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Abstract
Count data naturally arise in many fields, such as finance, neu-
roscience, and epidemiology, and discovering causal structure
among count data is a crucial task in various scientific and
industrial scenarios. One of the most common characteristics
of count data is the inherent branching structure described by
a binomial thinning operator and an independent Poisson dis-
tribution that captures both branching and noise. For instance,
in a population count scenario, mortality and immigration
contribute to the count, where survival follows a Bernoulli
distribution, and immigration follows a Poisson distribution.
However, causal discovery from such data is challenging due
to the non-identifiability issue: a single causal pair is Markov
equivalent, i.e., X → Y and Y → X are distributed equiva-
lent. Fortunately, in this work, we found that the causal order
from X to its child Y is identifiable if X is a root vertex
and has at least two directed paths to Y , or the ancestor of
X with the most directed path to X has a directed path to Y
without passing X . Specifically, we propose a Poisson Branch-
ing Structure Causal Model (PB-SCM) and perform a path
analysis on PB-SCM using high-order cumulants. Theoretical
results establish the connection between the path and cumu-
lant and demonstrate that the path information can be obtained
from the cumulant. With the path information, causal order is
identifiable under some graphical conditions. A practical algo-
rithm for learning causal structure under PB-SCM is proposed
and the experiments demonstrate and verify the effectiveness
of the proposed method.

Introduction
Causal discovery from observational data especially for count
data is a crucial task that arises in numerous applications in
biology (Wiuf and Stumpf 2006), economic (Weiß and Kim
2014), network operation maintenance (Qiao et al. 2023; Cai
et al. 2022), etc. In online services, for instance, the reason
for the number of product purchases is of particular interest,
while finding the underlying causal structure among user
behavior from purely observational data is appealing and
pivotal for online operation.

Much effort has been made to address the identification of
causal structure from observational data (Spirtes, Glymour,
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(a) Branching Structure (b) Causal Graph

Figure 1: Illustration of branching structure causal modeling.

and Scheines 2000; Zhang et al. 2018; Glymour, Zhang, and
Spirtes 2019; Cai et al. 2018). In particular, constraint-based
methods (Pearl 2009; Spirtes, Meek, and Richardson 1995),
score-based methods (Chickering 2002; Tsamardinos, Brown,
and Aliferis 2006) identify the causal structure by exploring
the conditional independence relation among variables, but
these methods only focus on the category domain and can
only identify up to the Markov equivalent class (Pearl 2009).
Thus, proper count data modeling is required to further iden-
tify the causal structure beyond the equivalence class. Re-
cent work by (Park and Raskutti 2015) introduces a Poisson
Bayesian network to model the count data and shows that it
is identifiable using the overdispersion properties of Poisson
BNs. Subsequently, it has been extended by accommodating
a broader spectrum of distributions (Park and Raskutti 2017).
In addition, the modeling of the zero-inflated Poisson data
(Choi, Chapkin, and Ni 2020) and the ordinal relation data
(Ni and Mallick 2022) and its identifiability of causal struc-
ture are investigated. However, the majority of these methods
model the count data using Bayesian network ignoring the
inherent branching structure among the counting relationship
which is frequently encountered (Weiß 2018).

Take Figure 1 as an example, the cause of the purchasing
event can be inherited from some of the searching events,
the pop-up ads event, or exogenously occurs. As a result,
the causal relationship among counts constitutes a branch-
ing structure that can be modeled by a binomial thinning
operator ‘◦’ (Steutel and van Harn 1979) with an additive
independent Poisson distribution for innovation. That is, the
purchasing count (Y ) is affected by the pop-up ads count
(X2) and the searching count (X1) which can be modeled by
Y = a1 ◦X1 + a2 ◦X2 + ϵ where a ◦X ≔ ∑X

n=1 ξ
(a)
n , and
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ξ
(a)
n ∼ Bern(a), ϵ ∼ Pois. Generally speaking, the thinning

operator models the branching structure that not every click
will lead to purchasing while the additional noise models the
general count of exogenous events. That is, a count represents
the random size of an imaginary population, and the thinning
operation randomly deletes some of the members of this
population while concurrently introducing new immigration.
This modeling approach finds widespread utility across vari-
ous domains, notably within the context of the integer-value
autoregressive model (Weiß 2018), which is first proposed
by Al-Osh and Alzaid (1987); McKenzie (1985). Despite its
extensive used, how to identify the causal structure in such
type of model from purely observational data is still unclear.

To explicitly account for the branching structure, we pro-
pose a Poisson Branching Structural Causal Model (PB-
SCM). We establish the identifiability theory for the proposed
PB-SCM using high-order cumulant with path analysis. The-
oretical results suggest that for any adjacent vertex X and
Y , the causal order is identifiable if X is a root vertex and
has at least two directed paths to Y , or the ancestor of X
with the most directed path to X has a directed path to Y
without passing X . Based on the results of the causal order
we further propose an efficient causal skeleton learning ap-
proach featured with FFT acceleration. We demonstrate the
effectiveness of the proposed causal discovery method using
synthetic data and real data.

Poisson Branching Structural Causal Model
In this section, we first formalize the Poisson branching struc-
tural causal model, and then we introduce the preliminary of
cumulant and some necessary properties in this model.

