our attribution to node
and edge noises as follows:

1
IGi(e, €, f) = E¢ [e; — €] Oft 4y (14)
t=0 3@-
1
/ y 0
IGij (ga &, f) =E. [&j - 513] 8gt dt (15)
t=0 1]

This method is more advantageous than subset sampling,
as it is linear and only dependent on the number of discre-
tised steps in the path. In contrast, Shapley-based method
(Sundararajan and Najmi 2020) requires summing over all
possible subsets of the ancestor nodes and edges, which
grows exponentially with the number of nodes and edges.
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Score function Since the joint distribution of nodes and
edges is Gaussian, the conditional distribution of the normal
observations at the leaf node is also Gaussian. In this case,
the outlier score using the negative log-likelihood feature in
Eq. 1 is equivalent to the outlier score with the z-score fea-
ture in Eq. 2. An efficient evaluation function can be derived
using the error function as follows:

Sx(z) = —log P{—logp(X) > —logp(r)}
(16)

X — 2 _ 2
_logp{| pxl? o= pux]

203( 203(
TopX — 1

—log P { |
0x
—log{l — ®(2)} = —log ®(—=2)
2 .
SLx], @(2) = 7. e 7dtis the stan-
dard normal cumulative distribution function, and (px, o x)
represents the maximum likelihood estimate of the marginal
mean and standard deviation of the marginal distribution of
the target node.

_ 1

where z = |

Causal graph and noisy FCMs While our focus is not
on solving causal discovery, we assume a causal graph is
given. For each fixed weight noise vector, we have a set
of FCMs with additive node noise and their FCM param-
eters can be learned from normal observation data (Peters,
Janzing, and Scholkopf 2017). Budhathoki et al. (2022) ob-
served that when representing the FCM of a target leaf node
as a functional of all node noise, each noise vector takes on
the role of selecting a deterministic mechanism. We gener-
alise this idea and represent the FCMs as functionals of the
edge and node noises, which similarly play the role of choos-
ing the deterministic mechanisms. Inferred noises of outlier
edges or nodes, therefore, will select outlier mechanisms in
either cases. We build upon the success of Budhathoki et al.
(2022)’s approach, to infer functions and noise from data,
and show that counterfactual contribution score by changing
the noise term w.r.t. a reference is effective for causal attribu-
tion at both the node and edge levels. This approach utilises
Pearl’s third ladder of causation (Pearl 2009) to enhance our
understanding of the system’s causes and effects.

Shapley values and IGs Budhathoki et al. (2022) com-
puted Shapley value contributions numerically by averag-
ing over all orderings sets. However for larger number of
variables, approximation is needed to be practical. In the
experiments, we sample orderings instead of using all or-
derings and compare Shapley with early stopping (Shapley),
subset sampling (Sampling), and methods based on a fixed
number of randomly generated permutations (Permutation).
For the IGs, however, no subsets of intervention are needed
but rather a gradient path is taken along the path from some
reference noises to the target noises. For each noise vector,
BIGEN requires one forward pass and one backward pass.
Since we use a small fixed number of references, this com-
putation scales linearly with the number of nodes and edges
in the subgraph. One advantage of BIGEN over Shapley
methods is that it can be applied to nonlinear (noisy) FCMs
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since the contribution score is still linear w.r.t. the gradients,
thus satisfying the efficiency axiom (Shapley et al. 1953).

Related Work

Causal structure discovery-based techniques have been re-
cently used to find the root cause(s) of faults in cloud appli-
cations (Arnold, Liu, and Abe 2007; Wang et al. 2018). More
recently, Budhathoki et al. (2022) introduced a causal struc-
ture based root cause explanation for outlier using Shapley
values. The authors represented the dependence of an outlier
leaf directly in terms of the noise of ancestor nodes. This
approach facilitates intervention on the noise distributions.
Their work, however, assumes that the outlier does not orig-
inate from the connections in the functional causal models.
In real computer network systems, e.g., the connections may
be broken or malfunction, causing anomalies in downstream
nodes. In our present work, we relax this constraint and con-
sider also changes in the weights as one possible source of
the root cause, in addition to the node anomalies.

Budhathoki et al. (2021) model a distribution change of
a mechanism for certain nodes and use a new dataset under
this new mechanism to fit a new model. In contrast, our work
models the uncertainty in the edges of the mechanisms and
allows for temporary anomaly edge noise causing a faulty
batch of observations. Under Bayesian view, we employ the
MAP estimate of the faulty edge noise deviation from the
normal edge prior. By estimating noise in both edges and
nodes, we can quantify the contribution of each noise term
to the outlier score observed at the leaf. This can be viewed
as intervention and counterfactual analysis on the nodes and
edges. To the best of our knowledge, we are the first to ex-
plain anomalies in both nodes and edges based on the given
causal structure. A different approach from our work, which
combines RCA and causal discovery in one framework, is
proposed by Ikram et al. (2022).

