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Abstract

The feedback arc set problem is one of the most fundamental
and well-studied ranking problems where n objects are to be
ordered based on their pairwise comparison. The problem en-
joys several efficient approximation algorithms in the offline
setting. Unfortunately, online there are strong lower bounds
on the competitive ratio establishing that no algorithm can
perform well in the worst case. This paper introduces a new
beyond-worst-case model for online feedback arc set. In the
model, a sample of the input is given to the algorithm offline
before the remaining instance is revealed online. This models
the case in practice where yesterday’s data is available and
is similar to today’s online instance. This sample is drawn
from a known distribution which may not be uniform. We de-
sign an online algorithm with strong theoretical guarantees.
The algorithm has a small constant competitive ratio when
the sample is uniform—if not, we show we can recover the
same result by adding a provably minimal sample. Empirical
results validate the theory and show that such algorithms can
be used on temporal data to obtain strong results.

1 Introduction
Finding a global ranking of items is a common problem
faced in social network analysis, Bayesian learning, infor-
mation aggregation, and game design (Bar-Yehuda et al.
1994; Baweja, Jia, and Woodruff 2022). The case where
pairwise preference relationships are available for construct-
ing the global ranking is referred to as Kemeny-Young Rank
Aggregation (Kenyon-Mathieu and Schudy 2007a). For ex-
ample, consider users that are playing an online game. Given
the features of a user’s playing history, it is possible to de-
cide a preference on which of the two users should be ranked
higher. However, the ranking may be inconsistent on three
users due to the numerous features. The goal is to construct
a global ranking that corresponds to a ranking of all users
adhering to as many of the pairwise preferences.

One of the oldest and most well-studied approaches for
ranking is the Feedback Arc Set (FAS) problem in tour-
naments. In the FAS problem, there is a directed graph
G = (V,E). Nodes represent objects to be ranked. There
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is an edge between each pair of nodes that are directed, in
which (u, v) implies v is better than u. The goal is to rank
(i.e. order) the nodes in V so that the fewest number of edges
are directed backward in the ordering. Equivalently, the goal
is to reverse the direction of the smallest number of edges
so that the graph has no directed cycles and thus admits a
topological sort.

A large number of applications of FAS have led to it
being well-studied theoretically and empirically. The prob-
lem is NP-Hard (Alon 2006; Charbit, Thomassé, and Yeo
2007), and prior work has focused on approximation and
heuristic algorithm design. Several constant approximation
algorithms are known (Ailon, Charikar, and Newman 2008;
Coppersmith, Fleischer, and Rudra 2006). Moreover, sev-
eral scalable algorithmic approaches have been introduced
for large data sets (Baweja, Jia, and Woodruff 2022; Im
and Montazer Qaem 2020; Simpson, Srinivasan, and Thomo
2016a).

While Feedback Arc Set is well understood offline and
enjoys several good heuristic approaches, few results are
known when items arrive over time. When items arrive over
time, two possible models are the streaming and online set-
tings. In the streaming setting, items come one at a time,
and, using limited memory, the algorithm needs to con-
struct a global ordering of the elements. The ordering can
be changed as elements arrive; the challenge is that not all
edges of the graph can be stored in memory. There has been
a recent surge of interest in streaming algorithms (Baweja,
Jia, and Woodruff 2022; Chen et al. 2021).

In the online model, nodes arrive sequentially, revealing
the directed edges connected to the nodes that have appeared
earlier. The objective in this model is to continually provide
a reliable approximation of the nodes that have surfaced so
far. To delineate the model’s goals more explicitly, the fol-
lowing criteria must be met: (1) At every moment, an or-
dered list of the nodes that have arrived thus far should be
maintained. (2) The relative order of any subset of nodes
should remain unchanged throughout the process. (3) The
model should ensure an outcome of high quality when com-
pared to the optimal offline solution.

While this setting is natural; unfortunately, there is a Ω(n)
lower bound on the competitive ratio; the proof is omitted in
this version) in the worst-case online arrival model.

In the worst-case model, the problem is too difficult to
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solve online. Fortunately, practical applications are often
more forgiving than these worst-case conditions. Take on-
line ranking as an example; we frequently have access to a
history of previous rankings. This historical data can be in-
valuable in constructing current and future rankings.

