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Abstract

Discrete optimization belongs to the set of NP-hard
problems, spanning fields such as mixed-integer
programming and combinatorial optimization. A current
standard approach to solving convex discrete optimization
problems is the use of cutting-plane algorithms, which
reach optimal solutions by iteratively adding inequalities
known as cuts to refine a feasible set. Despite the existence
of a number of general-purpose cut-generating algorithms,
large-scale discrete optimization problems continue to suffer
from intractability. In this work, we propose a method for
accelerating cutting-plane algorithms via reinforcement
learning. Our approach uses learned policies as surrogates
for NP-hard elements of the cut generating procedure
in a way that (i) accelerates convergence, and (ii) retains
guarantees of optimality. We apply our method on two types
of problems where cutting-plane algorithms are commonly
used: stochastic optimization, and mixed-integer quadratic
programming. We observe the benefits of our method when
applied to Benders decomposition (stochastic optimization)
and iterative loss approximation (quadratic programming),
achieving up to 45% faster average convergence when
compared to modern alternative algorithms.

Introduction
A large number of problems require discrete decisions.
Examples include the decision to purchase an item in
whole units, schedule tasks with finite resources, or plan
the shortest route through given locations. Even seemingly
simple problems can become incredibly challenging to solve
when they necessitate discrete decisions (Parker and Rardin
2014). In some cases, discrete optimization problems are
provably unsolvable in polynomial time, e.g., it is known
that integer programs with quadratic constraints are not
solvable at all by Turing machines (Jeroslow 1973). Indeed,
problems that would otherwise take fractions of a second to
solve can take hours, if not days in discrete space.

When faced with discrete decisions, heuristic methods
such as rounding can offer fast solutions, but at an
unknown cost of sub-optimality and if not careful,
infeasibility. Due to these issues, there is a strong desire to
generate naturally integer, and provably optimal solutions.
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General-purpose solvers typically rely on a mixture of
branch-and-bound and cutting-plane methods to achieve this
(Bonami et al. 2008). Despite advancements in cutting and
branching techniques, large-scale problems remain heavily
dependent on domain-specific algorithms that exploit
problem structure for more efficient convergence. In this
paper, we propose a procedure that leverages reinforcement
learning for accelerating cutting-plane algorithms. We focus
on the domain-specific cutting-plane algorithms of Benders
decomposition (applied to stochastic optimization) and a
cutting-plane method for solving regression problems with
L0 regularization. Our proposed method is generalizable
to any cutting-plane procedure and not isolated to the two
examples given.

The first of the two cutting-plane procedures we consider,
Benders decomposition (BD), is a method that aims
to exploit a unique block structure commonly found
in stochastic optimization (SO) problems. Considering
each scenario as a unique block, the global problem is
decomposed into a master problem (MP) and a collection
of scenario-specific sub-problems (SP). Each SP ingests
decisions from the MP, and shares loss information back to
the MP in the form of constraints. Iteratively, the MP gains
a better understanding of global loss exhibited by each SP,
and eventually converges (Benders 1962).

The second procedure we enhance is aimed at solving
machine learning problems with sparsity enforced via
an L0 regularization term. In settings such as medical
imaging (Daducci et al. 2014), economics (Fan, Lv, and
Qi 2011), or causal learning (Idé et al. 2021), sparsity
via L0 regularization plays a critical role. Furthermore,
it has been shown that regularization techniques such
as lasso (L1), ridge (L2), and elastic-net (L1, L2) can
improve out-of-sample performance (Zou and Hastie
2005). Typically, sparse regression is implemented via
an L1 regularization term (i.e. lasso), eliminating the
necessity to optimize over support of the coefficient set.
Louizos, Welling, and Kingma (2018) note that using L0

penalties in parametric models is generally intractable
due to non-differentiability and the combinatorial nature
of cardinality regularization. Despite its complexity,
the importance of L0 regularization is advocated
for by Bertsimas, King, and Mazumder (2016), who
argue that using L1 regularization to achieve sparsity

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20786



results in undesirably biased coefficient estimates by
disproportionately affecting larger coefficients in the
set. To solve least-squares regression problems with L0

regularization, we introduce a cutting-plane algorithm that
iteratively optimizes the sum of penalized support, and a
proxy variable bound via sub-gradient approximations of
the least-squares loss.