In the recent domain of explainable Al, methods based on
Shapley value (Shapley et al. 1953; Sundararajan and Na-
jmi 2020) have gained increasing popularity. These meth-
ods use an axiomatic approach to design attribute functions
with desirable properties, e.g., being fair, unique, and ef-
ficient. These methods explain prediction outcomes by at-
tributing the prediction score back through the deep neural
networks to the input features (Erion et al. 2021; Yang et al.
2022). Among them, integral-based attribution methods are
the most efficient, as they use only a reference to represent
the absence of the input signal, rather than a random fea-
ture from the training data (Lundberg and Lee 2017; Sun-
dararajan and Najmi 2020; Samek et al. 2021). However,
these methods are designed for explaining neural network
predictions, which differs from our goal of RCA.

Experiments

We run experiments on random graph datasets and two real-
world settings, namely a micro cloud service and a sup-
ply chain scenarios. We compare our methods against three
baselines described in the Preliminaries section, as well as a
naive approach:
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1. Shapley (classic): This method employs Shapley values
as defined in Eq. 3 for the contribution of each node.

2. Sampling. This method calculates the Shapley values by
selecting random subsets and weighted least squares re-
gression (Janzing, Minorics, and Blobaum 2020; Covert

and Lee 2021), as indicated in Eq. 4.

. Permutation: This method computes the Shapley

values through permutation sampling (Strumbelj and
Kononenko 2014), as shown in Eq. 5.

. Naive: This method uses the marginal distribution, i.e.,
the observational distribution, of each node X to com-
pute the Shapley values.

. BIGEN (ours): We use the contribution scores outlined
in Eq. 14, 15 to assess the node and edge contributions.

For all methods, we use the outlier score in Eq. 16 and as-
sess the contribution to this score by each ancestor node
and edge. For the edge score of the baselines, we use the
outer product of the node scores to estimate the edge score
Sedge = SnodeS.,ge>» Where spode = (81, .., 8, ) TEpresents
the contributions of all the ancestor nodes (including the tar-
get node). This score quantifies the level of anomaly associ-
ated with an edge ¢;; by combining the scores observed at
nodes ¢ and j.

We adhere to the approach of Budhathoki et al. (2022) and
employ NDCG@F (Jarvelin and Kekéldinen 2017) to gauge
rankings based on graded relevance of outcomes. NDCG @k
yields values within the [0, 1] range, with higher scores indi-
cating that highly “relevant” root causes are assigned higher
ranks. To establish the ground truth relevance of all nodes,
we assign zero relevance scores to non-root causes, and in-
vert the ranking of injected root causes, akin to the method-
ology in (Budhathoki et al. 2022).

Random Graph Datasets

We randomly generate 1,000 causal graphs with varying
number of nodes in the range from 10 to 10000 nodes. The
noisy causal mechanisms follow Definition 1 with a;l =1,

;' = 0.01, and p;; ~ [N(0,1)]. We draw normal data
from these noisy FCMs, following their generative process.
For the abnormal data, we randomly select a target node
X, from this causal graph. We then choose among its an-
cestor node either k& € [1,...,m] root-cause nodes, or
[ € [1,...,m] root-cause edges, or k + [ root-cause nodes
and edges. Here, m is chosen to be 10% of the number of
nodes in the subgraph. We inject outlier noises into the nodes
and edges to create the ground truths as follows: The outlier
node noise ¢; of node j is randomly drawn from N (a,b),
where a is drawn from +Uniform(3, 5) and b is drawn from
Uniform(3, 5). The outlier edge noise &;; of each node j is
randomly drawn from N (am;, bs;), where a is drawn from
+Uniform(3,5), b is drawn from Uniform(3,5), and m;
represents the maximum magnitude of the current weights
w;; (i.e., mj = max;(|w;;|)), and s; represents the maxi-
mum standard deviation o;; (i.e., s; = max;(o;;)).

Fig. 1 presents a comparison of the results obtained from
all methods. On average, BIGEN outperforms all the base-
lines in detecting the actual root causes of outliers in the top
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Figure 1: NDCG@F ranking of root cause detection on ran-
dom graphs.

