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Abstract

As a classical NP-hard problem and the topic of the PACE
2022 competition, the directed feedback vertex set problem
(DFVSP) aims to find a minimum subset of vertices such
that, when vertices in the subset and all their adjacent edges
are removed from the directed graph, the remainder graph is
acyclic. In this paper, we propose a threshold-based respon-
sive simulated annealing algorithm called TRSA for solving
DFVSP. First, we simplify the problem instances with two
new reduction rules proposed in this paper and eight reduc-
tion rules from the literature. Then, based on a new solution
representation, TRSA solves DFVSP with a fast local search
procedure featured by a swap-based neighborhood structure
and three neighborhood acceleration strategies. Finally, all
these strategies are incorporated into a threshold-based re-
sponsive simulated annealing framework. Computational ex-
periments on 140 benchmark instances show that TRSA is
highly competitive compared to the state-of-the-art methods.
Specifically, TRSA can improve the best known results for 53
instances, while matching the best known results for 79 ones.
Furthermore, some important features of TRSA are analyzed
to identify its success factors.

Introduction
The directed feedback vertex set problem (DFVSP) is a clas-
sical discrete optimization problem and has been proven to
be NP-hard (Yannakakis 1978). It involves obtaining a di-
rected acyclic graph by removing as few vertices as possible
from a given directed graph. DFVSP has wide applications
in various domains, ranging from Very Large Scale Integra-
tion (VLSI) circuit design (Hudli and Hudli 1994; Oren-
stein, Kohavi, and Pomeranz 1995), partial scan design of
circuit (Lee and Reddy 1990), program verification (Sey-
mour 1995), deadlock resolution (Jain, Hajiaghayi, and Tal-
war 2005), network attack (Mugisha and Zhou 2016), con-
straint satisfaction (Bar-Yehuda et al. 1994), Bayesian infer-
ence (Bar-Yehuda et al. 1998), tournament (Ramanujan and
Szeider 2017; Zehavi 2023), and so on.

DFVSP is the topic of the Parameterized Algorithms
and Computational Experiments (PACE) 2022 competition,
which consists of two tracks: Exact track and heuristic
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track. As a classical combinatorial optimization, DFVSP has
been studied for nearly 60 years (Lempel and Cederbaum
1966). The solution methods of DFVSP can be mainly cat-
egorized into exact algorithms, approximation algorithms,
and metaheuristic algorithms. Specifically, Smith and Wal-
ford (1975) presented a graph partitioning technique, which
was the first algorithm in the literature to find an opti-
mal solution for DFVSP. Lin and Jou (2000) used three
new powerful reduction rules, and developed an exact algo-
rithm based on the branch-and-bound framework. Qian, Ye,
and Pardalos (1996) designed a non-polynomial pseudo ε-
approximate algorithm for solving DFVSP. Pardalos, Qian,
and Resende (1998) developed a greedy randomized adap-
tive search (GRASP) algorithm for solving DFVSP. Based
on Pardalos, Qian, and Resende (1998), Festa, Pardalos,
and Resende (2001) presented FORTRAN subroutines using
GRASP for solving DFVSP and directed feedback arc set
problem (DFASP). Galinier, Lemamou, and Bouzidi (2013)
presented a powerful simulated annealing algorithm (SA-
FVSP), which uses a new representation of solutions based
on topological ordering and a new neighborhood structure.
Cutello and Pappalardo (2015) proposed an enhanced ge-
netic algorithm with a special local search improvement
strategy. Zhou (2016) presented a belief propagation-guided
decimation (BPD) algorithm to solve DFVSP. Based on SA-
FVSP (Galinier, Lemamou, and Bouzidi 2013), Tang, Feng,
and Zhong (2017) introduced a nonuniform neighborhood
sampling (NNS) strategy, and Russo et al. (2022) proposed
a stochastic simulated annealing algorithm. Recently, Sun
et al. (2023) presented an efficient stochastic local search
algorithm called IDTS which alternates between a thresh-
olding search stage and a descent stage to solve DFVSP.