In this paper, we model this pragmatic scenario as fol-
lows: The algorithm receives a sampling of nodes to be
ranked, along with the edges among them. At the most basic
level, this might involve a uniform sample, but our model
can also accommodate non-uniform distributions. Subse-
quently, additional nodes requiring ranking will arrive on-
line. This paper focuses on the question: can the presence
of a sample effectively bypass worst-case lower bounds,
thereby yielding beyond-worst-case robust results for online
ranking?

1.1 Our Contributions
This paper studies beyond worst-case online models for the
feedback arc set problem. We first consider the pure online
case where we show in Theorem 2 that any algorithm is
Ω(n) competitive. Further, we show in Theorem 1 a match-
ing upper bound by giving a O(n)-competitive algorithm.

We then turn to beyond-worst-case models to overcome
the strong lower bounds. In each model, the algorithm is
given a (possibly non-uniform) sample S of the nodes and
their pairwise edges. The remaining nodes arrive online in
adversarial order. The sample represents data on past in-
stances the algorithm has access to when solving a new on-
line instance.

We first consider a model introduced by Lattanzi et al.
(Lattanzi et al. 2021) and further studied by Argue et al.
(Argue et al. 2022). In this setting, the algorithm is given
access to a uniform sample of the data. The goal is to show
that the algorithm has strong performance on the remaining
problem instance that arrives adversarially. In this model, we
go beyond the worst-case lower bound and show that the al-
gorithm has a constant competitive ratio when the sample
is only a small λ faction of the items (Theorem 3). We also
show that our ratio is essentially optimal (Theorem 4).

We then introduce a new online model where we are
given an initial sample, which is drawn from a distribution
Q that is not necessarily uniform. Then the goal is for the
algorithm to decide on a small sampling of the remaining
nodes to ensure the algorithm has strong theoretical perfor-
mance. Intuitively, the initial sample is easy to obtain, yet
may be skewed. We want to correct the sample by adding
a minimum-sized sample as it could be costly. We show in
Theorem 5 an algorithm that can achieve a constant com-
petitive ratio by sampling a small fraction of the remaining
nodes even in the worst case.We show the optimality of the
extra sample in terms of their size (Theorem 6). In the full
version, we further extend our new model to the related cor-
relation clustering problem and show that our algorithm is
able to establish similar results.

A summary of our theoretical results can be found in Ta-
ble 1. These results give the first positive results for FAS
in the online setting. We further validate the theory empiri-
cally by establishing that these algorithms have similar per-
formance compared to offline algorithms that know the en-

tire input, even if the data is adversarially ordered. As strong
evidence of the usefulness of the algorithmic ideas devel-
oped, we show that on temporal data where the sample is
constructed based on the earliest arriving nodes, that the
algorithms have minimal loss over the offline setting. This
temporal model well captures the situation in practice where
the sample corresponds to past data.
1.2 Related Work
There are several known approximation algorithms for FAS.
It is possible to achieve a (1 + ϵ) approximation in poly-
nomial time (Ailon 2012; Kenyon-Mathieu and Schudy
2007a). It has been shown that a simple deterministic greedy
algorithm is 5-approximated (Coppersmith, Fleischer, and
Rudra 2010), i.e., order the vertices in increasing order of
their indegrees where ties are broken arbitrarily. A popular
randomized greedy algorithm is Pivot (also known as Kwik-
sort) which achieves a 3-approximation (Ailon, Charikar,
and Newman 2008). When the underlying graph is not a
tournament, (Even et al. 1998) gives a O(log n/ log log n)-
approximation.

Designing online algorithms models for beyond-worst-
case analysis is a popular topic. Works such as (Lattanzi
et al. 2020; Lykouris and Vassilvitskii 2021) have been in-
vestigating how to augment online algorithms with machine-
learned predictions. Argue et al. (Argue et al. 2022), and Lat-
tanzi et al. (Lattanzi et al. 2021) considered a similar model
where the algorithm is given a random sample of the prob-
lem input and the rest of the input arrives in an adversar-
ial order. In all of these cases, interesting algorithmic tech-
niques and beyond-worst-case bounds emerge by allowing
the algorithm to use extra information.

