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Abstract
The uniqueness of an optimal solution to a combinatorial op-
timization problem attracts many fields of researchers’ atten-
tion because it has a wide range of applications, it is related
to important classes in computational complexity, and an in-
stance with only one solution is often critical for algorithm
designs in theory. However, as the authors know, there is no
major benchmark set consisting of only instances with unique
solutions, and no algorithm generating instances with unique
solutions is known; a systematic approach to getting a prob-
lem instance guaranteed having a unique solution would be
helpful. A possible approach is as follows: Given a problem
instance, we specify a small part of a solution in advance so
that only one optimal solution meets the specification. This
paper formulates such a “pre-assignment” approach for the
vertex cover problem as a typical combinatorial optimization
problem and discusses its computational complexity. First,
we show that the problem is ΣP

2 -complete in general, while
the problem becomes NP-complete when an input graph is
bipartite. We then present an O(2.1996n)-time algorithm for
general graphs and an O(1.9181n)-time algorithm for bipar-
tite graphs, where n is the number of vertices. The latter is
based on an FPT algorithm with O∗(3.6791τ ) time for ver-
tex cover number τ . Furthermore, we show that the problem
for trees can be solved in O(1.4143n) time.

Introduction
Preparing a good benchmark set is indispensable for eval-
uating the actual performance of problem solvers, such as
SAT solvers, combinatorial optimization solvers, and learn-
ing algorithms. This is the reason that instance generation is
a classical topic in the fields of AI and OR, including opti-
mization and learning. Indeed, there are well-known bench-
mark sets, such as the TSPLIB benchmark set for the trav-
eling salesperson problem (Reinelt 1991), the UCI Machine
Learning Repository dataset for machine learning (Asuncion
and Newman 2007), SATLIB for SAT (Hoos and Stützle
2000), and other benchmark sets for various graph opti-
mization problems in the DIMACS benchmarks (DIMACS
2022). In these benchmarks, instances are generated from
actual data or artificially generated. Instances generated
from actual data are closely related to the application, so
it is a very instance that should be solved in practice and is
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therefore suitable as a benchmark. On the other hand, it is
not easy to generate sufficient instances because each one
is hand-made, and there are confidentiality issues. Random
generation is often used to compensate for this problem and
has also been studied for a long time, especially how to gen-
erate good instances from several points of view, such “dif-
ficulty” control and variety.

In this paper, we consider generating problem instances
with unique solutions. It is pointed out that the “unique
solution” is related to the nature of intractability in SAT.
Indeed, PPSZ, currently the fastest SAT algorithm in the-
ory (Scheder 2022), is based on the unique k-SAT solver.
Furthermore, a type of problem that determines whether or
not it has a unique solution (e.g., UNIQUE SAT) belongs to
a class above NP and coNP (Blass and Gurevich 1982), but
the status of that class is still not well understood, where
an exception is TSP; UNIQUE TSP is known to be ∆p

2-
complete (Papadimitriou 1984). Thus, it is desirable to have
a sufficient number of instances with unique solutions in
many cases, such as when problem instances with unique
solutions are used as benchmarks or when we evaluate the
performance of a solver for the uniqueness check version
of combinatorial optimization problems. In other words, in-
stances with unique solutions have an important role in ex-
perimental studies of computational complexity theory.

In this paper, we focus on VERTEX COVER problem
as a representative of combinatorial optimization problems
(also referred Drosophila in the field of parameterized al-
gorithms (Downey and Fellows 2013)), propose a “pre-
assignment” model as an instance generation model for this
problem, and consider the computational complexity of in-
stance generation based on this model. One of the crucial
points in generating problem instances with unique solutions
is that it is difficult for unweighted combinatorial optimiza-
tion problems to apply approaches used in conventional gen-
eration methods. A simple and conventional way of generat-
ing instances is a random generation, but the probability that
a randomly generated problem instance has a unique solu-
tion is low. Furthermore, although some combinatorial prob-
lems have randomized algorithms modifying an instance
into an instance with a unique solution, they strongly depend
on the structure of the problems, and it is non-trivial to apply
them to other problems, including VERTEX COVER (Valiant
and Vazirani 1986; Mulmuley, Vazirani, and Vazirani 1987).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20726



Besides, the planted model used in SAT instance gener-
ation requires guaranteeing the non-existence of solutions
other than the assumed solution, which is also a non-trivial
task, or some planted instances are shown to be easy to
solve (Krivelevich and Vilenchik 2006). Thus, generating in-
stances with unique solutions requires a different approach
than conventional instance generation methods.

A pre-assignment for uniquification in a problem means
assigning an arbitrary part of the decision variables in
the problem so that only one solution is consistent with
the assignment. In SAT, for example, we select some of
the Boolean variables and assign true or false to each so
that only one truth assignment consistent with the pre-
assignment satisfies the formula. In the case of VERTEX
COVER, we select some vertices and assign a role to each,
i.e., a cover vertex or a non-cover vertex, so that only one
minimum vertex cover of the graph is consistent with the
pre-assignment. Such a pre-assignment for uniquification
enables the generation of problem instances with unique
solutions to combinatorial optimization problems. In the
case of VERTEX COVER, the graph obtained by the pre-
assignment (see Observation 1 for the detail) has only one
vertex cover with the minimum size, which can be used as
an instance of UNIQUE VERTEX COVER problem. A strong
point of the pre-assignment-based instance generation is that
it transforms an instance of an ordinary problem into an in-
stance of the uniqueness check version of the correspond-
ing problem; if the ordinary version of the problem has a
rich benchmark instance set, we can expect to obtain the
same amount of instance set by applying the pre-assignment
models. Indeed, many papers study instance generations of
the ordinary combinatorial optimization problem as seen
later; they can be translated into the results of instances with
unique solutions.