This paper presents a threshold-based responsive simu-
lated annealing algorithm (TRSA) to solve DFVSP. TRSA
is a combination of threshold search strategy and simu-
lated annealing strategy with ‘temperature rise’, aiming to
strengthen the search capabilities by employing a neighbor-
hood structure based on the closing-opening swap, an incre-
mental neighborhood evaluation technique, and three neigh-
borhood acceleration strategies. The main contributions can
be summarized as follows:

• Different from other metaheuristic algorithms such as
SA-FVSP and IDTS that use topological ordering for so-
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lution representation, TRSA represents a solution by di-
rectly using the set of the remaining vertices, which is
more meaningful and essential because each solution ex-
actly corresponds to a unique graph.

• TRSA reduces the problem instances by 10 reduction
rules, two of which are newly proposed in this paper.

• TRSA proposes an effective threshold-based responsive
simulated annealing algorithm for local improvement,
which enables a balance between intensification and di-
versification of the search.

• TRSA employs a new dedicated swap-based neighbor-
hood structure based on a closing operation and k open-
ing operations. In order to improve the search efficiency,
TRSA employs an incremental evaluation strategy and
three neighborhood acceleration strategies which consist
of threshold-based first-fit strategy, and elimination of
bidirectional edges and cycles.

• Tested on two sets of totally 140 instances including 40
classical instances and 100 instances used in the PACE
2022 competition on the heuristic track, TRSA outper-
forms the state-of-the-art algorithms in the literature and
the top competitors in the competition by improving the
best known results for 53 instances.

Problem Description
Let G = (V,E) be a directed graph, where V is the vertex
set and E ⊆ V × V is the edge set. If G becomes acyclic by
removing all vertices in a subset and their adjacent edges,
such a subset is called a feedback vertex set, denoted as
FVS. The directed feedback vertex set problem (DFVSP)
aims to find a minimum FVS. Formally, let X ⊆ V denote
the selected subset to be removed, DFVSP consists of mini-
mizing |X| while satisfying the constraint that the subgraph
G′ = G\(X,Y ) is acyclic, where Y = {(u, v) ∈ E|u ∈
X ∨ v ∈ X}. The subgraph G′ is a directed acyclic graph
(DAG). Then, the subset X is a FVS of graph G. The objec-
tive function f(X) of DFVSP can be defined as Eq. (1).

min f(X) = |X| (1)

For an edge (u, v) ∈ E, we say that u is a predecessor or
in-coming neighbor of v, and v is a successor or out-going
neighbor of u. For vertex v ∈ V , N−(v) and N+(v) de-
note the sets of in-coming and out-going neighbors of ver-
tex v, respectively, and |N−(v)| and |N+(v)| represent the
in-degree and out-degree of vertex v, respectively.

Threshold-based Responsive Simulated
Annealing Algorithm (TRSA)

General Framework
Different from the classical simulated annealing used in
Galinier, Lemamou, and Bouzidi (2013), we propose a
new effective threshold-based responsive simulated anneal-
ing algorithm (TRSA) for solving DFVSP, which combines
threshold search strategy and simulated annealing strategy
with ‘temperature rise’. In traditional simulated annealing

algorithm, the temperature keeps falling all the time. There-
fore, it tends to be a random-walk algorithm due to high tem-
perature in the early search period, while it would behave
like a hill-climbing algorithm in the late search period when
the temperature falls so that it is easy to fall into the local
optimal trap. This will lead to the poor stability of the tradi-
tional simulated annealing algorithm for solving DFVSP. To
overcome this drawback, TRSA employs a threshold search
strategy, which uses a threshold upper bound to effectively
limit the range of search space so that it can avoid searching
too randomly, and a warming mechanism at the late stage of
the search to effectively jump out of the local optimal trap.

The framework of TRSA is presented in Algorithm 1.
After applying two new proposed reduction rules, together
with eight reduction rules from the literature, to simplify the
problem instances (line 1), TRSA employs a random greedy
construction heuristic to generate an initial feasible solution
X (line 2). Next, TRSA optimizes the incumbent solutionX
iteratively through a number of search rounds with different
temperature values (lines 8–12). At each search round, a fast
local search is performed for maxIter iterations at the cur-
rent temperature T . After performing maxIter iterations, if
the best solution is improved, parameter T is decreased by a
constant cooling factor α (0 <α< 1), and the best objective
value is updated (lines 13–16). When the best solution has
not been improved for maxUnImp rounds, temperature T
is heated γ times by the constant heating factor 1/α (lines
20–23). Once the time limit is reached, TRSA terminates
and returns the best found solution X∗.