2 Preliminaries
This paper considers the online version of the minimum
feedback arc set problem. We first state the classical offline
version of the problem for completeness.
Definition 1 (Minimum Feedback Arc Set). We are given a
tournament G := (V,E) with |V | = n, where a tournament
is a directed graph G := (V,E) such that for each pair of
vertices i, j ∈ V , either (i, j) ∈ E or (j, i) ∈ E. The goal
is to find a permutation π on V minimizing the number of
backward edges with respect to π. An edge (i, j) ∈ E is
called a backward edge with respect to π if and only if π
ranks j before i (denoted by j <π i).

In the online setting, the vertices of the input graph arrive
one by one. When a vertex arrives, its edges to all previous
arrivals are released to the algorithm. The algorithm has to
maintain an order of all arrived vertices at all times; that is,
the algorithm must make an irrevocable decision upon each
vertex arrival. The algorithm knows the size of the graph
prior, i.e., the number of vertices is known by the algorithm.

We show in Theorem 2 that the above online problem has
a strong Ω(n) lower bound, where n is the number of ver-
tices. We also provide an optimal algorithm for this fully on-
line model. Theorem 2 suggests that obtaining any constant
competitive ratio is impossible in the online model. Thus, we
consider a semi-online model proposed by (Lattanzi et al.
2021).
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Arrival Order Upper Bound Lower Bound
Offline PTAS (Kenyon-Mathieu and Schudy 2007b) NP-Hard (Alon 2006)
Adversarial O(n) (Theorem 1) Ω(n) (Theorem 2)
Uniform Sample O( 1λ ) (Theorem 3) Ω( 1λ ) (Theorem 4)
Extra Sample O(δ(Q,U)) (Theorem 5) Ω(δ(Q,U)) (Theorem 6)

Table 1: The summary of our results. Offline order refers to the classical FAS problem. Adversarial order is the standard worst-
case setting. Uniform sample (formally termed semi-online; see Definition 2) is the model where the algorithm has access
to a uniform random sample with λn vertices, and the remaining vertices arrive in adversarial order. Extra sampling (see
Definition 3) corresponds to the new sampling model where we are given a set of vertices that are sampled from a predefined
distribution Q, and the algorithm can do some extra sampling, before seeing the remaining vertices arriving adversarially. For
simplicity, define δ(Q,U) as the total variance distance between distributions Q and U, where U is the uniform distribution.

Definition 2 (Semi-online Minimum Feedback Arc Set). In
the semi-online setting, the vertices arrive in two phases:
offline and online. In the first phase (offline phase), the algo-
rithm is given a vertex set S ⊆ V and its induced subgraph
G[S]. The offline vertices S with |S| := λn are uniformly
randomly sampled from V . In the online phase, the remain-
der of the vertices V \ S arrives online. When a vertex ar-
rives, its edges to all previous arrivals are released to the
algorithm. Upon each vertex’s arrival, the algorithm must
make an irrevocable position decision. The objective is to
maintain an order of arrived vertices to minimize the num-
ber of backward edges.

For the semi-online setting, we show that a natural adapta-
tion of the pivot algorithm proposed by (Ailon, Charikar, and
Newman 2008) is essentially optimal. To make our results
more robust, we extend the problem to the setting where
the offline vertices may not be sampled by a uniform ran-
dom distribution U. The adversary may sample vertices by
some other distributions Q. Since distribution Q is input and
can be arbitrary, it is impossible to get any positive result if
we do not sample some extra vertices by the lower bound
shown in Theorem 2. Thus, we are interested in how many
extra vertices we need to sample to make the problem still
admit a O( 1λ )-competitive algorithm, i.e., recover the result
obtained in the semi-online model.

Definition 3 (Extra Sampling Minimum Feedback Arc Set).
In the offline phase, the algorithm is given a vertex set
S ⊆ V with E[|S|] := λn and its induced subgraph G[S],
where the offline vertices S are sampled from V by a known
distribution Q. And the algorithm is allowed to sample some
extra vertices L from V by some distribution D, which is
determined by the algorithm. In total, the algorithm can ac-
cess the subgraph G[L∪S] in the offline phase. In the online
phase, the remainder of the vertices V \ (L ∪ S) arrive on-
line, and the algorithm must make an irrevocable position
decision upon each vertex’s arrival. The goal is to sample
another set of vertices as less as possible such that the prob-
lem admits a O( 1λ )-competitive algorithm.