From this perspective, we formulate the pre-assignment
problem to uniquify an optimal solution for the vertex cover
problem instance. We name the problem PAU-VC, whose
formal definition is given in the Models section. We con-
sider three types of scenarios of pre-assignment: INCLUDE,
EXCLUDE, and MIXED. Under these models, this study
aims to determine the computational complexity of the pre-
assignment for uniquification of VERTEX COVER.

Due to the space limitation, some proofs (marked ⋆) are
omitted, which can be found in (Horiyama et al. 2023).

Our results. We investigate the complexity of PAU-VC
for all pre-assignment models. As hardness results, we show:
1. PAU-VC is ΣP

2 -complete under any model,
2. PAU-VC for bipartite graphs is NP-complete under any

model.
For the positive side, we design exact exponential-time algo-
rithms and FPT algorithms for the vertex cover number. Let
n be the number of the vertices and τ be the vertex cover
number of G. Then, we present
3. an O(2.1996n)-time algorithm, which works for any

model,
4. an O∗(3.6791τ )-time algorithm under INCLUDE model,1

1The O∗ notation suppresses polynomial factors in n.

5. an O∗(3.6791τ )-time algorithm under MIXED and EX-
CLUDE models,

Due to the FPT algorithms, PAU-VC for bipartite graphs
can be solved in O(1.9181n) time. Here, it should be noted
that the fourth and fifth algorithms work in different ways,
though they have the same running time.

The last results are for trees. Many graph problems are
intractable for general graphs but polynomially solvable for
trees. Most of such problems are just NP-complete, but some
are even PSPACE-complete (Demaine et al. 2015). Thus,
many readers might consider that PAU-VC for trees is likely
solvable in polynomial time. On the other hand, not a few
problems (e.g., NODE KAYLES) are intractable in general,
but the time complexity for trees still remains open, and
only exponential-time algorithms are known (Bodlaender,
Kratsch, and Timmer 2015; Yoshiwatari et al. 2022). In the
case of PAU-VC, no polynomial-time algorithm for trees
is currently known. Instead, we give an exponential upper
bound of the time complexity of PAU-VC for trees.

6. an O(1.4143n)-time algorithm for trees under INCLUDE
model, and

7. an O(1.4143n)-time algorithm for trees under MIXED
and EXCLUDE models.

These algorithms also work differently, though they have the
same running time.

In the context of instance generation, these results imply
that the pre-assignment approach could not be universally
promising but would work well to generate instances with
small vertex covers.

Related work. Instance generation in combinatorial (op-
timization) problems is well-studied from several points of
view, such as controlling some attributes (Asahiro, Iwama,
and Miyano 1996) and hard instance generation (Horie and
Watanabe 1997), and some empirical studies use such gener-
ated instances for performance evaluation (Cha and Iwama
1995). Such instances are desirable to be sufficiently hard
because they are supposed to be used for practical perfor-
mance evaluation of algorithms for problems considered
hard in computational complexity theory (e.g., (Sanchis
1995; Neuen and Schweitzer 2017; McCreesh et al. 2018)).
Other than these, many studies present empirically practi-
cal instance generators (e.g., (Ullrich et al. 2018)). From
the computational complexity side, it is shown that, un-
less NP = coNP, for most NP-hard problems, there exists
no polynomial-time algorithm capable of generating all in-
stances of the problem, with known answers (Sanchis 1990;
Matsuyama and Miyazaki 2021).

A natural application of pre-assignment for uniquification
is puzzle instance generation. In pencil puzzles such as SU-
DOKU, an instance is supposed to have a unique solution
as the answer. Inspired by them, Demaine et al. (Demaine
et al. 2018) define FCP (Fewest Clues Problem) type prob-
lems including FCP-SAT and FCP-SUDOKU. The FCP-SAT
is defined as follows: Let ϕ be a CNF formula with a set
of boolean variables X . Consider a subset Y ⊆ X of vari-
ables and a partial assignment fY : Y → {0, 1}. If there is
a unique satisfying assignment fX : X → {0, 1} extending
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fY , that is, fY (x) = fX(x) for x ∈ Y , we call variables in
Y clues. The FCP-SAT problem asks, given a CNF formula
ϕ and an integer k, whether ϕ has a unique satisfying assign-
ment with at most k clues. They showed that FCP 3SAT, the
FCP versions of several variants of the SAT problem, includ-
ing FCP 1-IN-3 SAT, are ΣP

2 -complete. Also FCP versions
of several pencil-and-paper puzzles, including SUDOKU are
ΣP

2 -complete. Since the setting of FCP is suitable for puz-
zles, FCP versions of puzzles are investigated (Higuchi and
Kimura 2019; Goergen et al. 2022).