Reduction Rules
Reduction rules play an important role in solving DFVSP
because they can significantly reduce the instance size while
preserving the information necessary for finding the mini-
mum FVS, enhancing the search efficiency for large scale
instances, and not making the solution worse. We adopt ten
reduction rules to eliminate some vertices and edges, and
deduce that some vertices must be included in the optimal
solution. These rules include SL, IN0/OUT0 and IN1/OUT1
proposed in Levy and Low (1988), PIE, CORE and DOME
proposed in Lin and Jou (2000), and DOMV and MC pro-
posed in this paper. They are repeatedly applied in sequence
until no more vertices or edges can be removed or fixed.

1) SL: If there is one vertex in a cycle, the cycle is called
a self-loop. For a vertex v ∈ V with a self-loop, it can
be fixed to FVS. 2) & 3) IN0/OUT0: If there is a vertex v
whose in-degree |N−(v)| = 0 or out-degree |N+(v)| = 0,
obviously, this vertex is not on any cycle, so this vertex to-
gether with its corresponding edges can be eliminated from
the graph G. 4) & 5) IN1/OUT1: For a no self-loop vertex
v with |N−(v)| = 1 or |N+(v)| = 1, where u is the only
in-coming neighbor or out-going neighbor of v, we merge
v into u as a single vertex. 6) PIE: Let PIE be the set of all
bidirectional edges. In a graph G without self-loops, the PIE
operation eliminates the acyclic edges between strongly con-
nected graphs and in the subgraph G\PIE. 7) CORE: Given
a subgraph G′ = (V ′, E′) without self-loops whose edges
are bidirectional, if each vertex is the neighbor of other ver-
tices in V ′, then G′ is said to be a d-clique of G. A vertex
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Algorithm 1: The main framework of the TRSA algorithm
Input: A directed graph G
Output: The best solution found so far X∗

1: Reduce the graph by ten reduction rules
2: Initial solution X ← Init(G)
3: X∗ ← X , the best objective value f∗ ← f(X∗)
4: Temperature T ← T0

5: Unimproved counter unImprove← 0
6: while Termination condition is not met do
7: Iteration counter Iter ← 0
8: while Iter < maxIter do
9: Threshold value tv ← Calculate tv(X∗)

10: X,X∗ ←ITSP(G,X,X∗, tv, T ) /* Algorithm 2 */
11: Iter ← Iter + 1
12: end while
13: if f∗ > f(X∗) then
14: f∗ ← f(X∗)
15: T ← α× T /* Temperature down */
16: unImprove← 0
17: else
18: unImprove← unImprove+ 1
19: end if
20: if unImprove ≥ maxUnImp then
21: T ← α−γ × T /* Temperature up */
22: unImprove← 0
23: end if
24: end while
25: return X∗

v ∈ V ′ is a CORE of G′ if its incident edges are in E′. For a
d-clique G′ ⊆ G, if a vertex v is a CORE, we can eliminate
it, fix V ′\{v} to FVS and remove all edges inE′. 8) DOME:
For a vertex u, if (u, v) is a bidirectional edge, vertex u[v] is
called Π-neighbor of vertex v[u]. Otherwise, vertex u[v] is
called non-Π-in-coming (non-Π-out-going) neighbor of ver-
tex v[u]. In a graph G without self-loops, if an edge (u, v)
satisfies the condition that the non-Π-in-coming neighbors
set of vertex u is the subset of the in-coming neighbors set
of vertex v or the non-Π-out-coming neighbors set of vertex
v is the subset of the out-going neighbors set of vertex u, the
edge (u, v) can be removed.