Both of the cutting-plane procedures we consider suffer
from three easily observed limitations. First, in discrete
space they rely on an NP-hard mixed-integer master
problem (MIMP). Second, they operate by abstracting
the loss function to a proxy variable, bound from below
(assuming minimization without loss of generality) by
SP constraints. This can lead to solutions being highly
sub-optimal until loss is well represented via constraints.
Third, with each iteration an SP generates sub-gradients that
are passed to the MIMP as constraints (i.e. cuts), a process
which linearly scales the complexity of the MIMP.

Related Work
Acknowledging the overall benefit and potential of
cutting-plane algorithms, accelerating these methods has
become a compelling research problem. Magnanti and Wong
(1981) proposed pareto-optimal cut selection for BD. In
production routing applications, Adulyasak et al. (2015)
implement lower-bound lifting inequalities to tighten initial
lower bounds, and exploit scenario grouping to reduce
complexity at each iteration. Crainic et al. (2016) aid initial
iterations by including an informative subset of scenarios
within the MIMP. Lee et al. (2021) offer a machine
learning approach to predict constraint importance; retaining
only important cuts and limiting MIMP complexity. Each
of these proposals has shown computational benefits, but
remain solely dependent on the expensive MIMP to generate
successive solutions. In contrast, Poojari and Beasley (2009)
replace the MIMP of BD with a genetic algorithm to produce
faster feasible solutions. Although the heuristic produces
fast MP solutions, it is still reliant on SP approximations
to obtain scenario loss, and offers feasible as opposed to
certifiably optimal solutions. We refer to Rahmaniani et al.
(2017) for a review of BD methods.

Machine learning methods have been explored for
mixed-integer programming and combinatorial optimization
(CO). We refer to Mazyavkina et al. (2021) for a review
of RL for CO. Nair et al. (2020) use neural networks
trained via imitation learning to improve branch-and-bound
methods for solving MIPs. RL has been used to solve large
combinatorial problems, achieving performance close to
expert implementations, as shown by Delarue et al. (2020)
for notoriously challenging capacitated vehicle routing
problems. Recent work has explored the use of RL to
improve the performance of modern CO solvers, which
typically rely on human-designed heuristics tuned with
experience or data. In this sense, RL for cut selection in
Integer Programs (IPs) was proposed by Tang et al. (2020),
and hierarchical RL for cut selection in MILPs was proposed
by Wang et al. (2023).

In our work, a surrogate to the MIMP generates fast
solutions after learning pseudo-optimal decisions via RL in

similar environments. At varying rates, the MIMP is still
run to retrieve the certificate of optimality offered. Our
contributions are as follows:
• A generalized method of accelerating cutting-plane

algorithms that retrieves optimal solutions while
drastically reducing run times.

• Three surrogate solution selection methods, including
one that uses cuts to inform selection of surrogate MP
solutions, offering a further unification of the surrogate
MP within the cutting-plane algorithmic framework.

• Empirical evaluation of our approach on two different
cutting-plane algorithms. We offer explicit formulations,
leverage the learned policy of an RL agent as our
surrogate MP in both cases, and provide results showing
up to a 45% reduction in run-time against modern
alternative methods.

Background
We now discuss relevant background on BD, cutting-planes
for L0 regression, and RL.

Benders Decomposition
A widely used form of stochastic optimization is Sample
Average Approximation (SAA). In essence, SAA aims to
approximate loss over the distribution of possible scenarios
using Monte-Carlo simulation. In SAA, R scenarios
are simulated, with each simulation yielding its own
deterministic SP with a loss function f(x,w,Dr), where x is
a set of global decisions (universal across all scenarios), w is
a cost vector, and Dr is a set of scenario-specific parameters.
The total loss is computed as the average across scenarios,

ℓ(x) =
1

R

∑
∀r∈R

f(x,w,Dr) (1)