Problem Formulation
Our framework is in the causal graphical models. We use
Pa(i) = {j∣j → i}, An(i) = {j∣j ↝ i} denote the set
of parents, ancestors of vertex i in a directed acyclic graph
(DAG), respectively, and An(i, j) = An(i) ∩An(j) denote
the set of common ancestors of vertex i and vertex j. More-
over, we define a directed path P = (i0, i1, ..., in) in G is a
sequence of vertices of G where there is a directed edge from
ij to ij+1 for any 0 ⩽ j ⩽ n − 1 with the coefficient αij ,ij+1
of each edge. The set of vertices can be arranged in causal
order, such that no later variable causes any earlier variable.

Now, we show the causal relationship in a causal graph can
be formalized as the Poisson Branching Structural Causal
Model (PB-SCM). Let X = {X1, . . . , X∣V ∣} denotes a set
of random Poisson counts, of which the causal relationship
consist of a causal DAG G(V,E) with the vertex set V =

{1, 2, ..., ∣V ∣} and edge set E such that each causal relation
follows the PB-SCM:
Definition 1 (Poisson Branching Structural Causal Model).
For each random variable Xi ∈ X , let ϵi ∼ Pois(µi) be the
noise component of Xi, then Xi is generated by:

Xi = ∑
j∈Pa(i)

αj,i ◦Xj + ϵi, (1)

where αj,i ∈ (0, 1] is the coefficient from vertex j to i, Pa(i)
is the parent set of Xi in G, and α◦Xi ∶= ∑Xi

n=1 ξ
(α)
n is a Bi-

nomial thinning operation with ξ
(α)
n

i.i.d.
∼ Bern(α), Bern(α)

is the Bernoulli distribution with parameter α.

We further define some graphical concepts. We use Pi↝j
=

{P i↝j
k }∣P

i↝j ∣
k=1

denotes the set of all directed paths from vertex

i to j, where P
i↝j
k = (i, k1, k2, ..., kp, j), p = ∣P i↝j

k ∣ − 2,
denote the k-th directed path from vertex i to j. For each di-
rected path P

i↝j
k , we use A

i↝j
k = (αi,k1

, αk1,k2
, . . . , αkp,j)

denote the corresponding coefficients sequence of path P
i↝j
k .

We let Pi↝i
= {P i↝i} also be a valid directed path for sim-

plicity. Besides, we use A
i↝j
k ◦Xi ≔ αkp,j ◦⋯ ◦ αk1,k2

◦
αi,k1

◦Xi denote to perform a consecutive thinning operation
on Xi based on the path sequence.
Goal: Given i.i.d. samples D = {x(j)

1 , . . . , x
(j)
∣V ∣}

m
j=1 from the

joint distribution P (X), our goal is to identify the unknown
causal structure G from D, assuming the data generative
mechanism follows PB-SCM.

Preliminary
To address the identification of PB-SCM, cumulant are used
in our work for building a connection to the path, providing
a solution to the identifiability issue. Here, we recall the
definition of cumulant and some basis properties.
Definition 2 (k-th order joint cumulant tensor). The k-
th order joint cumulant tensor of a random vector X =

[X1, ..., Xn]T is the k-way tensor T (k)
X in R

n×⋯×n
≡

(Rn)k whose entry in (i1, ..., ik) is the joint cumulant:

T (k)
X i1,...,ik

= κ(Xi1 , . . . ,Xik) ∶=

∑
(B1,...,BL)

(−1)L−1(L − 1)!E[∏
j∈B1

Xj]⋯E[ ∏
j∈BL

Xj],
(2)

where the sum is taken over all partitions (B1, . . . , BL) of
the multiset {i1, ..., ik}.

In this work, we use the following specific cumulant form:
Definition 3 (2D slice of joint cumulant tensor). For a ran-
dom vector X with k-th order joint cumulant tensor T (k)

X
where k ≥ 2, denote its 2D matrix slice of k-th order joint
cumulant tensor as C(k), where

C(k)
i,j ∶= κ(Xi, Xj ,⋯, XjÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

k−1 times

). (3)

Cumulant has the property of multilinearity such that
κ(X + Y, Z1, . . . ) = κ(X,Z1, . . . ) + κ(Y,Z1, . . . ). Fur-
thermore, any cumulant involving two (or more) independent
random variables equals zero, i.e., κ(ϵi, ϵj , . . . ) = 0 if ϵi and
ϵj are independent. More importantly, any two variables in cu-
mulant are exchangeable, e.g., κ(X,Y, . . . ) = κ(Y,X, . . . ).

Identifiability
In this section, we deal with the identification problem of
causal structure under PB-SCM. Due to our identifiability
result benefit from the ‘reducibility’ of cumulant in Poisson
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Figure 2: Triangular structure. For simplicity, we denote di-

rected path P1 ∶ X1
a
−→ X2 and P2 ∶ X1

b1
−→ X3

b2
−→ X2 with

sequence of path coefficients A1 = (a) and A2 = (b1, b2).

distribution, we first characterize such property in Theorem
1. After which, an example is provided to reveal the intrinsic
relation between the cumulant and the path in a causal graph
under PB-SCM. Based on such connection, we complete the
identifiability results that are divided into the case when the
cause variable is root (Theorem 3) and the case when the
cause variable is not root (Theorem 6).