The uniqueness of an (optimal) solution itself has been
intensively and extensively studied for many combinatorial
optimization problems. Some of them are shown to have the
same time complexity to UNIQUE SAT (Hudry and Lob-
stein 2019a,b), while UNIQUE TSP is shown to be ∆P

2 -
complete (Papadimitriou 1984). Juban (Juban 1999) pro-
vides the dichotomy theorem for checking whether there
exists a unique solution to a given propositional formula.
The theorem partitions the instances of the problem between
the polynomial-time solvable and coNP-hard cases, where
Horn, anti-Horn, affine, and 2SAT formulas are the only
polynomial-time solvable cases.

Preliminaries
Notations. Let G be an undirected graph. Let V (G) and
E(G) denote the vertex set and edge set of G, respectively.
For v ∈ V (G), we denote by NG(v) the set of neighbors of
v in G, i.e., NG(v) = {w ∈ V (G) : {v, w} ∈ E(G)}. We
extend this notation to sets: NG(X) =

⋃
v∈X NG(v) \ X .

We may omit the subscript G when no confusion is possible.
For X ⊆ V (G), the subgraph of G obtained by deleting all
vertices in X is denoted by G−X or G \X .

A vertex cover of G is a vertex set C ⊆ V (G) such that
for every edge in G, at least one end vertex is contained in
C. We particularly call a vertex cover of G with cardinality k
a k-vertex cover of G. The minimum cardinality of a vertex
cover of G is denoted by τ(G). A set I ⊆ V (G) of vertices
that are pairwise non-adjacent in G is called an independent
set of G. It is well known that I is an independent set of G
if and only if V (G) \ I is a vertex cover of G. A dominating
set of G is a vertex subset D ⊆ V (G) such that V (G) =
D∪N(D), that is, every vertex in G is contained in D or has
a neighbor in D. If a dominating set D is also an independent
set of G, we call it an independent dominating set of G.

Models. In PAU-VC, given a graph G and an integer k,
the goal is to determine whether G has a “feasible pre-
assignment of size at most k”. In this context, there are
three possible models to consider: INCLUDE, EXCLUDE,
and MIXED. Under INCLUDE model, a pre-assignment is de-
fined as a vertex subset U ⊆ V (G), and a pre-assignment Ũ
is said to be feasible if there is a minimum vertex cover U∗

of G (i.e., τ(G) = |U∗|) such that U ⊆ U∗ and for every
other minimum vertex cover U of G, Ũ \ U is nonempty.
In other words, Ũ is feasible if there is a unique minimum
vertex cover U∗ of G that includes Ũ (i.e., Ũ ⊆ U∗). Un-
der EXCLUDE model, a pre-assignment is also defined as a
vertex subset Ũ ⊆ V (G) as well as INCLUDE, and Ũ is

said to be feasible if there is a unique minimum vertex cover
U∗ of G that excludes X (i.e., U∗ ⊆ V (G) \ Ũ ). For these
two models, the size of a pre-assignment is defined as its
cardinality. Under MIXED model, a pre-assignment is de-
fined as a pair of vertex subsets (Ũin, Ũex), and (Ũin, Ũex)
is said to be feasible if there is a unique minimum vertex
cover U∗ of G that includes Ũin and excludes Ũex (i.e.,
Ũin ⊆ U∗ ⊆ V (G) \ Ũex). We can assume that Ũin and
Ũex are disjoint, as otherwise the pre-assignment is trivially
infeasible. The size of the pre-assignment (Ũin, Ũex) is de-
fined as |Ũin|+ |Ũex| under the MIXED model.

Observation 1. Let G be a graph and let (Ũin, Ũex) be a
feasible pre-assignment of G. Then, G − (Ũin ∪ N(Ũex))

has a unique minimum vertex cover of size τ(G) − |Ũin ∪
N(Ũex)|.

In the following, we compare these three models.

Theorem 1. If G has a feasible pre-assignment of size at
most k in the INCLUDE model, then G has a feasible pre-
assignment of size at most k under the EXCLUDE model.

Proof. Let Ũ ⊆ V (G) be a feasible pre-assignment for G
in the INCLUDE model. Let U∗ ⊆ V (G) be the unique min-
imum vertex cover of G such that Ũ ⊆ U∗. Observe that
N(v) \ U∗ ̸= ∅ for v ∈ U∗. This follows from the fact that
if N(v) ⊆ U∗, U∗ \ {v} is also a vertex cover of G, which
contradicts the minimality of U∗. For v ∈ Ũ , we let v′ be an
arbitrary vertex in N(v)\U∗ and define Ũ ′ := {v′ : v ∈ Ũ}.
Note that v′ and w′ may not be distinct even for distinct
v, w ∈ Ũ . We claim that Ũ ′ is a feasible pre-assignment of
G in the EXCLUDE model.