To combat scalability issues as the number of simulations
grow, decomposition methods are commonly employed to
solve SAA. Here we introduce the principles of Benders
decomposition. Consider an SAA problem of the form:

min
x,y

cTx+
1

R

∑
∀r∈R

wT yr (2)

s.t.
Ax = b (3)

Bx+Dryr = g, ∀r ∈ R (4)
x ∈ Z, yr ∈ Z+, ∀r ∈ R (5)

where x is our set of global decisions, A, b, and B are
parameters that define constraints on x, c is the cost of
global decisions, Dr are scenario-specific parameters, yr is
a set of decisions made independently within each scenario,
g constrains a combination of global and scenario-specific
decisions, and w is the cost of each scenario-specific
decision. In this formulation, wT yr is equivalent to (1). The
first step of BD is to separate global decision variables x and
scenario specific decision variables yr, yielding a MP:

{min
x,θ

cTx+
1

R

∑
∀r∈R

θr : Ax = b, x ∈ Z+} (6)
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and a collection of R SPs, where ∀r ∈ R:

{min
yr

wT yr : Dryr = g −Bx∗, yr ∈ R+} (7)

The SPs ingest a fixed x∗ based on the solution to (6), and
are solved to obtain optimal SP decisions yr. Note that BD
introduces a set of auxiliary variables θr, ∀r ∈ R to the MP
(6). This auxiliary variable, frequently called the recourse
variable, is responsible for tracking an approximation of the
SP loss that has been moved to (7). Let us assume the SP
is always feasible. This is not a necessary assumption, but
simplifies the following description of BD.

Integrality on yr has been relaxed in the SP. This
relaxation is necessary for BD, and is only possible when (i)
the SP variables were not discrete to begin with, or (ii) the
decomposition results in a totally-unimodular SP structure.
Taking the dual of the SP yields:

{max
qr

qTr (g −Bx∗) : qTr Dr ≤ w} (8)

The dual SP has three essential properties. First, through
strong duality the optimal value of (8) is equivalent to the
optimal value of (7) at x∗. Second, the objective function (8)
is linear with respect to the MP decisions x. And lastly, with
the optimal dual values of q∗r we can establish

{min
yr

wT yr : Dryr = g −Bx} ≥

q∗Tr (g −Bx), ∀x ∈ R, ∀w ∈ R (9)

via weak duality. With these traits established, we see that
the optimal dual SP objective q∗Tr (g −Bx) can be included
as a valid constraint on θr in the MIMP. These constraints
serve as sub-gradient approximations of the SP loss. For
each SP solution, we can update the MIMP with the valid
constraint of θr ≥ q∗Tr (g − Bx) and re-solve for a new
x. This process is repeated until the SP’s do not offer any
strengthening constraints on θr, indicating convergence and
full approximation of SP loss. Figure 1 offers a visual
representation of this process, which translates to the L0

regularization application that we introduce next.

Figure 1: Iterative procedure of Benders decomposition,
alternating between a MIMP (6) and SP (8).

Cutting-Planes for L0 Regularized Regression
In statistical analysis and machine learning, high-dimension
datasets may necessitate the use of methods that distinguish
a meaningful feature subset. Sparse regression aims to
minimize loss while limiting support over the coefficient
set, represented by β. Using L0 regularization encourages

this sparsity by penalizing support over β. Consider data
given by the general form y = f(X,β) + ϵ, where f is a
possibly nonlinear function. The problem of L0 regularized
regression

min
β

||f(X,β)− y||22 + λ
∑
∀i∈p

||βi||0 (10)

can be cast as a mixed-integer quadratic program MIQP,
where P represents the number of features and M is a
sufficiently large constant:

{min
β,z

||f(X,β)− y||22 + λ
∑
∀i∈p

zi : |βi| ≤ ziM ∀i ∈ P,

β ∈ RP , z ∈ {0, 1}P } (11)
MIQPs of the form (11) struggle in high-dimensional

settings, inspiring our use of cutting-plane procedures. To
do this, we can reframe (11) as a linear program:

{min
β,θ,z

θ + λ
∑
∀i∈p

zi : |βi| ≤ ziM ∀i ∈ P, θ ≥ 0,

β ∈ RP , z ∈ {0, 1}P , θ ∈ R} (12)
where θ serves as a proxy variable for the convex and

differentiable loss ||f(X,β) − y||22. For each iteration n
of (12) we compute the loss ln and sub-gradient ∇g(β(n))
to constrain θ with a lower bound in the form of a linear
constraint. If we denote the polytope defined by (12) as P0,
after n iterations the polytope Pn is restricted to Pn−1 ∪
{β, θ : θ ≥ ln + ∇g(β(n))(β − β(n))}. This process
terminates when the gap between ln and the evaluation of
the objective from (12) over Pn is within a tolerance e.