We first introduce a fundamental property of cumulant in
PB-SCM that the cumulant is reducible:
Theorem 1 (Reducibility). Given a Poisson random variable
ϵ and n distinct sequences of coefficients A1, ..., An, we have

κ(A1 ◦ ϵ, ..., A1 ◦ ϵ
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

k1 times

, ..., An ◦ ϵ, ..., An ◦ ϵ
Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

kn times

)

= κ(A1 ◦ ϵ, . . . , An ◦ ϵ)
(4)

where each Ai ◦ ϵ repeats ki ≥ 1 times in the original cumu-
lant and only appears once in the reduced cumulant.

Such a result is a generalization of the property of the Pois-
son distribution since the cumulant of the Poisson distribution
is identical in every order.

Motivating Example
Before describing our theoretical results, we use a motivating
example to show the challenges of the non-identifiability
issues and then introduce the basic intuition regarding in
what case and how can we identify the PB-SCM.

To see the non-identifiability issue, we can show that a
reversed model always exists in a two-variable system.
Remark 1. For any two variables causal graph, the causal
direction of PB-SCM is not identifiable and a distributed
equivalent reversed model exists.

For instance, consider X1 → X3 in Fig. 2, the distributed
equivalent reverse model satisfies X1 = b̂1 ◦X3 + ϵ̂1, where
b̂1 = b1µ1/(b1µ1 + µ3) and ϵ̂1 ∼ Pois(µ1 − b1µ1) such that
this direction is not identifiable.

Fortunately, we find that the causal direction is still possi-
ble to identify in a more general structure. Considering the
causal relationship between X1 and X2 in Fig. 2, here we pro-
vide an intuitive example to show how to identify such causal
direction by utilizing the relationship between cumulant and
path. Considering the cumulant C1,2 with different orders,
we can observe different behaviors of cumulant in the causal
direction and the reverse direction. Thanks to the reducibility
in Theorem 1, e.g., κ(A1 ◦ ϵ1, ϵ1) = κ(A1 ◦ ϵ1, ϵ1, ϵ1), the
cumulants with different orders for X1 and X2 is shown in

Fig. 3(a) and Fig. 4(a). Interestingly, we have C(2)
2,1 = C(3)

2,1 in

the reverse direction (Fig. 4(a)) but C(2)
1,2 ≠ C(3)

1,2 in the causal
direction (Fig. 3(a)), i.e., there exists an asymmetry in the
inequality relations of cumulants. Such asymmetry intriguing
possibility to identify the causal order between two variables
using the cumulant.

To understand how this asymmetry occurs and hence use
it to identify the causal relations. We first discuss the iden-
tification in the simple scenario that the cause variable is a
root vertex in G, and then we generalize such results into the
scenario that the cause variable is not root.

Identification When Cause Variable Is Root
We start with the case that the cause variable is root vertex,
in which our goal is to identify causal direction even though
we do not know it is a root vertex. Recall the previous ex-
ample, the key of identification is the inequality C(2)

1,2 ≠ C(3)
1,2

rendering an asymmetry for a causal pair. To understand how
it occurs, we seek to character and leverage such inequality
constraints of cumulants in a causal graph to infer the causal
order (Theorem 4).

Here, we begin with two basic observations, which illus-
trate that inequality constraints of cumulants are driven by
the number of paths between two variables. As shown in
Fig. 3(a), one may see that (i) the decomposition of C1,2 is
composed by a series of cumulants of the common noise (ϵ1
in this example) between X1 and X2, which is due to the
fact that any cumulant involving two (or more) independent
random variables equals zero; (ii) moreover, such decomposi-
tion relates to the number of paths between X1 and X2 since
X2 = A1 ◦ ϵ1 + A2 ◦ ϵ1 + b2 ◦ ϵ3 + ϵ2 and by multilinear-
ity, the cumulant will be split exponentially as the order of
cumulant increase. With these observations, the reason why
C(2)
1,2 ≠ C(3)

1,2 is that there exists more than one path in the
causal direction while zero path in the reverse direction, i.e.,
∣P1↝2∣ = 2, ∣P2↝1∣ = 0. As a result, C(2)

2,1 = C(k)
2,1 for all

k ≥ 2 order cumulant in the reverse direction.
In the following, we articulate the underlying law of the

cumulant in PB-SCM and propose a closed-form solution
to it. The first important observation is that due to the re-
ducibility and the exchangeability of cumulant, the C(k)

1,2
for k ≥ 3 is only composed by three distinct cumulants:
κ(ϵ1, A1 ◦ ϵ1), κ(ϵ1, A2 ◦ ϵ1), and κ(ϵ1, A1 ◦ ϵ1, A2 ◦ ϵ1)
with varying number of these cumulants. In particular, if we
define the summation of cumulants that only contains one
path as Λ1↝2

1 (ϵ1 ↝ X2) ≔ κ(ϵ1, A1 ◦ ϵ1) + κ(ϵ1, A2 ◦ ϵ1)
and the summation of cumulants that contains two paths as
Λ
1↝2
2 (ϵ1 ↝ X2) ≔ κ(ϵ1, A1 ◦ ϵ1, A2 ◦ ϵ1), we will have the

following closed-form solution:

C(4)
1,2 = Λ

1↝2
1 (ϵ1 ↝ X2)+ ∑

m1+m2=3
m1,m2>0

( 3
m1 m2

)Λ1↝2
2 (ϵ1 ↝ X2) (5)

where ( 3
m1 m2

) is the multinomial coefficient, indicating the
number of ways of placing 3 distinct objects into 2 distinct
bins with m1 objects in the first bin, m2 objects in the second