3 Online Minimum Feedback Arc Set
This section considers the online minimum feedback arc set
problem under two settings: (i) Fully Online Model (Sec-
tion 3.2): the adversary picks an arriving order of all ver-
tices; (ii) Semi-online Model (Section 3.3): the algorithm is

allowed to uniform sample a subset S from V , and then the
adversary picks an arriving order of vertices in V \ S.

The algorithms for the two models share the same frame-
work. The difference is that they access different vertex or-
ders and thus obtain different competitive ratios. In the full
online Model, the algorithm accesses an adversary order of
all vertices while it combines a uniformly random order and
adversary order in semi-online model. Our algorithm adapts
the classical pivot algorithm proposed by (Ailon, Charikar,
and Newman 2008). For completeness, we restate the algo-
rithm in the full version of this paper.

The performance of the pivot algorithm heavily depends
on the order of vertices. It has been shown by (Ailon,
Charikar, and Newman 2008) that it is 3-approximated when
the order of vertices is uniformly random. In the online set-
ting, the algorithm does not access the whole graph and
thus cannot obtain a random order of vertices. The pivot al-
gorithm can be naturally generalized to the online setting
by considering the arriving order of vertices. However, the
competitive ratio is no longer a simple constant in this case.
As we will see in Section 3.2, the Pivot algorithm is O(n)-
competitive when all vertices arrive in an adversary order. In
contrast, we show in Section 3.3 that the competitive ratio is
improved to O( 1λ ) when partial vertices arrive in random or-
der.

3.1 Algorithmic Framework
For the convenience of analysis, we describe our algorithm
as a binary tree construction algorithm. The binary tree con-
struction is similar to the classical binary search tree con-
struction. Given an order σ of all vertices, we construct
a binary tree T iteratively. When t-th vertex (denoted by
σ(t)) arrives, we check the direction of the edge between
σ(t) and r (the root of the tree T). If (σ(t), r) ∈ E,
then σ(t) goes to the left subtree; otherwise, it goes to the
right subtree. We repeat the above process until we read
in all vertices. The formal description can be found in Al-
gorithm 1 and Algorithm 2. An example with vertex order
σ := (v1, v2, v6, v3, v4, v5) can be found in Fig. 1.

In the fully online model, Algorithm 1 takes the adversary
order σ as the input; while in the semi-online model, Algo-
rithm 1 takes σ := σS + σV \S as the input, where σS is
a random order of vertices in S and σV \S is the adversary
order of vertices in V \ S.
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v1

v2 v6

v3 v4 v5

v1

v2 v3

v4

v5v6
σS := (v1, v2)

σV \S := (v6, v3, v4, v5)

V1 V2 V3

σ := (v1, v2, v6, v3, v4, v5)

Figure 1: Illustration for the online pivot algorithm’s processing. Suppose that S := { v1, v2 } and a uniform random order
σS = (v1, v2). The adversary order for V \ S is σV \S = (v6, v3, v4, v5). Initially, the binary tree T is rooted by v1, and v2 is
v1’s left child since (v2, v1) ∈ E. When v6 arrives, it will be inserted as the right child of v1 since (v1, v6) ∈ E. When v3 arrives,
the algorithm will first determine whether it belongs to the left or right subtree of the tree rooted at v1. Since (v3, v1) ∈ E,
v3 is part of the left subtree, and v3 will be inserted as v2’s left child since (v3, v2) ∈ E. After the construction, we get a
binary tree shown in the right part. The inorder traversal is the algorithm’s output, i.e., π = (v3, v2, v4, v1, v6, v5). Thus, there
are three backward edges (v5, v4), (v4, v3) and (v6, v3) marked by dashed-lines in the original tournament. By our notation in
Section 3.3, we haveA = { ((v5, v4), (v4, v3), (v6, v3)) }. Moreover, by the definition of the lowest common ancestor, we have
lca(v4, v5,T) = v1, lca(v3, v6,T) = v1 and lca(v3, v4,T) = v2. This implies that A(S) = A and A(V \ S) = ∅.