Nodes Edges Nodes + Edges
Shapley* | 81.5+4.5 82+ 11 81.8£ 7.7
Sampling | 84.7+9.5 | 77.2+13.7 80.9+11.6
Permut. 84.5+11.5 | 82+£11.8 83.3£11.6
Naive 69.1 £13.4 | 53.6 £30.3 63.3 £22.2
BIGEN 89.8+8.5 | 93.8+10 91.8+9.5

Table 1: NDCG@FE in percent for root cause detection
in random graphs. (*) Due to exponential runtime, for
>20 nodes, we compute Shapley values using early stop-
ping when the contribution score does not change much
(Blobaum et al. 2022).

k candidates, at over NDCG 0.9. The Shapley, Sampling,
and Permutation methods can overall detect root causes of
outliers, at around NDCG 0.83, with similar performance
across them. The Shapley method seems to perform better
than Sampling and Permutation in node and edge anomaly
attributions on average. The Naive method, on the other
hand, could not attribute the root causes correctly. Table 1
shows the details of node and edge attribution results for the
case when both type of anomaly are present. Overall, the
edge score rankings are on average lower than that of the
node scores. This suggests that it is greater difficulty in at-
tributing root causes when edge anomalies are present.

Runtime Next, we compare the runtime of BIGEN to
Shapley-based methods. Fig. 2 shows the runtime of all
methods on a Ubuntu 20.04 workstation with an Intel Xeon
E5-1650 v4 CPU and 46Gb RAM. Notably, both the BIGEN
and Naive RCA methods exhibit linear time complexities
relative to the number of upstream nodes, completing com-
putations in less than a minute for target nodes with roughly
200 ancestors. In contrast, the Shapley method demonstrates
exponential complexity, requiring over 2 hours for cases in-
volving more than 20 nodes. This disparity arises due to the
Shapley method’s necessity to iterate through all conceiv-
able subsets for the computation of the weighted average of
each subset’s contribution score. The Sampling and Permu-
tation methods tend to exhibit polynomial time complexi-
ties, taking just slightly over 1 hour to compute for a tar-
get outlier node featuring around 200 ancestor nodes. The
Naive method independently computes the contribution of
each node, while BIGEN capitalises on gradient informa-
tion and baseline noises to compute the contribution of each
noise term within the given context.
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Figure 2: Comparing wall-clock runtime (in minutes) be-
tween BIGEN and Causal-RCA methods with increasing
number of nodes. The attribution complexity of BIGEN and
Naive is O(d + €), while Shapley is O(2(4*¢)). Sampling
and Permutation methods tend to have polynomial time.

The key takeaway from this experiment is that BIGEN
provides relevant top-k ranking across values of £ while re-
ducing the computation time significantly. This is because
BIGEN can model the uncertainty in the causal edges to han-
dle situations with noisy mechanisms.

Root Causes of Observed Latencies in Cloud
Services

In this experiment, we study the root causes of unexpected
observed latencies in a microservice of an online shop. Mi-
croservices are building blocks for complex mobile and
Internet-of-Things (IoT) applications. Therefore, it is essen-
tial to keep service access delay minimal (Guo, Tang, and
Tang 2022). Any unusual delay should be quickly studied
to identify the root causes and resolve the problem (Ikram
et al. 2022). Often, the delay at a node is composed of the
communication delay between itself and each parent node
(due to network bandwidth, load, and other turbulences) and
execution delay of each node (due to the request complexity,
node computational power and load).

We use the microservice architecture described in
(Blobaum et al. 2022). We assume the delay noise in each
node X is a Gaussian noise with unknown variance a;l
and in each edge W;; is a Gaussian noise with unknown
variance ﬁ;l. We thus make a realistic assumption and al-
low for noisy connections to account for the above scenar-
ios. The task is to explain the root cause of an unwanted
observed latency at the customer end in processing an on-
line order. This service involves multiple other web-services
described by a causal dependency graph involving ten other
services (Blobaum et al. 2022), part of the causal graph is
shown in Fig. 4 in the Appendix. Assuming that we observe
latencies in the order confirmation of the Website leaf node,
we also assume all services are synchronised.

For the abnormal data of the target node Website we
select among its ancestor node either k£ € [1,..., 3] root-
cause nodes or [ € [1,..., 3] root-cause edges or k + [ root-
cause nodes and edges, then we inject anomalous noises by
random sampling the noise outside 3o ranges of their normal
operation distributions to create the ground truths.