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20526



𝜅𝜅 ϵ1, A1 ∘ 𝜖𝜖1 + 𝜅𝜅 ϵ1, A2 ∘ 𝜖𝜖1𝐶𝐶1,2
(2) = 𝜅𝜅 𝑋𝑋1,𝑋𝑋2 =

1, A1, A1 + 1, A1, A2 + 1, A2, A1 + 1, A2, A2

𝐶𝐶1,2
(4) = 1,A1,A1,A1 + 1,A1,A1,A2  ⋯+ 1,A2,A2,A1 + 1,A2,A2,A2

≔ (1,𝐴𝐴1) ≔ (1,𝐴𝐴2)

𝜅𝜅 ϵ1, A1 ∘ 𝜖𝜖1,𝑋𝑋2  + 𝜅𝜅 ϵ1, A2 ∘ 𝜖𝜖1,𝑋𝑋2

2 × Λ21↝2 (1 ∘ 𝜖𝜖1 ↝ 𝑋𝑋2)

6 × Λ21↝2 (1 ∘ 𝜖𝜖1 ↝ 𝑋𝑋2)

𝐶𝐶1,2
(3) =

 

split over X2 

+

(a) Cumulant decomposition of the causal pair X1 ↝ X2

where X1 is root.

 

𝜅𝜅 ϵ3, 𝑏𝑏2 ∘ 𝜖𝜖3, 𝑏𝑏2 ∘ 𝜖𝜖3 + 𝑏𝑏1,A1,A1 + 𝑏𝑏1,A1,A2 + 𝑏𝑏1,A2,A1 + 𝑏𝑏1,A2,A2

𝜅𝜅 ϵ3, 𝑏𝑏2 ∘ 𝜖𝜖3 + 𝜅𝜅 𝑏𝑏1 ∘ ϵ1, A1 ∘ 𝜖𝜖1 + 𝜅𝜅 𝑏𝑏1 ∘ ϵ1, A2 ∘ 𝜖𝜖1
≔ (𝑏𝑏1,𝐴𝐴1) ≔ (𝑏𝑏1,𝐴𝐴2)

𝐶𝐶3,2
(2) =𝜅𝜅(𝑋𝑋3,𝑋𝑋2)=

𝜅𝜅 ϵ3,𝑏𝑏2 ∘ 𝜖𝜖3,𝑋𝑋2  + 𝜅𝜅 𝑏𝑏1 ∘ ϵ1, A1 ∘ 𝜖𝜖1,𝑋𝑋2  + 𝜅𝜅 𝑏𝑏1 ∘ ϵ1, A2 ∘ 𝜖𝜖1,𝑋𝑋2

2×Λ21↝2 (𝑏𝑏∘𝜖𝜖1 ↝𝑋𝑋2)

6 ×Λ21↝2 (𝑏𝑏∘𝜖𝜖1 ↝𝑋𝑋2)

𝐶𝐶3,2
(3) =

 

split over X2 

From 𝑋𝑋3 to 𝑋𝑋2
From the common ancestor 𝑋𝑋1 to 𝑋𝑋2

=𝜅𝜅 ϵ3, 𝑏𝑏2∘𝜖𝜖3, 𝑏𝑏2∘𝜖𝜖3, 𝑏𝑏2∘𝜖𝜖3 + 𝑏𝑏1,A1,A1,A1 + 𝑏𝑏1,A1,A1,A2 +⋯+ 𝑏𝑏1,A2,A2,A2𝐶𝐶3,2
(4)

split over X2 

(b) Cumulant decomposition of the causal pair X3 ↝ X2 where X3 is
not root.

Figure 3: Illustration of decomposing the cumulant of causal direction, C1,2 and C3,2, in triangular structure (Fig. 2). For
simplicity, we denote κ(ϵi, Ai ◦ ϵi, ..., Aj ◦ ϵi) by (1, Ai, ..., Aj) and denote κ(b1 ◦ ϵi, Ai ◦ ϵi, ..., Aj ◦ ϵi) by (b1, Ai, ..., Aj).

𝜅𝜅 𝐴𝐴1 𝜖𝜖1,𝜖𝜖1  𝜅𝜅(𝐴𝐴2 𝜖𝜖1,𝜖𝜖1)

 

(𝐴𝐴1, 1) (𝐴𝐴2, 1)

𝐴𝐴1, 1, 1 + (𝐴𝐴2, 1, 1)𝐶𝐶2,1
(3)

𝐴𝐴1,1,1,1 + (𝐴𝐴2,1,1,1)
𝐶𝐶2,1

(2)=𝐶𝐶2,1
(3)=𝐶𝐶2,1

(4)=𝜅𝜅 𝑋𝑋2,𝑋𝑋1

𝐶𝐶2,1
(4)

𝐶𝐶2,1
(2)

=

=

=

∘ ∘
≔ ≔

+

(a) Cumulant decompo-
sition of X2↝X1.