Algorithm 1: Main Algorithm for Online Minimum Feed-
back Arc Set
Input: An order σ := (v1, . . . , vn) of all vertices in V .
Output: A permutation π : [n]→ [n] of all vertices in V .

1: T← ∅; i← 1
2: while i ≤ n do
3: Call construct-tree(T, r← v1, vi). ▷ Insert

vi to T rooted by r.
4: i← i+ 1.
5: end while
6: Let π be the inorder traversal of binary tree T.
7: return The vertex order π.

In the following, we present several concepts and obser-
vations which are helpful for the analysis in Section 3.2 and
Section 3.3. The pivot algorithm analysis critically relies on
Bad Triangle, which is defined in Definition 4.

Definition 4 (Bad Triangle). A bad triangle in G := (V,E)
is a vertex set consisting of three vertices, denoted by
t := { v1, v2, v3 }, such that they form a directed cycle, i.e.,
(v1, v2) ∈ E, (v2, v3) ∈ E and (v3, v1) ∈ E. Let T (G′) be
all bad triangles in subgraph G′ ⊆ G.

Intuitively, the number of bad triangles provides a lower
bound of the optimal solution (Observation 1) and an upper
bound of the algorithm’s solution (Observation 2).

Observation 1. In any feasible solution, for any bad trian-
gle t ∈ T (G), there must exist a backward edge in t.

Observation 2. Let A be the set of backward edges gener-
ated by Algorithm 1. Then, regardless of the vertices order,
for each edge (i, j) ∈ A if and only if there exists a bad
triangle t ∈ T (G) such that { i, j } ⊆ t.

Algorithm 2: construct-tree(T, r, v)

Input: A binary tree T rooted by r and a vertex v.
Output: A new binary tree T with v inserted.

1: if r = ∅ then
2: r← v; ▷ Set up the root r of T.
3: end if
4: if (r, v) ∈ E then ▷ Insert to the right subtree.
5: u← r’s right child.
6: construct-tree(T, u, v).
7: end if
8: if (v, r) ∈ E then ▷ Insert to the left subtree.
9: ℓ← r’s left child.

10: construct-tree(T, ℓ, v).
11: end if

3.2 Fully Online Model
Due to space limitations, we only state the two main theo-
rems in the following and defer the proofs to the full version
of this paper. The first theorem gives a O(n)-competitive
algorithm, while the second one provides an Ω(n) lower
bound to close the computational gap.
Theorem 1. Algorithm 1 is O(n)-competitive when the ver-
tices order is fully arbitrary.
Theorem 2. There exists an instance distribution of the on-
line feedback arc set problem where vertices arrive in ad-
versarial order such that any randomized algorithm has a
competitive ratio Ω(n), where n is the number of vertices.

3.3 Semi-online Minimum Feedback Arc Set
In this section, we consider the semi-online minimum feed-
back arc set problem. The sample S is chosen from V uni-
formly at random, where |S| := λn.We mainly show the
following.
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Theorem 3. For the problem of semi-online minimum feed-
back arc set, there is a randomized algorithm that is O( 1λ )-
competitive, where λn is the number of vertices sampled in
the offline phase. Moreover, any algorithm has a competitive
ratio of Ω( 1λ ).

Note that the vertex set S is uniformly randomly sampled
from V in the current case. Recall that the input sequence of
Algorithm 1 is σ := σS+σV \S , where σS is a random order
of vertices in S and σV \S is the adversary order of vertices
in V \ S.

Notation and Analysis Framework. Let A ⊆ E be the
set of backward edges generated by Algorithm 1, and define
ALG as the objective value of the algorithm, i.e., ALG :=
|A|. Use T to denote the binary tree constructed by the algo-
rithm. Given a tree T and two vertices v1, v2 in the tree, the
lowest common ancestor (denoted by lca(v1, v2,T)) of v1
and v2 is the lowest node in the tree T that has both v1 and
v2 as descendants. Note that lca(v1, v2,T) is unique given
the tree and two vertices. According to the property of our
algorithm, we have the following observation.
Observation 3. Let T be the binary tree constructed
by Algorithm 1. For any backward edge (i, j) ∈ A,
{ i, j, lca(i, j,T) } forms a bad triangle.