The rules DOMV and MC are as follows:

• Dominated vertex (DOMV): LetNΠ(u) denote the ver-
tex set that consists of Π-neighbors of vertex u. In a
graph G without self-loops, if (u, v) is a bidirectional
edge and in-coming or out-going neighbors set of v ex-
cept for u is the subset of Π-neighbors set of u, that is,
N−(v)\{u} ⊆ NΠ(u) or N+(v)\{u} ⊆ NΠ(u), then
vertex v is dominated by vertex u. Since edge (u, v) has
at least one vertex in FVS, we can fix vertex u to FVS
and remove all corresponding edges from G.
Proof. For a bidirectional edge (u, v), vertex v is dom-
inated by vertex u. In order to eliminate the cycle
〈u, v, u〉, at least one of the vertices u and v must be in
FVS. Assuming u is not in FVS, then v must be in FVS.
Since NΠ(u) contains all in-coming or out-going neigh-
bors of v, in the worst case, there must exist an equivalent

d
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DOMV(a,c)

OUT1(d)

IN1/OUT1(c)
Empty

c

d

b

FVS ← FVS∪{a}

cbb
LOOP(b)

FVS ← FVS∪{b}

Figure 1: A reduction of a graph without self-loops.

solution by replacing v with u.
An example is illustrated in Figure 1, where (a, c)
is a bidirectional edge, and vertices a and c are the
Π-neighbors for each other. Vertex set {b, c, d} is Π-
neighbors set of vertex a, while set {d}({b}) is in-coming
(out-going) neighbors set of vertex c except for vertex a.
It satisfies condition DOMV. Thus, vertex c is dominated
by vertex a and vertex a can be fixed to FVS.

• Maximum clique (MC): For a strongly-connected com-
ponent G′ ⊆ G with bidirectional edges only, it is neces-
sary to remove at least one of any two vertices u, v con-
nected by an edge from the subgraph, in order to break
the cycle 〈u, v, u〉, i.e., there are no connected vertices.
We can transform this problem into a maximum clique
problem of the complementary graph. If the size of a sub-
graph G′ is small enough (n < 600), we solve the max-
imum clique problem with the exact algorithm proposed
in Li et al. (2018), eliminate the exact vertices and all
their adjacent edges, and fix other vertices in G′ to FVS.
Proof. To eliminate the cycles formed by bidirectional
edges in the strongly connected subgraph, some vertices
must be fixed to FVS so that the remaining vertices in
the subgraph are not connected. Hence, we need to re-
move the minimum number of vertices from the strongly-
connected subgraph (according to the objective of mini-
mizing FVS) so that the remaining vertices are the (max-
imum) independent set (Luby 1986). Since the maximum
independent set of the original graph is the maximum
clique of its complementary graph, the minimum FVS of
this subgraph can be obtained by solving the maximum
clique of the complementary graph.

Initial Solution
After simplifying the graph by the reduction rules, we em-
ploy a random greedy constructive heuristic to generate an
initial feasible solution. First, all vertices are opened as feed-
back vertices and are added to the current solution X . Then,
vertices are selected and closed from X successively while
ensuring the solution feasibility, until no vertices can be di-
rectly closed. At each iteration, with equal probability TRSA
selects a vertex randomly or with the minimum degree inX ,
and then a better solution is obtained by closing the selected
vertex u ∈ X , which consists of removing u from X and
adding it into G\{X} with its original adjacent edges with-
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Algorithm 2: Iterated threshold search procedure
function ITSP(G,X,X∗, tv, T )

1: X ′ ← X , S ← with equal probability, shuffle X ran-
domly or sort X in an ascending order of degree

2: for u ∈ S do
3: if f(X) ≥ tv then
4: l← 1 /* Maximum number of opened vertices */
5: else
6: Random number p← random(0, 1]
7: l ← the largest value that satisfies e((−l+1)/T ) >

p, l ∈ [L,L−1, ..., 1] /*L is the maximum number
of open vertices*/

8: end if
9: Close vertex u and X ′ ← X ′\{u}

10: if l ≥ |NΠ(u)| then
11: Open vertices in NΠ(u) and X ′ ← X ′ ∪NΠ(u)
12: k ← |NΠ(u)|
13: if OPEN VERTICES(G,X ′, l, k) = True then
14: X ← X ′

15: end if
16: end if
17: if f(X∗) > f(X) then
18: X∗ ← X
19: end if
20: end for
21: return X , X∗

out forming any cycle. This procedure is repeated until all
vertices in X have been tried to be closed.