As v′ /∈ U∗ for each v ∈ Ũ , U∗ ⊆ V (G) \ Ũ ′ holds.
To see the uniqueness of U∗ (under the pre-assignment Ũ ′

in EXCLUDE), suppose that there is a minimum vertex cover
U of G with U ̸= U∗ such that U ⊆ V (G) \ Ũ ′. For each
v′ ∈ Ũ ′, all vertices in N(v′) must be included in U , which
implies that v ∈ U . Thus, we have Ũ ⊆ U , contradicting the
uniqueness of U∗. By |Ũ ′| ≤ |Ũ |, the theorem holds.

The converse of Theorem 1 does not hold in general.
Let us consider a complete graph Kn with n vertices. As
τ(Kn) = n − 1, exactly one vertex is not included in a
minimum vertex cover of Kn. Under EXCLUDE model, a
pre-assignment containing exactly one vertex is feasible for
Kn. However, under INCLUDE model, any pre-assignment
of at most n − 2 vertices does not uniquify a minimum
vertex cover of Kn. This indicates that EXCLUDE model is
“stronger” than INCLUDE model. The theorem below shows
that EXCLUDE model and MIXED model are “equivalent”.

Theorem 2 (⋆). A graph G has a feasible pre-assignment
of size at most k under the EXCLUDE model if and only if
G has a feasible pre-assignment of size at most k under the
MIXED model.

Basic observations. A class G of graphs is said to be
hereditary if for G ∈ G, every induced subgraph of G be-
longs to G.
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Lemma 1. Let G be a hereditary class of graphs. Suppose
that there is an algorithmA for computing a minimum vertex
cover of a given graph G ∈ G that runs in time T (n,m),
where n = |V (G)| and m = |E(G)|.2 Then, we can check
whether G ∈ G has a unique minimum vertex cover in time
O(τ(G) · T (n,m)).

Proof. We first compute an arbitrary minimum vertex cover
U of G. If U is not a unique minimum vertex cover of G, G
has another minimum vertex cover U ′ not containing v for
some v ∈ U . As v /∈ U ′, we have N(v) ⊆ U ′. To find such a
minimum vertex cover for each v ∈ U , it suffices to compute
a vertex cover of G− (N(v) ∪ {v}) of size τ(G)− |N(v)|,
which can be done by usingA as G−(N(v)∪{v}) ∈ G.

Using Lemma 1, we have the following corollary.

Corollary 1. Let G be a hereditary class of graphs. Sup-
pose that there is an algorithm for computing a minimum
vertex cover of a given graph G ∈ G that runs in time
T (n,m), where n = |V (G)| and m = |E(G)|. Given a
graph G ∈ G and vertex sets Ũin, Ũex ⊆ V (G), a pre-
assignment (Ũin, Ũex) is feasible for G under the MIXED
model in time O(τ(G) · T (n,m)).

Proof. If either Ũin ∩ Ũex ̸= ∅ or Ũex is not an independent
set of G, the pre-assignment is trivially infeasible. Suppose
otherwise. Observe that G has a minimum vertex cover U
with Ũin ⊆ C ⊆ V (G) \ Ũex if and only if G − (Ũin ∪
NG(Ũex)) has a vertex cover of size τ(G)−|Ũin∪NG(Ũex)|.
Therefore, we can check whether G has a unique minimum
vertex cover U satisfying Ũin ⊆ U ⊆ V (G) \ Ũex using the
algorithm in Lemma 1 as well.

Complexity
This section is devoted to proving the complexity of PAU-
VC. In particular, we show that PAU-VC is ΣP

2 -complete on
general graphs and NP-complete on bipartite graphs.

Theorem 3 (⋆). PAU-VC is ΣP
2 -complete under any type of

pre-assignment.

Theorem 3 is shown by performing a polynomial-
reduction from FCP 1-IN-3 SAT, which is known to be ΣP

2 -
complete (Demaine et al. 2018).

We consider the complexity of PAU-VC on bipartite
graphs. As observed in Theorem 2, it suffices to consider IN-
CLUDE and MIXED models. For bipartite graphs, VERTEX
COVER is equivalent to the problem of finding a maximum
cardinality matching by König’s theorem (see Chapter 2 in
(Diestel 2012)), which can be computed in polynomial time
by the Hopcroft-Karp algorithm (Hopcroft and Karp 1973).
Combining this fact and Corollary 1, PAU-VC belongs to
NP under both models.

To see the NP-hardness of PAU-VC, we first consider
the MIXED model. We perform a polynomial-time reduction
from INDEPENDENT DOMINATING SET on bipartite graphs.
In INDEPENDENT DOMINATING SET, we are given a graph

2We assume that n + m ≤ T (n,m) ≤ T (n′,m′) for n ≤ n′

and m ≤ m′.

G and an integer k and asked whether G has an independent
dominating of size at most k. This problem is NP-complete
even on bipartite graphs (Corneil and Perl 1984).

From a bipartite graph G for INDEPENDENT DOMINAT-
ING SET, we construct a graph G′ by adding, for each vertex
v ∈ V (G), a new vertex v′ and an edge between v and v′.

Now, we show that G has an independent dominating
set of size at most k if and only if G has a feasible pre-
assignment of size at most k.
Theorem 4. PAU-VC for bipartite graphs is NP-complete
under the MIXED and EXCLUDE models.