Now, we split A into two subsets A(S) and
A(V \ S). A(S) is a set of backward edges
that are separated by some vertices in S, i.e.,
A(S) := { (v, v′) ∈ A | lca(v, v′,T) ∈ S }, while
vertices in V \ S separate edges in A(V \ S), i.e.,
A(V \ S) := { (v, v′) ∈ A | lca(v, v′,T) ∈ V \ S }. An
example can be found in Fig. 1. Intuitively, for edges
in A(S), we can charge them directly to the optimal
solution by the classical analysis of the offline pivot
algorithm. For edges in A(V \ S), we need more care-
ful analysis to get rid of Ω(n) lower bound resulting
from the adversary order of the vertices in V \ S. For
notation consistency, define E[ALG(S)] := E[|A(S)|]
and E[ALG(V \ S)] := E[|A(V \ S)|]. Clearly,
E[ALG] = E[ALG(S)] + E[ALG(V \ S)]. Use OPT to
denote the objective value of the optimal offline solution.
The two terms ALG(S) and ALG(V \ S) are bounded by
Lemma 1 and Lemma 2 respectively.
Lemma 1. E[ALG(S)] ≤ 3 ·OPT.
Lemma 2. E[ALG(V \ S)] ≤ 1

λ ·OPT.
Combining Lemma 1 and Lemma 2, Theorem 3 directly

follows. Due to space limits, we omit the two lemma’s
proofs in the paper.

Remark. Our analysis leverages algorithmic and analy-
sis ideas from previous work (Lattanzi et al. 2021; Mathieu,
Sankur, and Schudy 2010) on correlation clustering. How-
ever, these two different problems lead to technical differ-
ences. The algorithms have similarities in that they recur-
sively choose pivots, but the similarities stop there and the
analysis requires considerably different techniques. In par-
ticular, the lower bounds used for the analysis are derived
differently depending on the underlying problem structure
and whether we include the sampled points or not. The de-
tailed discussion can be found in the full version of the paper.

Hardness Result To complete our results, we build on the
hard instance stated in Theorem 2 to give a lower bound of
the semi-online model.Intuitively, we construct a large graph
G := (V,E) with |V | := n and a vertex set T ⊆ V with
|T | := 1

λ such that the probability of each vertex in T being
sampled by any algorithm is tiny. Then, by Theorem 2, any
algorithm has competitive ratio Ω( 1λ ).

Theorem 4. In the semi-online model, any algorithm is
Ω( 1λ )-competitive for any λ ∈ (0, 1).

4 Extra Sampling Model
This section considers the extra sampling model. In the
model, we access a predefined vertex subset S sampled from
a distribution Q := {qv}v∈V , where each vertex v is sam-
pled independently with a probability of qv and the expected
number of the sampled vertices is λn. And then, the algo-
rithm is allowed to sample some extra vertices. The goal
is to make the extra sampling model still admit a O( 1λ )-
competitive algorithm. Use U := {pv = λ}v∈[n] to repre-
sent the uniform sampling distribution—to represent that U
is parameterized by λ, we may use Uλ. We show the follow-
ing theorem.

Theorem 5. Given any predefined distribution Q and any
parameter c ∈ (0, 1), there exists an algorithm that samples
at most δ(Q,Uλ) extra vertices in expectation and achieves
a competitive ratio of O( 1

c·λ ) with probability at least 1 −
e−(1−c)2/2, where δ(Q,Uλ) is the total variance distance
between the two distributions.

Letting the parameter c be a constant, Theorem 5 im-
plies an algorithm which achieves O( 1λ )-competitive with a
constant probability. To close the computational gap of our
problem, we further show the hardness results.

Theorem 6. Any O( 1λ )-competitive algorithm must sample
Ω(δ(Q,Uλ)) vertices in expectation.