Neighborhood Structure and Evaluation
The neighborhood structure describes the adjacency rela-
tionship between the incumbent solution and its neighboring
solutions in the solution space. For an incumbent solutionX ,
performing a neighborhood move m produces a new neigh-
boring solution, i.e.,X⊕m. To tackle DFVSP, the proposed
TRSA adopts a swap-based neighborhood structure, which
consists of a closing operation and k (k ≥ 0) opening opera-
tions. Specifically, at each iteration, it tries to obtain a neigh-
boring solution X ′ based on the current solution X by clos-
ing a vertex u ∈ X and opening k vertices v1, v2, ...vk (vi ∈
V \X) such that X ′ = X ⊕m = X ∪ {v1, v2, ..., vk}\{u}.

In a local search procedure, the neighborhood evalua-
tion is an extremely important ingredient. Instead of naively
evaluating the objective of each neighboring solution by
Eq. (1), TRSA adopts an incremental evaluation technique.
We maintain the improvement ∆(m) that performs a neigh-
borhood move m. Specifically, the objective of a neighbor-
ing solution can be calculated incrementally by the num-
bers of opening and closing vertices, i.e., f(X ⊕ m) =
f(X) + ∆(m) = f(X)− 1 +k. Obviously, when k = 0, an
improved solution can be obtained.

Neighborhood Acceleration Strategies
According to the definition of the neighborhood structure, a
naive neighborhood evaluation technique selects k vertices
from V \X for opening, whose complexity is O(|V \X|k).

Algorithm 3: Choosing opened vertices
function OPEN VERTICES(G,X ′, l, k)

1: if G is acyclic then
2: return True
3: end if
4: if l < k then
5: return False
6: end if
7: Find a cycle C from G
8: With equal probability, shuffle the vertex set VC of C

randomly or sort VC in a descending order of degree
9: for v ∈ VC do

10: Open vertex v and X ′ ← X ′ ∪ {v}
11: if OPEN VERTICES(G,X ′, l, k + 1) = True then
12: return True
13: else
14: Close vertex v and X ′ ← X ′\{v}
15: end if
16: end for

For large-scale instances, this kind of neighborhood evalua-
tion is too time-consuming. Therefore, we adopt the follow-
ing three strategies to accelerate the search.

• Neighborhood reduction based on cycle elimination:
If a solution is feasible, there is no cycle in the graph.
That is to say, when a vertex is closed in the current so-
lution X , all cycles must be eliminated in order to find
a new feasible solution. Therefore, an opening operation
selects a vertex from a cycle instead of the entire space
V \X , called “critical one-operation”. We can reduce the
neighborhood by finding a cycle in turn and eliminating
it. To eliminate a cycle, just need to open one vertex on
the cycle. In most cases, the number of vertices on a cycle
is much less than |V \X| such that the complexity of the
neighborhood evaluation can be significantly reduced.

• Neighborhood reduction based on bidirectional edge
elimination: If there is a bidirectional edge (u, v) in the
graph G, at least one of the two endpoints of this edge
must be in FVS in order to break the cycle 〈u, v, u〉. Thus,
when we close a vertex u which is an endpoint of some
bidirectional edges, the Π-neighbors of umust be opened
such that the bidirectional edges can be eliminated.

• Threshold-based first-fit strategy: It is obvious that the
bigger the value of k is, the worse a neighboring solution
could be. Therefore, we adopt a threshold-based first-fit
strategy, which limits the number k of opened vertices.
Specifically, we open vertices one by one until the new
solution is feasible, while the number of opened vertices
should be no more than a maximum value, which is de-
cided by a threshold and a random factor.

Iterated Threshold Search Procedure
We employ an iterated threshold search procedure (ITSP) to
iteratively improve the initial solution.