We use similar models as in the previous section for this
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Nodes Edges Nodes + Edges
Shapley 904+£4.7 | T7.8+9.1 84.1+6.9
Sampling | 91.8+5 71.5+14 81.6 £ 9.5
Permut. 914+£48 | 72.6 £11.2 82+8
Naive 79.7+£10 | 46.5£19.9 63.1 £ 15
BIGEN 91+6 924+ 7.6 91.7+6.8

Table 2: NDCG@FE in percent for RCA in a micro cloud
service.
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Figure 3: NDCG@Fk when varying the number of k, error
bars not included to keep the figure uncluttered.

experiment, i.e., assuming the causal graph is given then fit
the noisy FCMs models to the training data collected during
normal operations.

Results Table 2 displays the outcomes achieved by all
methods, revealing the NDCG @k values for root cause de-
tection within a micro cloud service environment. It shows
that the Shapley-based methods can detect the root cause in
both the nodes and edges. However, the edge score rank-
ing is lower than that of the node score. This suggests that
the deterministic weights methods fall short in high weight
noise applications. However, the Shapley method shows bet-
ter attribution results than Sampling and Permutation. The
Naive method can detect node root causes but not edges root
causes. The BIGEN, in contrast, can model the uncertainty
in the causal links therefore can account better the contri-
bution of the root causes to the observed outliers at leaves.
Overall, BIGEN shows better root cause attributions across
nodes, edges, and both compared to the baselines.

Fig. 3 shows the NDCG raking at different £ between the
methods. It shows that BIGEN can rank the root cause better
on average than all methods for across top-k > 2 values.
The increasing NDCG@F scores of all methods with larger
k values show that the relevant root causes have more chance
to appear in the top-k results.

Root Causes of Outliers in a Supply Chain

In this experiment, we apply our methods to model the noisy
interactions between businesses. The behaviour in supply
chains usually includes complex interaction of organisation
structure, and time delays between decision and implemen-
tation (Power 2005). To gain competitive advantage, it is
critical that businesses need to optimise their supply chain
operations to ensure the flow of physical goods between
trading partners. Thus, it is important that delays to this flow
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Nodes Edges Nodes + Edges
Shapley 89.1+4.9 | 92.7+7.2 90.9+£6.1
Sampling 89+5 925+ 7.4 90.8 £ 6.2
Permut. 89.2+4.9 | 926+ 7.2 90.9+6.1
Naive 85.6£5.5 | 91.5+09.1 88.6 £ 7.3
BIGEN 89 £5.2 98 +£4.5 93.5+4.8

Table 3: NDCG@F in percent for RCA in a supply chain.

can be identified and rectified in a reliable and timely man-
ner. Often, business decisions are made based on predictions
of real demands and constraints and are not a deterministic
process (Power 2005).

We study RCA of outliers in a supply chain process shown
in Fig. 5 in the Appendix. In this process, a retailer need to
submit orders to a vendor based on its inventory constraint of
current stock and the demand forecasting of near future sale
to fulfil future customers’ purchases faster. The vendors will
then confirm the retailer’s purchase orders with a random de-
lay. When these orders are confirmed, the goods will be sent
to the retailer again with some random delay and may arrive
at different times. The random delays can be due to various
overhead costs such as decisions of the vendors’ manager,
variable packaging and shipping operations (Croson et al.
2014). We assume noisy linear FCMs for the supply chain
process where the noise term of each node is a Gamma dis-
tribution to mimic real-world settings, i.e., heavily-tailed be-
haviour. We assume Gaussian noises for the edges to account
for the fluctuations in the causal links between nodes.

For the abnormal data of the target node Received we
randomly select among its ancestor nodes either k € {1, 2}
nodes or [ € {1,2} edges or k = 1,1 = 1 node and edge,
then inject anomalous noises by random sampling the node
noise € ~ Uniform(3,5) and edge connection noise £ ~
Uniform(3, 5) then collect the outliers.

Results Table 3 presents the outcomes of all methods em-
ployed for root cause detection within a supply chain con-
text. The result shows good performance among all meth-
ods with our proposed method BIGEN has highest detection
ranking followed by Shapley methods, then Naive-RCA.
Notably, our method can accurately identify the anomalous
link in the process, at NDCG@FE of 0.98 on average. This
confirms the effectiveness of the noisy FCM models and the
BIGEN attribution method.

Conclusions

We have introduced a framework for identifying the root
causes of unexpected events observed at leaf nodes in causal
generative processes. We proposed noisy functional causal
models that enable the inference of node and edge noises
suitable for attribution algorithms. We further developed an
efficient attribution score for large graphs based on inte-
grated gradients. Our experimental results demonstrated the
effectiveness of our proposed methods.
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