𝜅𝜅 𝑏𝑏2 𝜖𝜖3,𝜖𝜖3,𝜖𝜖3  𝐴𝐴1,𝑏𝑏1,𝑏𝑏1  (𝐴𝐴2,𝑏𝑏1,𝑏𝑏1)+∘ +

𝜅𝜅 𝑏𝑏2 𝜖𝜖3,𝜖𝜖3,𝜖𝜖3,𝜖𝜖3  𝐴𝐴1,𝑏𝑏1,𝑏𝑏1,𝑏𝑏1  (𝐴𝐴2,𝑏𝑏1,𝑏𝑏1,𝑏𝑏1)

𝜅𝜅 𝑏𝑏2 𝜖𝜖3,𝜖𝜖3  𝜅𝜅 𝐴𝐴1 𝜖𝜖1,𝑏𝑏1 𝜖𝜖1  𝜅𝜅(𝐴𝐴2 𝜖𝜖1,𝑏𝑏1 𝜖𝜖1)

 

≔ (𝐴𝐴1, 𝑏𝑏1) ≔ (𝐴𝐴2, 𝑏𝑏1)

𝐶𝐶2,3
(3)

𝐶𝐶2,3
(4)

From 𝑋𝑋3 to 𝑋𝑋3 From 𝑋𝑋1 to 𝑋𝑋3
=

=

𝐶𝐶2,3
(2) = 𝐶𝐶2,3

(3) = 𝐶𝐶2,3
(4) = 𝜅𝜅 𝑋𝑋2,𝑋𝑋3

+ +

++=𝐶𝐶2,3
(2) ∘ ∘ ∘

∘

∘ ∘

(b) Cumulant decomposition of X2 ↝
X3.

Figure 4: Illustration of decomposing the cumulant of reverse
direction, C2,1 and C2,3, in triangular structure (Fig. 2).

bin. As a result, we will eventually have 6×Λ
1↝2
2 (ϵ1 ↝ X2)

as shown in Fig. 3(a). Generally, we define Λ
i↝j
k (A ◦ ϵi ↝

Xj) as the summation of cumulants that contain k paths from
root vertex i to j:
Definition 4 (k-path cumulants summation for root vertex).
Given two vertices i and j, for k ⩽ ∣Pi↝j∣, the k-path cumu-
lants summation from vertex i to j is given by:

Λ
i↝j
k (A ◦ ϵi ↝ Xj)
= ∑
1≤l1<l2<...<lk≤∣Pi↝j ∣

κ(A ◦ ϵi, A
i↝j
l1

◦ ϵi, ..., A
i↝j
lk

◦ ϵi), (6)

where l1, . . . , lk ∈ Z+, A is an arbitrary sequence of co-
efficients. For k > ∣Pi↝j∣, Λ

i↝j
k ≡ 0 and for k = 1,

Λ
i↝i
1 (A ◦ ϵi ↝ Xi) = κ(A ◦ ϵi, ϵi), and k > 1,Λ

i↝i
k ≡ 0.

Intuitively, Eq. (6) is a summation of all cumulants that
contain k paths information from vertex i to j , and Λ

i↝i
1

denotes the relation from the noise to itself. Based on the
k-path cumulants summation, C(n)

i,j can be decomposed as
follows:
Theorem 2. For any two vertices i and j where i is root
vertex, i.e., vertex i has an empty parent set, the 2D slice of
joint cumulant C(n)

i,j satisfies:

C(n)
i,j = ∑n−1

k=1
∑

m1+⋯+mk=n−1
ml>0

( n − 1
m1 m2⋯mk

)Λi↝j
k (1◦ϵi↝Xj).

(7)

where ( n−1
m1 m2⋯mk

) = (n−1)!
m1!m2!⋯mk!

is the multinomial coeffi-
cients.

Theorem 2 plays an important role in the identification
of the causal order as it introduces the connection between
the joint cumulant and path information. Moreover, since
every order of the 2D slice joint cumulant can be obtained by
Eq. (3), and thus every order of Λk can also be obtained by
solving the equation in Eq. (7). By using Λk we are able to
understand the identifiability in the following theorem:

Theorem 3 (Identifiability for root vertex). For any vertex i

and j, where i is the root vertex in graph G, if C(3)
i,j −C(2)

i,j ≠ 0,

then C(3)
j,i − C(2)

j,i = 0 and Xi is the ancestor of Xj .

Intuitively, based on Theorem 2, we have C(3)
i,j − C(2)

i,j =

Λ
i↝j
2 (1 ◦ ϵi↝Xj), and thus C(3)

i,j − C(2)
i,j ≠ 0 indicates that

there exists more than one path from i to j than the reverse
direction. That is, the causal direction for root vertex is iden-
tifiable if there are at least two directed paths:

Theorem 4 (Graphical Implication of Identifiability for Root
Vertex). For a pair of vertices i and j in graph G, if vertex i
is a root vertex and exists at least two directed paths from i

to j, i.e., ∣Pi↝j∣ ≥ 2, then the causal order between i and j
is identifiable.

Identification When Cause Variable Is Not Root

In this section, we aim to generalize the identification result
from the root vertex to the non-root vertex.

When vertex i is not root, the main difference is that there
might exist more than one common noise between two vari-
ables due to the possible common ancestor. Therefore, one
may extend the result from the root vertex by considering
each noise term as the separated root vertex. We present a
general version of k-path cumulants summation as follows,
which can be expressed as the aggregation of the k-path
cumulants summations for the root vertices.

Definition 5 (k-path cumulants summation). The k-path
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cumulants summation from vertex i to vertex j is given by:

Λ̃k(Xi↝Xj) =Λi↝j
k (1◦ϵi↝Xj)

+ ∑
m∈An(i,j)∪{j}

∣Pm↝i∣
∑
h=1

Λ
m↝j
k (Am↝i

h ◦ϵm↝Xj) .