By modifying the proof of Theorem 4, we can show that
the hardness holds also for INCLUDE model.
Theorem 5 (⋆). PAU-VC for bipartite graphs is NP-
complete under the INCLUDE model.

Exact Algorithms
General Graphs
In this section, we present exact algorithms for PAU-VC
for general graphs. We first see exact exponential-time algo-
rithms, and then see FPT algorithms for vertex cover num-
ber. As shown in Theorem 2, we only consider INCLUDE
and EXCLUDE models.

Exponential-time algorithms. We first present an exact
algorithm that utilizes an algorithm for UNIQUE VERTEX
COVER (UVC). Let G be a graph with n vertices. We first
fix a subset of vertices U ⊆ V (G) for a pre-assignment,
and then check if G has a unique minimum vertex cover un-
der the pre-assignment U . This can be done by transform-
ing G into G′ as in Corollary 1: G′ := G − U for the
INCLUDE model and G′ := G − U − N(U) for the EX-
CLUDE model. By applying this procedure for all subsets
U , we can determine the answer of PAU-VC for G. The
running time depends on the algorithm to solve UVC. We
abuse the notation UVC(G′) in Algorithm 1: UVC(G′) re-
turns true if and only if G′ has a unique minimum vertex
cover of size τ(G) − |U | for the INCLUDE MODEL and
size τ(G)−|N(U)| for the EXCLUDE model. By Lemma 1,
UVC can be solved in the same exponential order of running
time as VERTEX COVER. Here, let O∗(αn) be the running
time of an exact exponential-time algorithm for VERTEX
COVER. Note that Algorithm 1 applies the VERTEX COVER
algorithm for G′, which has at most n− |U | vertices in any
pre-assignment model. Thus, the total running time of Algo-
rithm 1 is estimated as

n∑
k=0

(
n

k

)
O∗(αn−k) =

n∑
k=0

(
n

k

)
O∗(αk) = O∗((α+ 1)

n
),

Algorithm 1: Algorithm using UVC routine

for k = 0, 1, . . . , n do
for all U ⊆ V with |U | = k do

G′ ← the graph obtained from G under pre-
assignment on U
if UVC(G′) = true then

Return U
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by the binomial theorem. Since the current fastest exact
exponential-time algorithm for VERTEX COVER runs in
O(1.1996n) time (Xiao and Nagamochi 2017), Algorithm
1 runs in O(2.1996n) time.

Theorem 6. PAU-VC for any model can be solved in
O(2.1996n) time.

FPT algorithms parameterized by vertex cover number.
We now present FPT algorithms parameterized by vertex
cover number. Throughout this subsection, we simply write
τ := τ(G). Contrary to the previous subsection, algorithms
for INCLUDE and EXCLUDE work differently.

INCLUDE Model. We first present the algorithm for IN-
CLUDE, which is easier to understand. The idea of the al-
gorithm is as follows. Let G be a graph. We first enumer-
ate all the minimum vertex covers of G. Then, for every
optimal vertex cover U∗, we find a minimum feasible pre-
assignment. Namely, we fix a subset U ⊆ U∗ as INCLUDE
vertices, and then check the uniqueness under U as Algo-
rithm 1. We formally describe the algorithm in Algorithm 2.

Inside of the algorithm, we invoke an algorithm for com-
puting a minimum vertex cover of G′ parameterized by ver-
tex cover number τ(G′), and O∗(βτ(G′)) denotes the run-
ning time. Since G′ has a vertex cover at most τ − |U |, the
running time of Algorithm 2 is estimated as follows:

∑
U∗∈U

∑
U⊆U∗

O∗(βτ−|U |) = |U|
τ∑

k=0

(
τ

k

)
O∗(βτ−k)

= O∗(|U|(β + 1)
τ
).

(1)

Thus bounding |U| by a function of τ is essential. Actu-
ally, |U| is at most 2τ by the following reason. For U , we
consider classifying the optimal vertex covers of G into two
categories for a non-isolated vertex v ∈ V (G): (1) U(v) is
the set of optimal vertex covers of G containing v, and (2)
U(v̄) is the set of optimal vertex covers of G not containing
v. Note that any vertex cover in U(v̄) contains all the ver-
tices in N(v) by the requirement of a vertex cover; a vertex
cover in U(v) (resp., U(v̄)) reserves v (resp., N(v)) for ver-
tex cover and can include at most τ − 1 (resp., τ − |N(v)|)
vertices. We can further classify U(v) (resp., U(v̄)) into
U(vv′) and U(vv̄′) (resp., U(v̄v′) and U(v̄v̄′)) similarly,
which gives a branching with depth at most τ . Since every

Algorithm 2: FPT algorithm for INCLUDE

1: Enumerate all the optimal vertex covers of G, and let U
be the collection of them.

2: for all U∗ ∈ U do
3: Sol(U∗)← U∗ ▷ Current min. pre-asgmt. for U∗

4: for all U ⊆ U∗ with |U | < τ do
5: G′ ← the graph obtained from G under pre-

assignment on U
6: if |U | < |Sol(U∗)| and UVC(G′) = true then
7: Sol(U∗)← U
8: Return Sol(U∗) with the minimum size for U∗ ∈ U

optimal vertex cover is classified into a leaf of the branch-
ing tree, and thus |U| ≤ 2τ holds; the above running time is
O∗((2β + 2)

τ
).