Algorithmic Intuition. Based on the result stated in The-
orem 3, we know that if the first λn arrivals satisfy the
uniform random distribution, then Algorithm 1 is a O( 1λ )-
competitive algorithm. Thus, the main idea is to resample
some vertices according to some distribution D such that
the probability of each vertex being sampled is λ condi-
tioned on whether it is in the predefined sample. Intuitively,
we use D to “rescale” the probability of each vertex be-
ing sampled. Based on the distribution D, if we resample
a vertex set L with |L| := λn vertices, then Algorithm 1
is a O( 1λ )-competitive algorithm when the input sequence
is σL + σV \L. Note that D may not be uniform, and thus,
we are not able to ensure that L satisfies the cardinality con-
straint. But we can guarantee that |L| is O(λn) with high
probability using a concentration bound.

In summary, our algorithm mainly contains the following
steps:

• Given a predefined distribution Q and a vertex set S, con-
struct a distribution D := (p1, . . . , pv).

• Sample a subset L by distribution D, i.e., for each v ∈ V ,
independently add v to L with probability pv .
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Algorithm 3: Over-&Under-sampling Algorithm

Input: The distribution Q := (q1, . . . , qn) and the sampled
vertex set S;

Output: A sampling distribution D := (p1, . . . , pn).
1: for each vertex v ∈ V do
2: if qv < λ then ▷ Oversampling
3: if v ∈ S then pv ← 1;
4: else pv ← λ−qv

1−qv
.

5: end if
6: else (qv ≥ λ) ▷ Undersampling
7: if v ∈ S then pv ← λ

qv
.

8: else pv ← 0.
9: end if

10: end if
11: end for
12: return D.

• Run Algorithm 1 with the input sequence σL + σV \L,
where σV \L is a vertex order given by the adversary.
The crucial part of the algorithm is how to define the dis-

tribution D. The main idea is to oversample and undersam-
ple vertices based on distribution Q and the sampled vertex
set S. Intuitively, if the sampled probability of a vertex in
Q is larger than λ, we want to decrease (undersample) its
probability in the constructed probability distribution; other-
wise, we want to oversample. We construct a distribution D
to sample each vertex with probability λ conditioned on Q to
achieve this goal. To this end, we must carefully set param-
eters and distinguish several cases. The formal description
can be found in Algorithm 3.

Note that when the total variance distance δ(Q,U) is 0,
i.e., the predefined distribution is exactly the uniform ran-
dom distribution, the constructed distribution D is as fol-
lows: for each vertex v ∈ S, pv = 1; otherwise, pv = 0,
which means that the vertex set sampled by D is still set
S and no extra vertex is added. Then by Theorem 3, we
know that Algorithm 1 is a O( 1λ )-competitive algorithm.
For an arbitrary distribution Q, the proof of Theorem 5 con-
sists of two parts: (i) showing that the algorithm is O( 1

c·λ )-
competitive with a high probability, (ii) proving that the ex-
pected number of extra samples is δ(Q,U). Due to space
limitations, we defer the proofs to the full version of this pa-
per. We remark that the total variance distance δ(Q,U) is at
most λ(1− λ)n.

Upper Bound of δ(Q,U). Note that
∑

v∈V qv = λn since
the expected size of the predefined sample set is λn. By
some math, we see that

∑
v∈V :qv<λ(λ − qv) is at most

λ(1 − λ)n. Moreover, when the total variance distance is
λ(1− λ)n, the distribution Q is as follows:

Q = (1, . . . , 1︸ ︷︷ ︸
λn

, 0, . . . , 0︸ ︷︷ ︸
(1−λ)n

)

5 Experiments
This section validates the empirical performance of our sam-
pling models on real datasets. We design two experiments.

First, we investigate the empirical performance of the semi-
online pivot algorithm (Algorithm 1) when we vary the size
of the uniform sample. Second, we consider the extra sam-
pling model and observe the algorithm’s performance with
and without extra samples.

5.1 Setup
The experiments are conducted on a machine running
Ubuntu 18.04 with an i7-7800X CPU and 48 GB memory.
The experimental results are averaged over 10 runs.