Reinforcement Learning
RL is a framework for solving sequential decision-making
problems, formulated as a Markov Decision Process (MDP)
(Sutton and Barto 2018). Our proposed framework requires
casting the optimization problem at hand as an MDP, i.e.,
decision variables form the action space and the negative of
the cost function is the reward function. Formally, MDPs
are defined as a 4-tuple ⟨S,A, T ,R⟩ where S is the state
space, A is the action space, T is the set of transition
probabilities from states st to st+1 upon taking action at,
and R is the reward function. We note how T and R may
be non-deterministic, and therefore MDPs may be used
to model problems pertaining SO. A discount factor γ is
typically introduced to discount rewards. We denote a policy
parametrised by ϕ as πϕ : S → A.

RL algorithms may be categorized as value-based or
policy gradient methods. Value-based methods learn a
value function or action-value function, from which optimal
actions can be implicitly obtained, whereas policy gradient
methods directly optimize an explicit representation of
the optimal policy. The value function and action-value
functions for episodic MDPs with horizon T are given by:

V π(s) = Eπ

[
T∑

k=t

γkrt+k+1|s = st

]
(13)
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Qπ(s, a) = Eπ

[
T∑

k=t

γkrt+k+1|s = st, a = at

]
(14)

where it can be seen that the action-value function Qπ

is only practically applicable for discrete action spaces (or
discretizations of continuous action spaces), and is directly
susceptible to the curse of dimensionality. Alternatively,
policy gradient methods update policy parameters ϕ via
an estimate of the policy gradient, as first introduced by
Sutton et al. (1999). Policy gradient methods can be used
for discrete or continuous action spaces, and are based on
some expression of the policy gradient:

∇ϕE

[
T∑

t=0

rt

]
≈ E

[
T∑

t=0

Ψt∇ϕ log πϕ(at|st)

]
(15)

where Ψt may be the (discounted) returns of the
trajectory, the action-value function, the advantage function,
temporal-difference residual, or else, yielding different
policy gradient algorithms (Schulman et al. 2016). Proximal
Policy Optimization (PPO) is a powerful policy gradient
algorithm that avoids detrimentally large policy updates
proposed by Schulman et al. (2017), where a surrogate
objective to (15) is used based on a probability ratio which
is clipped whenever |π

new
ϕ (at|st)

πold
ϕ (at|st)

| > ϵ for some small

ϵ, providing a lower bound on the unclipped objective.
Consequently, PPO provides stable updates, whilst being
on-policy and thus susceptible to low sample efficiency
compared to off-policy algorithms such as Q-learning.
Compared to value-based methods, using an explicit
parametric policy is a more natural choice for solving MDPs
for which the optimal policy may be stochastic, as the policy
can be a parametric stochastic function, whereas value-based
methods require crafting a sampling strategy (e.g. ϵ-greedy)
to generate a stochastic policy from a value function. Sutton
et al. (1999) discussed advantages of stochastic policies in
contrast to policies induced by value functions.

Actor-critic methods combine the benefits of value-based
methods and policy gradients. Value estimates can be used
as a baseline for advantage estimates (Sutton et al. 1999).
Modern actor-critic algorithms frequently use Generalized
Advantage Estimation (GAE), an exponentially-weighted
advantage estimator that addresses the bias-variance tradeoff
(Schulman et al. 2016). We use actor-critic PPO with GAE.