Algorithm 2 presents the framework of ITSP. It first re-
orders the FVS S ← X by randomly shuffling or sorting

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20859



it in an ascending order of degree with equal probability.
Then, it iteratively performs the swap move by closing ver-
tex u and opening at most l vertices to explore a large so-
lution space. Based on threshold-based first-fit strategy, at
each iteration, ITSP first determines the maximum number
of vertices l that can be opened, which decides the size of the
current neighborhood and the tolerance of accepting worse
solutions. There are two circumstances: 1) If the number
of feedback vertices of the current solution X reaches the
threshold tv, i.e., f(X) ≥ tv, the quality of the neighboring
solution cannot be worse than the current solution, i.e., l = 1
(lines 3–4); 2) If f(X) < tv, we can explore larger search
space. According to the upper limit of the number of opened
vertices L and the current temperature T , we evaluate the
tolerance of accepting deteriorating solutions in the worst
case and obtain the maximum number of vertices that can
be opened. We choose the largest value of l which satisfies
e((−l+1)/T ) > p, where l ∈ [L,L− 1..., 1] (lines 5–7).

Second, according to neighborhood reduction based on
bidirectional edge elimination, to eliminate the bidirectional
edges caused by closing vertex u, all vertices inNΠ(u) need
to be opened. However, if |NΠ(u)| > l, the algorithm does
not search for neighborhood solutions related to closing u,
because a feasible solution cannot be found by opening l or
fewer vertices.

Third, as presented in Algorithm 3, according to neigh-
borhood reduction based on cycle elimination, ITSP recur-
sively finds a cycle, and eliminates it by opening a vertex
on the cycle to obtain a new solution X ′ until the number
of opened vertices reaches l or X ′ is feasible. For a directed
acyclic graph G, if new cycles are generated after adding
a new vertex, this vertex must be on these cycles. There-
fore, when closing vertex u ∈ X , we use depth-first search
(DFS) (Tarjan 1972) to iteratively find a cycle starting from
u. For each cycle to be eliminated, we iteratively try to open
a vertex on the cycle in randomly shuffled order or descend-
ing order of degree with equal probability (lines 8–16). The
complexity of finding a cycle is O(|V −X|+ |E|).

Finally, X is updated to be X ′ iff it is feasible (lines 13–
15), and if the current solution X improves the best solution
found so far, X∗ is updated with X (lines 17–19).

In addition, the threshold value tv is critical to the per-
formance of ITSP. It ensures that if the objective reaches a
limit, only better or equal solutions can be accepted. A large
threshold value may cause a low convergence rate for ITSP,
while a too small threshold value can greatly weaken its ex-
ploration power. Thus, in order to balance diversification and
intensification, the threshold value tv is dynamically tuned
according to the objective value of the recorded best local
optimum f∗, the threshold ratio tr, and the percentage of
the remaining time Tremain

Ttotal
, which can be defined as Eq. (2).

tv = (f∗ + L) + tr × f∗ × Tremain

Ttotal
(2)

where Ttotal is the total time limit, Tremain is the remaining
time, and tr is a threshold ratio inspired from Chen and Hao
(2015) and is defined to be tr = tra

f∗ + trb, with tra and trb
being two fixed coefficients. During the search process, tr is
dynamically recalculated as long as f∗ is updated.

Algorithm Description

SA-FVSP Simulated annealing
(Galinier, Lemamou, and Bouzidi 2013)

IDTS Iterated dynamic thresholding search (Sun et al. 2023)
DiVerSeS Simulated annealing
DreyFVS Two greedy local search heuristics
HustFVS Two-stage local search1

Table 1: Description of reference algorithms.

Parameter Value Tested values Description

T0 0.6 {0.5, 0.6, 0.7} Initial temperature
α 0.99 {0.99, 0.98} Cooling factor
γ 5 {4, 5, 6} Heating magnitude
L 5 {3, 4, 5, 6, 7} Maximum number of

open vertices
maxIter 20 {15, 20, 30} Maximum iteration counter
maxUnImp50 {40, 50, 60} Maximum unimproved counter
tra 30 [10, 100] A coefficient to calculate tr
trb 0.004 [0.001, 0.01] A coefficient to calculate tr

Table 2: Parameter settings of our TRSA.

Experiments and Analysis
In order to evaluate the effectiveness of our proposed TRSA,
we conduct extensive experiments on two datasets consist-
ing of totally 140 instances, and compare the performance
of TRSA with the state-of-the-art algorithms in the literature
and the participating solvers in the PACE 2022 competition.