(8)
where Λk is the k-path cumulants summation for root vertex,
∣Pm↝i∣ is the number of directed paths from m to i.

With the general k-path cumulants summation, the general
joint cumulant can be decomposed as follows:
Theorem 5. For any two vertices i and j, the 2D slice of
joint cumulant C(n)

i,j satisfies:

C(n)
i,j = ∑n−1

k=1
∑

m1+⋯+mk=n−1
ml>0

( n − 1
m1 m2⋯mk

)Λ̃k(Xi↝Xj), (9)

where ( n−1
m1 m2⋯mk

) = (n−1)!
m1!m2!⋯mk!

is the multinomial coeffi-
cients.

To see the connection with the case of root vertex, we take
X3 → X2 in Fig. 2 as example. Since X3 can be expressed as
X3 = b1 ◦ ϵ1 + ϵ3, as shown in Fig. 3(b), we can separate the
cumulant into two parts κ(ϵ3, X2), κ(b1◦ϵ1, X2), which can
be considered as the cumulant starting from vertex X3 to X2

and X1 to X2, respectively. As a result, the general k-path
cumulants summation can be expressed as the aggregate of
all different Λk starting with the corresponding noise terms.
For instance, for X3 → X2 in Fig. 2, we have:

Λ̃2(X3 ↝ X2)
= Λ

3↝2
2 (1 ◦ ϵ3 ↝ X2)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=0

+Λ
1↝2
2 (b1 ◦ ϵ1 ↝ X2)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

=κ(b1◦ϵ1,A1◦ϵ1,A2◦ϵ1)

≠ 0, (10)

where Eq. (10) contains two different terms starting from ϵ3
and ϵ1, respectively. In particular, since there only exists one
directed path from X3 to X2, Λ3↝2

2 is zero while X1 to X2

has two paths and thus Λ1↝2
2 is not zero. Similarly, for the

reverse direction, we have

Λ̃2(X2↝X3) = Λ
2↝3
2 (1 ◦ ϵ2↝X3)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=0

+Λ
3↝3
2 (b2 ◦ ϵ3↝X3)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=0

+ Λ
1↝3
2 (A1 ◦ ϵ1↝X3)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=0

+Λ
1↝3
2 (A2 ◦ ϵ1↝X3)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=0

= 0,

(11)
where Λ̃2 is zero since there are 0 directed path from X2 to
X3 and only 1 directed path from X1 or ϵ3 to X3. Intuitively,
the general k-path cumulants summation Λ̃(Xi ↝ Xj) cap-
tures the number of directed paths from the common ancestor
to j. Moreover, for any two adjacency vertex i → j and their
common ancestor m, the number of directed paths from m to
j is greater or equal to that from m to i, and thus, the causal
order can be identified using the following strategy:

Theorem 6 (Identification of PB-SCM). If there exist k ∈ Z+

such that Λ̃k(Xi↝Xj) ≠ 0 and Λ̃k(Xj ↝Xi) = 0 for any
two adjacency vertex i and j, then Xi is the parent of Xj .

(a) Not identifiable. (b) Identifiable.

Figure 5: Illustration of the identifiability of X → Y .

In addition, the k-path cumulants summation Λ̃k(Xi ↝
Xj) will be ‘dominated’ by the variables (might be the com-
mon ancestor or i itself) that has the most paths to j since it
is the aggregation of all the directed paths from both com-
mon ancestor and i. Therefore, for a non-root vertex, it is
possible to be non-identifiable by Theorem 3 if the dominant
variable is the common ancestor. Specifically, we provide the
graphical implication of such identifiability given as follows:
Theorem 7 (Graphical Implication of Identifiability). For
a pair of causal relationship i → j. The causal order of
i, j is identifiable by Theorem 6, if (i) vertex i is a root ver-
tex and ∣Pi↝j∣ ≥ 2; or (ii) there exists a common ances-
tor k ∈ argmax

l
{∣Pl↝i∣∣l ∈ An(i, j)} has a directed path

from k to j without passing i in G.
One of the examples is given in Fig. 5, in which Fig. 5(a) is

not identifiable but Fig. 5(b) is identifiable. The reason is that
Z is the dominant common ancestor of X,Y , and all directed
paths from Z to Y will pass X making it unidentifiable based
on Theorem 7. In contrast, Fig. 5(b) includes an additional
directed path Z → C → Y without passing X making
X → Y identifiable. This intriguingly implies that a denser
structure would facilitate the effectiveness of our method.

Generally speaking, once the causal order is identified, one
may identify the complete causal structure by orienting edges
based on the causal order in the causal skeleton. Such imple-
mentation will be provided in the next section. By this, the
identifiability of causal structure under PB-SCM is answered.

Learning Casual Structure For PB-SCM
In this section, we propose a causal structure learning algo-
rithm for PB-SCM. Our method involves two steps: learning
the skeleton of DAG G and inferring the causal direction
using the results developed in Theorem 6.

Learning Causal Skeleton To learn the causal skeleton,
instead of using the constraint-based method, we propose a
likelihood-based method. This boosts sample efficiency as
the likelihood of PB-SCM captures its branching structure
but the constraint-based method does not.