Accelerating Cutting-Plane Algorithms
We now introduce our proposed acceleration method. First,
we offer specifics on how a surrogate is used in place of the
MIMP. Then, we introduce three possible mechanisms for
leveraging the surrogate. Lastly, we offer a more thorough
coverage of the theoretical benefits that may be provided
by a surrogate, and known deficiencies of cutting-plane
methods that it addresses. We focus on surrogates learned
via RL, but we note that our proposed method is agnostic to
the nature of the method used to learn the surrogate policy.

Surrogate-MP
Recall the iterative procedure outlined in Figure 1. As is the
case in our two examples, we assume the sub-gradient can

Figure 2: Iterative procedure of Surrogate-MP.

be computed efficiently (as a linear problem in the case of
BD, and in closed form in the case of L0 regularization).
However, each case calls back to an NP-hard MIMP, with
complexity that scales linearly with the number of iterations.
Given these dynamics, there is a strong desire to (i) increase
the speed of each MP iteration and (ii) decrease the total
number of calls to the MIMP required. We achieve both
results by periodically introducing a faster surrogate in place
of the MIMP (Figure 2). This surrogate can be any policy
that has learned to map the input space to the discrete
decision space with the objective of minimizing the problem
loss or cost.

Note in this modified schema that with each iteration, the
decision to use the surrogate in place of the MIMP is drawn
from a Bernoulli distribution with a control parameter Γ. If
a value of 1 is returned from the Bernoulli distribution, the
surrogate is used to generate global decisions. Otherwise,
the standard MIMP is run and the optimality gap can be
confirmed. Regardless of whether the MIMP or surrogate
are used, global decisions are passed to the SP and loss
approximating cuts are added to the iterative process.

Leveraging Surrogate Solutions
The solutions produced by a surrogate can be used in a
variety of ways, and we propose three selection mechanisms.
These variants are aimed at answering: (i) How can we
use the surrogate to improve convergence? (ii) If surrogate
actions are non-deterministic, how can we decide which
actions are best to use? The three methods we propose
are greedy selection, weighted selection, and informed
selection. Each of these methods assume the surrogate has
generated a batch of stochastic trajectories of actions for B
episodes, i.e. a batch of B distinct solutions, each with loss
ℓb equal to the negative returns of the trajectory in the MDP.

Greedy Selection This method selects the best performing
solution within a batch, i.e. argminb(ℓb). In the case of BD
we evaluate the solution against an expected outcome, as
performance cannot be deterministically evaluated.

Weighted Selection Rather than selecting actions based
on expected performance, we can perform weighted random
sampling. We use the loss of each solution ℓb to define a

probability mass p(b) =
1
ℓb∑

∀b∈B
1
ℓb

for random sampling.
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Informed Selection The final proposal incorporates
feedback from the constraint matrix on θ at a given
iteration. The benefit of utilizing the constraint matrix to
select surrogate solutions is that these constraints inherently
motivate exploration to either (i) minimal or (ii) poorly
approximated regions of the convex loss. Given final
convergence is defined by a binding subset of these
constraints, it is desirable to explore these regions.

We introduce the constraint matrix Ar ∈ RI×N which
contains the sub-gradient approximations imposed on θr,
and a row vector of constant values cr ∈ RB that is added
to each sub-gradient approximation. Recall r ∈ R, and R
is the number of scenarios for BD, while R = {1} for
L0 regularization. I refers to the iteration number of the
cut-generating algorithm, and N refers to the number of
MP decision variables. Each iteration generates a new set of
sub-gradient approximations which are added to Ar. These
are the same sub-gradients that are applied to θr in the
MP, and are generated using the SP. On a given iteration,
we have a batch of B solutions that have been generated
by the surrogate. Decisions for this batch are represented
by matrix D ∈ ZN×B . We begin by computing the loss
approximations of each gradient, for each of the B solutions.
This is given by Lr ∈ RI×B , which we define as:

Lr = Ar ·D + (cr · 11×I)T (16)

The Lr matrix contains approximations of the SP loss
for each of the B solutions, generated by each of the I
constraints currently placed on θr. We can now take the
maximum value for each column B as the approximated cost
of solution b. In LP terms, this maximum value relates to
the binding constraint on θr in the MIMP, and is thus our
best approximation of SP cost at that point. We represent
this approximation (ℓ̂b,r) as:

ℓ̂b,r = max
∀i∈I

(Lr)i,b (17)

Now we fully approximate the expected loss for each of
the M solutions by taking an average across all r ∈ R, and
adding the fixed loss of that decision (denoted fb):

ℓ̂b =
1

R

∑
∀r∈R

ℓ̂b,r + fb (18)

The informed selection then solves the problem
argminb ℓ̂b, which is taken as our MP solution, and passed
to the SP for constraint generation.