Experimental Protocol
There are mainly two sets of benchmark instances for
DFVSP. The first set consists of 40 public classical in-
stances, which were generated in Pardalos, Qian, and Re-
sende (1998). For this benchmark, there are four groups with
50, 100, 500, and 1000 vertices, respectively, with 10 graphs
in each group. The second set consists of 100 instances intro-
duced in the PACE 2022 competition on the heuristic track,
with up to 800,000 vertices and 5,000,000 edges2. Table 1
gives the reference algorithms. SA-FVSP and IDTS are the
state-of-the-art algorithms for DFVSP in the literature, while
DiVerSeS, DreyFVS, and HustFVS are the top-three algo-
rithms in the PACE 2022 competition on the heuristic track.
IDTS were run on a computer with Intel(R) Core(TM)2 Duo
CPU T7700 2.4GHz.

Our proposed TRSA is programmed in C++. For a fair
comparison, we rerun the algorithms of the top three teams
in the PACE 2022 competition on the heuristic track, and
reimplement and rerun the classical SA-FVSP. All experi-
ments are carried out on Server 2012 x64 with Intel Xeon
E5-2609v2 2.5 GHz CPU and these algorithms are per-
formed for 30 independent runs for each instance in both
sets. For 40 public classical instances, we execute SA-FVSP,
DiVerSeS, DreyFVS, HustFVS, and our TRSA on each in-
stance under a 30-second time limit on a single CPU core,

1Note that this is the preliminary version of our TRSA.
2https://pacechallenge.org/2022/01/12/public-instances
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Ins.
SA-FVSP IDTS DiVerSeS TRSA

fmin favg fmin favg fmin favg fmin favg

P50-100 3 3 3 3 3 3 3 3
P50-150 9 9 9 9 9 9 9 9
P50-200 13 13 13 13 13 13 13 13
P50-250 17 17 17 17 17 17 17 17
P50-300 19 19 19 19 19 19 19 19
P50-500 28 28 28 28 28 28 28 28
P50-600 31 32 31 31 31 31 31 31
P50-700 33 33 33 33 33 33 33 33
P50-800 34 34 34 34 34 34 34 34
P50-900 36 36 36 36 36 36 36 36
P100-200 9 9 9 9 9 9 9 9
P100-300 17 17.3 17 17 17 17 17 17
P100-400 23 23 23 23 23 23 23 23
P100-500 32 32 32 32 32 32 32 32
P100-600 36 37.2 37 37 36 36 36 36
P100-1000 53 53.2 53 53 53 53 53 53
P100-1100 54 55 54 54.7 54 54 54 54
P100-1200 57 57.4 57 57 57 57 57 57
P100-1300 60 60 60 60 60 60 60 60
P100-1400 61 61 61 61 61 61 61 61
P500-1000 31 31 31 31 31 31 31 31
P500-1500 63 64.8 63 63.8 63 63.2 63 63
P500-2000 102 103.8 101 102.8 101 102.4 100 100
P500-2500 133 134.8 132 135.1 133 134 131 131.3
P500-3000 163 165.1 163 164.9 163 163.9 161 161.5
P500-5000 237 239.2 237 240.1 237 237 237 237
P500-5500 252 253.6 252 254.7 251 252.2 251 251.4
P500-6000 265 266.9 264 267.6 265 265.1 264 264.3
P500-6500 276 278.6 276 278.5 276 276.3 276 276
P500-7000 287 289 287 288.7 286 286.9 286 286
P1000-3000 130 132.1 128 129.9 128 129 127 127
P1000-3500 165 167.3 162 164.3 162 164.5 159 159.7
P1000-4000 192 195.9 193 195.5 192 194.3 190 190.3
P1000-4500 230 231.7 229 231.5 229 230.5 226 226.2
P1000-5000 260 265.5 261 263.2 259 261 256 256.3
P1000-10000 472 476.7 472 475.1 469 471.9 466 468.7
P1000-15000 582 584.4 580 585.6 579 581.4 578 579.7
P1000-20000 653 655.7 652 657.3 651 652.5 650 651.8
P1000-25000 702 704.7 700 704.4 699 701.4 699 701.5
P1000-30000 741 744.1 741 744.1 740 741 739 740

p-value 4.4E
-04

1.2E
-05

4.4E
-04

6.0E
-05

1.5E
-03

2.3E
-04

#best 24 15 24 19 27 23 40 39
gap(%) 19.56 49.45 16.42 35.99 11.48 18.94 0 0.01

Table 3: Experimental results on 40 classical instances.

which is the same as adopted in Galinier, Lemamou, and
Bouzidi (2013). For the 100 instances used in the PACE
2022 competition, since they are large and challenging, the
cutoff time for each instance is 600 seconds, which is the
same as the time limit used in the competition.