Given a set of count data D and model parameters
Θ = {A = [αi,j] ∈ [0, 1]∣V ∣×∣V ∣

,µ = [µi] ∈ R∣V ∣
≥0 }, the

log-likelihood is Markov respect to G, that is L(G,Θ;D) =
∑∣D∣

j=1 ∑∣V ∣
i=1 logPΘ (Xi = x

(j)
i ∣XPa(i) = x

(j)
Pa(i)). However,

calculating the likelihood directly using the probability mass
function is costly. Therefore, we propose to calculate the
probability mass function by using the probability-generating
function (PGF). In detail, for each conditional distribution of
Xi, the likelihood can be calculated as follows:
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Theorem 8. Let GXi∣XPa(i)(s) be the PGF of random vari-
able Xi given its parents variable XPa(i), we have:

P (Xi = k∣XPa(i) = xPa(i)) =
1

k!

∂
k
GXi∣XPa(i)(s)

(∂s)k
»»»»»»s=0

= ∑
ti+ ∑

j∈Pa(i)
tj=k

µ
ti
i exp(−µi)

ti!
∏

j∈Pa(i)

(xj)tjα
tj
j,i(1 − αj,i)xj−tj

tj !
,

(12)

where tj ≤ xj , (xj)tj ≔
xj !

(xj − tj)!
is the falling factorial,

µi=E[ϵi], and ϵi is the noise component of Xi.
The result of Eq. (12) can be converted to a polynomial

coefficient after taking polynomial multiplication, which can
be accelerated via Fast Fourier Transform (FFT) (Cormen
et al. 2022). A detailed discussion is given in the supplement.

Generally, the likelihood-based method will tend to pro-
duce excessive redundant causal edges. Such effect can be
alleviated by introducing the Bayesian Information Criterion
(BIC) penalty d log(m)/2 into the L(G,Θ;D), where d is
the number of edge of G and m is the size of dataset D. The
penalized objective function is updated as follows:

Lp(G,Θ;D) = L(G,Θ;D) − d log(m)/2 (13)

We maximum the objective function Lp(G,Θ;D) by using
a Hill-Climbing-based algorithm as shown in Lines 2-6 of
Algorithm 1. It mainly consists of two phases. First, we per-
form a structure searching scheme by taking one step adding,
deleting, and reversing the graph G

∗ in the last iteration, i.e.,
in Line 4, V (G∗) represents a collection of the one-step
modified graph of G∗. Second, by fixing the graph G

′, we
estimate the parameter Θ′ of the model via optimizer with
initial values from approximated covariance estimates and
then calculate the L′

p(G′
,Θ

′
;D) in Lines 5. Iterating the two

steps above until the likelihood no longer increases. In the
end, we transform G

∗ into a skeleton (Line 6). The correct-
ness of such a procedure can be guaranteed by the consistent
property of BIC which is discussed in (Chickering 2002).

Learning Causal Direction Given the learned skeleton,
we orient each undirected edge using the k-path cumulants
summation, according to Theorem 6. In detail, for each undi-
rected edge (i, j) ∈ E, we calculate Λ̃k(Xi ↝ Xj) and
Λ̃k(Xj ↝ Xi) for k = 1, . . . ,K until one of them being
zero or k reaches the upper limit K. We then orient the direc-
tion based on Theorem 6 (Lines 11-14).

To assess whether Λ̃k is equal to 0, a bootstrap hypoth-
esis test is conducted (Efron and Tibshirani 1994) while a
threshold can be used for orientation once such testing fails.
In detail, we calculate the statistic Λ̃

+
k from N resampling

dataset D+
∈ {D+

i ∣D+
i=1,..,N ⊂ D, }. Then, we estimate the

distribution P (Λ̃+
k) by kernel density estimator and centralize

it to mean zero. Finally, the p-value of Λ̃k from the original
dataset can be obtained.
Complexity Analysis We provide the complexity
of calculating likelihood in the worst cases—when
graph is complete. Specifically, the complexity of

Algorithm 1: Causal Discovery for PB-SCM
Input: Data set D, Max order K
Output: Learning Causal Graph G

1 G
′
← empty graph,L∗

p ← −∞;
// Learning Causal Skeleton

2 while L∗
p(G∗

,Θ
∗
;D) < L′

p(G′
,Θ

′
;D) do

3 G
∗
← G

′ with largest L′
p(G′

,Θ
′
;D)

4 for every G
′
∈ V(G∗) do

5 Estimate Θ
′ and record score L′

p(G′
,Θ

′
;D)

6 G ← Transfer G∗ to a skeleton
// Learning Causal Direction

7 for each pair Xi −Xj ∈ G do
8 for k ← 1 ∶ K do
9 Obtain Λ̃k at each side by solving Eq. (9)

10 Test whether Λ̃k equal to 0 for each side
11 if Λ̃k(Xi↝Xj) ≠ 0 ∧ Λ̃k(Xj↝Xi) = 0 then
12 Orient “Xi → Xj” in G

13 if Λ̃k(Xi↝Xj) = 0 ∧ Λ̃k(Xj↝Xi) ≠ 0 then
14 Orient “Xi ← Xj” in G

15 Return G

Eq. (13) is O(∑m
j=1 ∑

∣V ∣
i=1

(∣V ∣+x(j)
i −i)!

(∣V ∣−i)!x(j)
i !