Although it is impossible to improve bound 2τ on the
number of minimum vertex covers of G,3 we can still im-
prove the running time. The idea is to adopt a smaller set
of optimal vertex covers instead of the whole set of the op-
timal vertex covers. Here, we focus on U(v), where v is a
sequence of symbols representing a vertex or its negation,
as discussed above. Since v has a history of branching, it re-
serves a set of vertices as a part of an optimal vertex cover in
U(v). Let U(v) denote the corresponding vertex set (i.e., the
vertices appearing positively v). Then, τ − |U(v)| vertices
are needed to cover the edges in G− U(v).

We now assume that G− U(v) forms a collection of iso-
lated edges. In such a case, we can exploit the structure of an
optimal vertex cover without branching to leaves by the fol-
lowing argument. To uniquify a minimum vertex cover of G,
we need to specify exactly one of two endpoints of each iso-
lated edge. In Algorithm 2, we fix a target vertex cover U∗ at
line 2, choose a subset of U∗ for pre-assignment INCLUDE
at line 4, and check if it ensures the uniqueness of an optimal
vertex cover. Instead of fixing a target vertex cover U∗, we
focus on U(v) with k′ isolated edges, where |U(v)|+k′ = τ
holds (as otherwise G has no vertex cover extending U(v)
of size τ ). That is, a pre-assignment with size k (≥ k′) on
U(v) with k′ isolated edges must form k′ end points of the
isolated edges (i.e., one of 2k

′
choices) and a (k−k′)-subset

of U(v) (one of
(|U(v)|
k−k′

)
). Thus, for all the pre-assignments

on U(v) plus k′ isolated edges, the uniqueness check takes

2k
′
τ−k′∑
k′′=0

(
τ − k′

k′′

)
·O∗(βτ−k′−k′′

)

=2k
′
·O∗((β + 1)τ−k′

) = O∗((β + 1)τ ).

To obtain such G − U(v) (i.e., a graph consisting of iso-
lated edges), we do branching by v with a degree at least 2.
If no vertex with a degree at least 2 is left, then G − U(v)
forms a collection of isolated edges. We now estimate the
size f(τ) of a branching tree. If v with a degree at least 2 is
in the vertex cover, the remaining graph has a vertex cover
with at least τ − 1 vertices. If v is not in the vertex cover,
N(v) should be included in a vertex cover; the remaining
graph has a vertex cover with at least τ − 2. Thus we have

f(τ) ≤ f(τ − 1) + f(τ − 2).

This recurrence inequality leads to f(τ) ≤ ϕτ , where
ϕ = (1 +

√
5)/2 is the golden ratio. Overall, the running

time of the revised Algorithm 2 becomes O∗((ϕ(β + 1))
τ
).

Since the current fastest vertex cover algorithm runs in
O∗(1.2738τ ) time (Chen, Kanj, and Xia 2010), we can solve
PAU-VC under INCLUDE model in O∗(3.6791τ ) time.

Theorem 7. PAU-VC under INCLUDE model can be solved
in O∗(3.6791τ ) time.

3If G is a disjoint union of n/2 isolated edges, G has exactly
2τ minimum vertex covers.
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EXCLUDE Model. We next consider EXCLUDE model. A
straightforward extension of Algorithm 2 changes line 4 as:

for all Ũ ⊆ V \ U∗ with |Ũ | = k do (2)

In line 5, G′ is defined from Ũ as in the EXCLUDE model.
Although this change still guarantees that the algorithm
works correctly, it affects the running time. Equation (1) be-
comes

|U|
n−τ∑
k=0

(
n− τ

k

)
O∗(βτ−k) = O∗(|U|βτ (1 + 1/β)n−τ ),

which is no longer to be fixed parameter tractable with re-
spect to τ . To circumvent the problem, we show the follow-
ing lemma.

Lemma 2. Suppose two subsets Ũ1 and Ũ2 of V (G) have
the same neighbors, i.e., N(Ũ1) = N(Ũ2). If a set U ⊆
V \ Ũ1 is an optimal vertex cover of G, U ∩ Ũ2 = ∅ holds.

Proof. Note that N(Ũ1)(= N(Ũ2)) and U1∪U2 are disjoint.
Suppose that a set U with Ũ1 ∩ U = ∅ is an optimal vertex
cover of G. Then, N(Ũ1) ⊆ U holds, because otherwise the
edges incident with Ũ1 are never covered. Since N(Ũ1) (=

N(Ũ2)) covers also the edges incident with Ũ2, U \ Ũ2 (⊇
N(Ũ2)) is also a vertex cover. By the optimality of U , U \Ũ2

must be U , which implies U ∩ Ũ2 = ∅.