Datasets. Following the experimental setting introduced
in (Simpson, Srinivasan, and Thomo 2016b), we use so-
cial network datasets to test the performance of the feed-
back arc set algorithms. The experiments consider three di-
rected temporal network datasets with different sizes: Col-
legeMsg1 (|V | = 1, 899, |E| = 59, 835), MathOverflow2

(|V | = 24, 818, |E| = 506, 550), and RedditHyperlink3

(|V | = 55, 863, |E| = 858, 490). Note that the networks
are not complete graphs. Since the datasets are temporal and
each vertex has a timestamp, we obtain complete graphs by
adding all the missing edges and letting each of them point
from the earlier released vertex to the other.

Arrival Orders. The experiments investigate three arrival
orders of vertices in the graphs. First of all, we consider the
chronological order given by the data to simulate the perfor-
mance of our sampling models in practice. Then we use the
bad triangle decreasing order and the indegree decreasing or-
der to approximate the adversarial order. In the bad triangle
decreasing order, we compute the number of bad triangles
that each vertex belongs to and let the vertex which is con-
tained in more bad triangles arrive first, while the indegree
decreasing order lets the vertex with a larger indegree arrive
first.

5.2 Power of Uniform Sampling
This experiment tests the performance of the pivot al-
gorithm with different uniform sampling fractions λ’s to
show the power of uniform sampling. We consider λ ∈
{0, 0.001, 0.003, 0.027, 0.081, 0.243, 0.729, 1} and use the
ratio of the algorithm’s objective to the objective obtained
by the offline pivot algorithm to illustrate the performance of
the algorithm. For each dataset, we try the aforementioned
three arrival orders. The results are shown in Fig. 2.

5.3 Power of Extra Sampling
This experiment investigates the extra sampling model. To
show the robustness of our extra-sampling algorithm, we let
the predefined distribution be the most unfavorable one for
the algorithm. To approximate such a sampling distribution
under each arrival order, we let the predefined sample set al-
ways be the first λn arriving vertices; that is, the sampling
probability of a vertex is 1 if the vertex is in the first λn ver-
tices and 0 otherwise. Denote such a predefined sample set
by Adv to imply that it is an adversarial-like sampling. Al-
gorithm 3 then constructs a new sample Ours by discarding

1https://snap.stanford.edu/data/CollegeMsg.html
2https://snap.stanford.edu/data/sx-mathoverflow.html
3https://snap.stanford.edu/data/soc-RedditHyperlinks.html

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20654



(a) CollegeMsg (b) MathOverflow (c) RedditHyperlink

Figure 2: The experimental results on the three datasets when the sampling fraction λ varies. The x-axes and y-axes represent
the sampling rate and the algorithm’s objective relative to that of the pivot on the offline input, and they are both on the log
scale.

(a) Time (b) Bad Triangle Decreasing (c) Indegree Decreasing

Figure 3: The performance of different sampling sets on CollegeMsg when λ varies. The x-axe is on the log scale.

some and adding new to Adv. Further, to show the necessity
of discarding some vertices in the predefined sample Adv,
we also consider using all appearing in Adv and Ours, which
is denoted as All. These three datasets give the same trends;
thus, we show the results on one dataset in Fig. 3 and others
appear in the full version of this paper.

5.4 Empirical Discussion
The results show the following trends.

• From Fig. 2, we see that on all of the datasets, even a
small fraction of uniform samples can improve the perfor-
mance significantly. Typically on the dataset RedditHy-
perlink, without any sample, the ratio is more than two
hundred; while with only a sampling fraction of 0.1%, the
ratio can be improved to single digits.

• From Fig. 3, we see the necessity of oversampling and un-
dersampling. Having extra samples in addition to the pre-
defined sample set gives a better performance (All). Dis-
carding some according to our algorithm gives a further
improvement (Ours).

6 Conclusion
The paper considers online Feedback Arc Set (FAS) in tour-
naments in a beyond-worst-case manner. We show that it is

possible to break the pessimistic lower bound by giving a
constant approximation for nodes arriving in the adversar-
ial order, given access to a constant fraction of samples. We
further investigate how to optimally exploit samples from
skewed distributions and revisit the correlational clustering
problem under the new model. These results take the first
step towards studying various online ranking problems. We
believe that the algorithmic ideas will be helpful to many
other related problems in this area.
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