Benefits of Surrogate-MP
The benefits of using a learned surrogate in place of the
MIMP are based on two key observations:
1. The time required to generate solutions from a learned

surrogate (e.g. inference on a neural net) is negligible
compared to the time required to solve a large-scale MIP.

2. The surrogate has learned to produce actions from past
experience. As a result, SP loss is expressed in surrogate
solutions regardless of how well θr approximates SP loss.
This means that even at early iterations, the surrogate
solutions will be highly reflective of SP loss.

The first benefit is fairly self-explanatory; we desire faster
MP solutions, and the surrogate provides them. The second
benefit is more nuanced and worth expanding. We recall the
general form MIMP (6), where θr offers an approximation
of SP loss that is refined through linear constraints generated
by (8). It is well observed that this approximation can
converge quickly if global decisions are localized to the
optimal region, but it can also be very slow if global
decisions are far from the optimal region or if cuts poorly
approximate the loss (Crainic et al. 2016; Baena, Castro,
and Frangioni 2020). At initialization, θr has not received
any feedback from the SP, and is instead bound by some
heuristic or known lower bound (commonly θr ≥ 0 for
non-negative loss). Given the lack of information initially
imparted on θr, the MP generates global solutions that lack
consideration of SP loss and can be very distant from the
optimal region. Similar to a gradient based algorithm with
a miss-specified learning rate, this can lead cutting-plane
methods such as BD to oscillate around the minimal region
or converge slowly, wasting compute and adding complexity
with minimal benefit to the final solution (Baena, Castro, and
Frangioni 2020).

The surrogate mitigates this major issue by generating
global decisions that reflect an understanding of their
associated SP loss without requiring the MP to have
strong loss approximations on θr. As a result, initial
global decisions generated by the surrogate are localized
to the minimal region and cuts can quickly approximate
the minimum of the convex loss. These two fundamental
benefits are the basis for a 30%-45% reduction in run-times,
observed in experiments within the two domains that follow.

Experiments
We evaluate our proposed acceleration method on two
distinct cutting-plane algorithms in separate domains.
The first application displays an acceleration of Benders
decomposition, using a stochastic inventory management
problem consisting of a basic two-stage decision process,
reflecting the MP/SP structure displayed in Figure 1. The
second algorithm is an L0 regularized regression problem as
described in the Background section.

Inventory Management Problem (IMP). In the
proposed IMP, we assume the required solutions must (i)
choose a delivery schedule from a finite set, (ii) decide
an order-up-to amount (where order equals order-up-to
minus current inventory) for each scheduled day, and (iii)
place costly emergency orders if demand cannot be met
with current inventory at any time. We assume there is
a requirement to satisfy all demand using either planned
schedules, or more costly just-in-time emergency orders.
Demand estimates are generated using a forecast model with
an error term from an unknown probability distribution.

To model the IMP as a SO mixed-integer problem we
introduce the following notation: let T be the set of days
t, R the set of scenarios r, S the set of schedules s,
holding cost of an item (per unit-of-measure, per day) h,
cost of emergency services (per unit) e, penalty applied to
over-stocking (per unit over-stocked) q, and fixed cost of a
schedule fs . The decision space is defined by seven sets
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of variables, some of which are: the units of holding space
required to stock the inventory ptr ∈ Z+, the required
emergency order quantity otr ∈ Z+, and the number of
units that inventory is over-filled by vtr ∈ Z+ (all defined
∀t ∈ T, ∀r ∈ R). The general formulation of our IMP is:

min
∑
∀s∈S

(usfs) +
1

R

∑
∀r∈R

∑
∀t∈T

(ptrh+ otre+ vtrq) (19)

subject to several constraints. Of primary importance is a set
of constraints that link the volume of inventory on hand (in
each SP) to the scheduling and order-up-to decisions (MP).
The resultant decomposition consists of a master problem
objective

min
∑
∀s∈S

(usfs) +
∑
∀r∈R

θr (20)

and sub-problem objective

min
∑
∀t∈T

(ptrh+ otre+ vtrq), ∀r ∈ R (21)

The SP decisions are constrained by MP scheduling and
order-up-to decisions, and we take its dual to generate cuts
on θr in the MP. See Mana et al. (2024) for full details.