Lemma 2 implies that for two subsets Ũ1 and Ũ2 of V (G)

with N(Ũ1) = N(Ũ2), excluding Ũ1 and excluding Ũ2 have
the same effect as including N(Ũ1) (= N(Ũ2)) for optimal
vertex covers. Namely, for an optimal vertex cover U , the
“cost” of including U ′ (⊆ U) is interpreted as the minimum
|Ũ | such that U ′ ⊆ N(Ũ). The notion of costs enables us
to transform a pre-assignment of INCLUDE into one of EX-
CLUDE; we can utilize the same framework of Algorithm 2
by installing a device to compute the costs. We thus consider
obtaining the costs efficiently. The cost of U ′ is the optimal
value of the following set cover problem: The elements to be
covered are the vertices in U ′, and a set to cover elements is
u ∈ V \U , which consists of N(u). By executing a standard
dynamic programming algorithm for the set cover problem
for the ground set U once, we obtain the cost to cover ev-
ery subset of U in O∗(2|U |) time (also see e.g., (Fomin and
Kratsch 2010)).

Algorithm 3: Algorithm for SET COVER

Input: (X,S), where X = {1, 2, . . . , n} is a ground set
(i.e., the set of elements to be covered) and S =
{S1, S2, . . . , Sm} is a collection of subsets of X .

Output: For S ⊆ X , cost[S; j] is the minimum cardinality
of a subset of {S1, S2, . . . , Sj} that covers S ⊆
X . If S cannot be covered by {S1, S2, . . . , Sj},
cost is set to∞.

1: for all S ⊆ X do
2: for j = 1, . . . , n do
3: cost[S; j]← min{cost[S; j−1], cost[S\Sj ; j−

1] + 1}

Algorithm 4: FPT algorithm for EXCLUDE

1: Enumerate all the optimal vertex covers. Let U be the
set of them.

2: for all optimal vertex cover U∗ do
3: Apply Algorithm 3 for (U∗, {N(u) | u ∈ V (G) \

U∗}).
4: Sol(U∗)← SC(U∗)
5: for all U ⊆ U∗ with |SC(U)| < |Sol(U∗)| do
6: G′ ← the graph obtained from G under pre-

assignment on SC(U) (EXCLUDE)
7: if |U | < |Sol(U∗)| and UVC(G′) = true then
8: Sol(U∗)← SC(U)
9: Return Sol(U∗) with the minimum size for U∗ ∈ U

Note that Algorithm 3 for (X,S) computes the optimal
cost to cover S (denoted cost[S]) but can easily modified to
compute an optimal solution SC[S] for every S ⊆ X in the
same running time.

Algorithm 4 is the algorithm for EXCLUDE model. It
works in a similar framework to Algorithm 2, but it equips
the device to transform INCLUDE pre-assignment into EX-
CLUDE pre-assignment at line 3, which solves the set cover
problem (U∗, {N(u) | u ∈ V (G) \U∗}) in advance. Line 4
fixes a subset U as vertices to be included in U∗ by pre-
assigning some vertices in V (G) \U∗ EXCLUDE. To link U
to such vertices in V (G) \ U∗, we use the solutions of the
set cover problem (U∗, {N(u) | u ∈ V (G) \ U∗}), whose
correctness is guaranteed by Lemma 2. The other structures
are essentially equivalent to those of Algorithm 2.

The running time is estimated as follows. We apply Al-
gorithm 3 for each U∗, which takes O∗(2τ ) time. For each
U ⊆ U∗ with |SC(U)| < |Sol(U∗)|, we obtain G′, whose
vertex cover has size at most |U∗| − |U |. By these, we can
estimate the running time as∑

U∗∈U

(
O∗(2τ ) +

∑
U∈U∗

O∗(βτ−|U |)

)

= |U|

(
O∗(2τ ) +

τ∑
k=0

(
τ

k

)
O∗(βk)

)
= O∗(|U|(β + 1)

τ
),

because β > 1. By |U| ≤ 2τ , we can see that PAU-VC
under EXCLUDE model can be solved in O∗(4.5476τ ) time.

Here, we further try to improve the running time as IN-
CLUDE model. Instead of an optimal vertex cover U∗, we
focus on U(v) in the branching argument of the previous
subsection, where G− U(v) forms a collection of k′ edges.
Since almost the same argument holds, lines 5−7 are exe-
cuted at most 2|U |, where U is an INCLUDE pre-assignment
(i.e., an implicit EXCLUDE pre-assignment) for an optimal
vertex cover U(v) plus a set of k′ end vertices of the isolated
edges in G − U(v). Thus, what we need to consider newly
for EXCLUDE model is how we efficiently get the set cover
solution (i.e., vertices to be excluded) of every U for U(v).

We explain how we resolve this. Suppose that K(v) is
the set of isolated edges in G − U(v), and we then de-
fine the following set cover problem: The elements to be
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covered are the vertices in U(v), and a set to cover ele-
ments is u ∈ V (G) \ (U(v) ∪ V (K(v))), which consists
of N(u). By applying Algorithm 3 for (U(v), {N(u) | u ∈
V (G) \ (U(v) ∪ V (K(v)))}), we obtain for every U ′ ⊆
U(v), SC′(U ′) as a minimum set to cover U ′, where we
use SC′ instead of SC to distinguish. Let U∗ be an optimal
vertex cover including U(v), and let K1 := U∗ ∩ V (K(v))
and K2 := V (K(v)) \ U∗. We claim that for U ⊆ U∗

with N(K2) ⊆ U , SC′(U \ N(K2)) ∪ K2 is an opti-
mal solution for U of the set cover problem (U∗, {N(u) |
u ∈ V (G) \ U∗}). In fact, an optimal solution for U must
contain K2 to cover K1, which can be covered only by
K2. The remaining vertices of the optimal solution are in
V (G)\(U(v)∪V (K(v))) and optimally cover U \N(K2);
this is the requirement of SC′(U \N(K2)). Thus, the solu-
tions of the set cover problems can be obtained in the same
running time. Thus, we can apply the same branching rule
as INCLUDE model, which leads to Theorem 8.