), by using

FFT acceleration, this complexity can be reduced to
O(∑m

j=1 ∑
∣V ∣
i=1(∣V ∣ − i + 1)2x(j)

i log(∣V ∣ − i + 1)2x(j)
i ),

where m is the sample size.

Experiment
Synthetic Experiments
In this section, we test the proposed PB-SCM on synthetic
data. We design control experiments using synthetic data to
test the sensitivity of sample size, number of vertices, and
different indegree rate. The baseline methods include OCD
(Ni and Mallick 2022), PC (Spirtes, Glymour, and Scheines
2000), GES (Chickering 2002). We further provide the results
using the true skeleton as prior knowledge (PB-SCM-P) to
demonstrate the effectiveness of learning causal direction.

In the sensitivity experiment, we synthesize data with fixed
parameters while traversing the target parameter as shown in
Fig. 6. The default settings are as follows, sample size=30000,
number of vertices=10, indegree rate=3.0, range of causal
coefficient αi,j ∈ [0.1, 0.5], range of the mean of Poisson
noise µi ∈ [1.0, 3.0], the max order of cumulant K = 4.
Each simulation is repeated 30 times.

As shown in Fig.6, we conduct three different control
experiments for PB-SCM. Overall, our method outperforms
all the baseline methods in all three control experiments.

In the control experiments of the indegree rate given in
Fig. 6(a), as the indegree rate controls the sparse of causal
structure, the higher the indegree rate, the less sparse in causal
structure leading to a decrease of performance of the baseline
methods. In contrast, PB-SCM keeps giving the best results
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Figure 6: F1 in the Sensitivity Experiments

in all indegree rates. The reason is that our method benefits
from the sparsity of the graph and the denser structure would
result in more causal order being identified which verified
the theoretical result in our work.

In the control experiments of the number of vertices given
in Fig.6(b). Our method outperforms all the baseline methods,
showing a slight decrease as the number of nodes increases,
yet still demonstrating reasonable performance. The reason
might be that with an increasing number of vertices, the
number of paths for both directions also increases, which
requires a higher-order cumulant to obtain the asymmetry.
However, estimating high-order cumulant is difficult and has
a large variance which leads to a decrease in performance.

In the control experiments of sample size shown in Fig.6(c),
as the sample size increases, our method’s performance con-
tinues to improve and outperforms all the baseline methods.
This suggests a sufficient sample size is beneficial for esti-
mating accurate cumulant.

Real World Experiments
We also test the proposed PB-SCM on a real-world football
events dataset1, which contains 941,009 events from 9,074
football games across Europe. For this experiment, we focus
on the causal relation in the following count of events: Foul,
Yellow card, Second yellow card (abbreviated as 2nd Y. card),
Red card, and Substitution. These events possess clear causal
relationships according to the rules of the football game. Our
goal is to identify the causal relationship from the observed
count data while reasoning the possible number of paths
between two events as a byproduct of our method.

In detail, we employ the bootstrap hypothesis test with
0.05 significance level to test whether Λ̃k is equal to zero.
The result is shown in Table 1. The column of X→Y shows
the highest order of cumulants summation Λ̃k(X↝Y ) that
is not equal to zero while the column of Y →X shows the
lowest order of cumulants summation that equals zero.

The results are given in Fig. 7(b). Generally, PB-SCM suc-
cessfully identifies five cause-effect pairs, except for Foul →
Red card. The possible reason might be attributed to the weak
causal influence since only a few serious fouls will result in a
red card. Interestingly, We find Λ̃2 (Foul → Yellow card) ≠
0 , indicating two paths from F or its ancestor to Yellow card.

1https://www.kaggle.com/datasets/secareanualin/football-
events

Cause (X) Effect (Y ) X → Y Y → X

Foul
Yellow card Λ̃k=2 ≠ 0 Λ̃k=2 = 0

2nd Y. card Λ̃k=3 ≠ 0 Λ̃k=2 = 0

Red card Λ̃k=1 = 0 Λ̃k=1 = 0

Yellow card
2nd Y. card Λ̃k=3 ≠ 0 Λ̃k=2 = 0

Substitution Λ̃k=2 ≠ 0 Λ̃k=2 = 0

2nd Y. card Red card Λ̃k=2 ≠ 0 Λ̃k=2 = 0

Table 1: The result of real-world dataset experiment.

(a) Ground Truth (b) Result

Figure 7: Football Dataset Result (F :Foul, Y1: Yellow card,
Y2: Second yellow card, R: Red card, S: Substitution).

This suggests a hidden confounder between Foul and Yellow
card, possibly related to the football team’s style which also
coincides with other path findings. Moreover, the causal di-
rection between Yellow card and Substitution is identified
suggesting a hidden confounder or indirect relation exists.
This result suggests the effectiveness of our method when
dealing with complex real-world scenarios.

Conclusion
In this work, we study the identification of the Poisson branch-
ing structural causal model using high-order cumulant. We
establish a link between cumulants and paths in the causal
graph under PB-SCM, showing that cumulants encompass
information about the number of paths between two vertices,
which is retrievable. By leveraging this link, we propose the
identifiability of the causal order of PB-SCM and its graphi-
cal implication. With the identifiability result, we propose a
causal structure learning algorithm for PB-SCM consisting
of learning causal skeleton and learning causal direction. Our
theoretical results and the practical algorithm will hopefully
further inspire a series of future methods to deal with count
data and move the research of causal discovery further toward
achieving real-world impacts in different respects.
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