As previously mentioned, we leverage policies learned
via RL as our Surrogate MPs for both problems. In order
to do so, we cast the problems into MDP formulations, and
train neural networks (multi-layer perceptrons) as our policy
and value functions. The policy networks return log-odds for
discrete actions from which stochastic actions are sampled.
We now discuss the formulation for the IMP problem, see
Mana et al. (2024) for further details. The MDP transitions
by selecting a schedule first, and subsequently setting order
quantities as required by the schedule, reaching termination
at the end of the temporal horizon. The state space includes
balance, capacity, current day, cost parameters, forecasted
demand (mean and standard deviation) per day, residuals
(between forecasted and actual demand) per day, schedule
selected, previous order quantities, and which day the agent
is ordering for. The action space includes the schedule
decision, and the order quantity decision. Note that there is a
hierarchical structure to our IMP problem, in that a schedule
decision must be made at the beginning of the horizon, and
subsequently only order quantity decisions are to be made
for each day within the horizon. The reward function is given
by the negative of the cost defined in (19). We use action
masking on the policy network outputs in order to enforce
constraints on scheduling and order quantity decisions as
required during MDP transitions.

We perform experiments on 153 independent cases of our
IMP using real-world data. Each experiment was performed
with the following parameters: 500 scenarios (R = 500),
28 day horizon (T = 28), and 169 possible schedules
(S = 169). The baseline implementation of BD includes
accelerations such as scenario group cuts (Adulyasak et al.
(2015)) and partial decomposition (Crainic et al. (2016)). We
do not compare against a generic implementation of BD due
to tractability limitations.

Regularized Regression (RR). In this problem, the
objective is to minimize the sum of a convex loss function

and the penalized support of a feature set. We follow
the cutting-plane procedure for L0 regularized regression
outlined in the Background section, computing ∇g(β) in
closed form for the selected sparse feature set. In our
experiments, we focus on linear regression problems, i.e.
f(X,β) = XTβ in equation 10.

The MDP is formulated to allow for selecting one feature
at a time. The state space includes coefficients β for
each feature assuming all features were to be used for
regression and their corresponding p-values (which do not
change as the MDP transitions), as well as coefficients
for the currently chosen sparse feature set β|z and the
corresponding multi-hot encoding z for the currently chosen
features (which do change as the MDP transitions). The
action space consists of the categorical distribution for all
features. The reward function is given by the change in the
MSE of the residuals (||f(X,β|z) − y||22) at each step as z
grows. We use action masking to mask previously chosen
features within an episode. The episode terminates when the
increase in explained variance when adding a feature is less
than the increase in L0 penalty for the added feature.

We perform experiments on 250 regularized regression
problems using synthetic data y = XTβ + ϵ with Gaussian
noise ϵ (data generation process is outlined in Mana et al.
(2024)).

Results
We evaluate performance against a baseline for each
problem. A modern accelerated version of BD is used as a
benchmark for the IMP, and the cutting-plane algorithm we
describe in the Background section is used for RR. All MIPs
and LPs are solved using the CPLEX commercial solver.
Experiments were run on a 36 CPU, 72 GB RAM Linux
machine. For every implementation of Surrogate-MP, we
deactivate the surrogate after the optimality gap is less than
5%, to focus on retrieval of optimality using the MIMP.