Theorem 8. PAU-VC under EXCLUDE or MIXED model
can be solved in O∗(3.6791τ ) time.

Since the vertex cover number of a bipartite graph is at
most n/2, PAU-VC for bipartite graphs under any model
can be solved in O(1.9181n) time.

Trees
In this section, we give an exponential upper bound
O(1.4143n) of the time complexity of PAU-VC for trees.

We first give a generic recursive algorithm for PAU-VC of
trees in Algorithm 5. Here, “generic” means that it describes
the common actions for INCLUDE and EXCLUDE models.
Because of this, lines 10 and 13 are described in ambiguous
ways, which will be given later. The algorithm is so-called a
divide and conquer algorithm. Lines from 2 to 5 handle the
base cases. The following easy lemma might be useful.

Lemma 3. A star with at least two leaves (i.e., K1,l with
l ≥ 2) has the unique optimal vertex cover. A star with one
leaf (i.e., a single edge) has two optimal vertex covers.

At line 9, choose a dividing point v ∈ V (T ) as a pre-
assigned vertex, and after that, apply the algorithm to the di-
vided components. Here, notice that the chosen vertex may
not be included in any minimum feasible pre-assignment for
T . This is the reason why we try all possible v, which guar-
antee that at least one v is correct, though it causes recursive
calls for many subtrees of T . By using memoization, we can
avoid multiple calls for one subtree; the number of subtrees
appearing in the procedure dominates the running time. In
the following subsections, we estimate an upper bound on
the number of subtrees that may appear during the proce-
dure in Algorithm 5 for each pre-assignment model.

In the INCLUDE Model, we slightly change lines 9 and 10
in Algorithm 5 as follows:

for all v ∈ V (T ) with d(v) > 1 do
Let T1, . . . , Ti be the connected components of T − {v}.

This change is safe by the following lemma.

Algorithm 5: Exact algorithm for trees

1: function PAU-TREE(T ) ▷ Return (τ(T ), opt(T ))
2: Compute an optimal vertex cover of T
3: if T has a unique optimal vertex cover then
4: Return (τ(T ), 0)
5: else if T is a single edge then
6: Return (1, 1)
7: else
8: k ← |V (T )|
9: for all v ∈ V (T ) do ▷ v is chosen for a pre-

assignment
10: Let T1, . . . , Tj be the connected components

of the graph obtained by pre-assigning v.
11: for i = 1, . . . , j do
12: (ai, bi)← PAU-TREE(Ti)
13: if

∑
i ai meets τ(T ) then

14: k′ ← 1 +
∑

i bi ▷ “1” comes from |r| =
1

15: if k′ < k then
16: k ← k′

17: Return (τ(T ), k)

Lemma 4 (⋆). Let T be a tree, which is not a star. Then,
there exists a minimum feasible pre-assignment Ũ for T in
the INCLUDE model, where Ũ does not contain a leaf vertex.

The if-condition at line 13 is also changed to
∑

i ai =
τ(T )− 1 so as v to be included in the vertex cover.

Now we give an upper bound on the number of subtrees
of n vertices that may appear during the procedure in Algo-
rithm 5. To make it easy to count subtrees, we fix a root; the
number of subtrees is upper bounded by n times an upper
bound of the number of rooted subtrees. Furthermore, we
introduce the notion of isomorphism with a root to reduce
multiple counting.

Definition 1. Let T (1) = (V (1), E(1), r(1)) and T (2) =
(V (2), E(2), r(2)) be trees rooted at r(1) and r(2), respec-
tively. Then, T (1) and T (2) are called isomorphic with re-
spect to root if for any pair of u, v ∈ V (1) there is a bijec-
tion f : V (1) → V (2) such that {u, v} ∈ E(1) if and only if
{f(u), f(v)} ∈ E(2) and f(r(1)) = f(r(2)).

For T = (V,E) rooted at r, a connected subtree T ′ rooted
at r is called a rooted I-subtree of T , if T ′ is T itself, or there
exists a non-leaf v such that T ′ is the connected component
with root r of T − {v}. Note that the graph consisting of
only vertex r can be a rooted I-subtree.

Lemma 5 (⋆). Any tree rooted at r has O∗(2n/2) (=
O(1.4143n)) non-isomorphic rooted I-subtrees rooted at r,
where n is the number of the vertices.

Lemma 5 leads to the running time for INCLUDE model.
By applying a different but similar argument, we achieve the
same running time for EXCLUDE model

Theorem 9. PAU-VC for trees under any model can be
solved in time O∗(2n/2) = O(1.4143n).
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