IMP. All three selection methods, when ran with
Γ = 0.75, produced faster convergence than the baseline
model: weighted selection performed 14.96% faster than
the baseline, greedy selection achieved 19.43% faster
performance, and informed selection performed 30.45%
faster. Furthermore, with informed selection Surrogate-MP
performed faster on over 88% of instances (convergence
rates in Figure 4, instances of faster convergence in Table 1).
To further investigate the strong performance of informed
selection, we experimented with Γ = 0.25, 0.5, and 0.75.
Γ = 0.75 was fastest at 30.45% acceleration, Γ = 0.5
converged 21.24% faster, and Γ = 0.25 realized 11.84%
faster convergence (Figure 3, Figure 5). Empirically, RL
solutions produced results with 14.73% higher cost than
the optimal results produced by Benders decomposition
at convergence (average across all 153 instances). This
indicates the RL heuristic solutions are pseudo-optimal,
whilst being significantly faster to obtain.

RR. For Γ = 0.75, greedy selection resulted in 45.31%
acceleration, weighted selection in 44.41%, and informed
selection in 37.97%. It is worth noting that RR is a less
partially observable MDP than the IMP is. This stronger
observability may explain why the RL surrogate benefits
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Surrogate-MP No Surrogate

Inventory Management 135 (88.24%) 18 (11.76%)
Regularized Regression 214 (85.60 %) 36 (14.40%)

Table 1: Instances of faster convergence when using
RL-surrogate with the best performing configuration (Γ and
selection method), compared to baseline of no surrogate.

less from information sharing via the constraint matrix Ar.
The convergence rates for each selection method are shown
in Figure 4. For consistency, we vary the Γ parameter with
informed selection and inspect its impact on convergence. In
contrast with the IMP, we observe Γ = 0.5 results in fastest
convergence, accelerating RR by 42.94% (Figure 3). For
RR, varying Γ produced much less variance in convergence
than in the IMP. Similar to the IMP experiments, we observe
Surrogate-MP has outperformed the baseline algorithm
across most RR instances: Surrogate-MP achieved better
convergence rates on up to 85.60% of instances (Table 1).
Lastly, we compare L0 vs L1 regularization with an L1

penalty (λ) of 0.1 and 0.5. The two L1 parameter settings
are intended to achieve accurate parameter estimation, and
effective coefficient recovery (respectively). With λ =
0.1 for both L1 and L0, L0 yields significantly improved
coefficient recovery (by 81%), and parameter estimation
(by 34%), while L1 yields marginally better MSE (by 2%).
With λ = 0.5, L1’s coefficient recovery improves, but both
MSE and parameter estimation degrade considerably. These
results display the benefits of L0 regularization with respect
to unbiased feature reduction. Metric definitions and a table
with full results can be found in Mana et al. (2024).

Conclusion & Future Work
We use RL to learn surrogates in place of MIMPs for
accelerating cutting-plane algorithms, achieving drastic
reduction in convergence times. Our proposed method is
application agnostic, retrieves certificates of optimality,
and can utilize any surrogate capable of generating MP
solutions. We provide formulations in two different domains
– Benders decomposition applied to inventory management
and a cutting-plane algorithm for L0 regularized regression
– and provide results showing superiority of our approach in
88.24% and 85.60% of instances with a 30.45% and 45.31%
reduction in average run-time respectively.

A promising direction for future work would be to
design stronger integration between the surrogate, SP,
and MP. Our informed selection method is a first step
in this direction, and realized promising results. Some
additional opportunities we leave unexplored would be
to directly inform the surrogate on the strength of past
solutions, offer sub-gradient information as a feature, or
redesign the surrogate’s objective function to reward the
strength of subsequent cuts as opposed to mirroring the
MP objective directly. We are additionally eager to observe
the performance of Surrogate-MP on other cutting-plane
algorithms and optimization problems.

(a) Inventory Management (b) Regularized Regression

Figure 3: Convergence instances of BD accelerated by an
informed Surrogate-MP, with different surrogate usages.

(a) Inventory Management (b) Regularized Regression

Figure 4: Convergence rates of a baseline BD, and
Surrogate-MP (greedy, weighted, informed ) and Γ = 0.75.

(a) Inventory Management (b) Regularized Regression

Figure 5: Convergence rates of BD accelerated by an
informed Surrogate-MP with different surrogate usages.
Surrogate-MP deactivated at 5% as indicated by dotted line.
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