Parameter Settings
Table 2 shows the parameter settings of our TRSA, which
can be considered as the default setting of the algorithm. Un-
less otherwise specified, this default setting is consistently
used throughout all the experiments presented in this study.
The parameters of our algorithm are tested respectively ac-
cording to the values in column “Tested values”. We con-
sider all combinations of these parameter values on several
different scale instances (P1000-3000, h 025, h 085, h 105,
h 155) and finally choose the parameters with the best over-
all performance on these instances. The final value of each

parameter is recorded in “Value”.

Computational Results
The detailed computational results are reported in Tables
3 and 4. Column “Ins.” gives the names of the instances.
Columns “fmin” and “favg” report the best and the aver-
age results of the solutions found over 30 independent runs.
Rows “#B”, “#E”, and “#W” indicate the number of in-
stances where our TRSA obtains better, equal, and worse
results comparing to the corresponding algorithms, respec-
tively. To verify the statistical significance of the compari-
son between TRSA and the reference algorithms, we give
the p-values by the non-parametric Wilcoxon test in row “p-
value”, where a p-value less than 0.05 indicates a significant
difference. Row “#best” reports the number of instances for
which each algorithm obtains the best results among all al-
gorithms. Row “gap” gives the total gap between the results
obtained by the corresponding algorithms and the best re-
sults on the current set of instances.

Table 3 reports the results on 40 classical instances by SA-
FVSP, IDTS, DiVerSeS, and our TRSA. In terms of the best
results, TRSA improves the best known results of all refer-
ence algorithms on 13 instances and matches the best results
for all the remaining ones. In terms of the average results,
TRSA obtains better results on 17 instances and matches
the best results of all reference algorithms on the remain-
ing ones except for P1000-25000, where it performed only
slightly worse than DiVerSeS. Moreover, as for the best re-
sults obtained by all reference algorithms, TRSA keeps an
advantage of over 11% and 18% in terms of the best and av-
erage results, respectively. The small p-values (<0.05) con-
firm that there are significant differences between our results
and those of all the reference algorithms.

Table 4 shows the results of TRSA, SA-FVSP, and the
top three competitors on the 100 instances used in the PACE
2022 competition. TRSA obtains the best results for 92 (out
of 100) instances and improves the best known results on
40 instances. The total gap between the best results of our
TRSA and the best results found by all the algorithms (in-
cluding ours) is only 0.4%, while other competitors ob-
tain the best results only on half of the 100 instances or
less. Compared to the best-performing algorithm DiVerSeS,
TRSA obtains 47 better, 47 equal, and 6 worse solutions in
terms of the best results. The small p-values (<0.05) also in-
dicate the dominance of our TRSA in terms of the best and
average results. In general, the results of TRSA are signifi-
cantly better than all reference algorithms.

Effectiveness of the Proposed Strategies
In order to evaluate the merits of two new reduction rules,
the neighborhood reduction based on bidirectional edge
elimination, and the threshold-based first-fit strategy, we
compare TRSA with three alternative versions.
• TRSA-A: Disable the DOMV and MC rules.
• TRSA-B: Disable the neighborhood reduction based on

bidirectional edge elimination.
• TRSA-C: Disable the threshold-based first-fit strategy,

that is, the number k of opened vertices is not limited.
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Ins.
SA-FVSP DiVerSeS DreyFVS HustFVS TRSA

fmin favg fmin favg fmin favg fmin favg fmin favg

h 001 46 46 46 46 46 46 46 46 46 46
h 003 38 38 38 38 38 38 38 38 38 38
h 005 235 236 235 235 235 235 235 235 235 235
h 007 78 80.4 77 77 77 77 77 77 77 77
h 009 33 33 33 33 33 33 33 33 33 33
h 011 76 76.8 73 73 73 73 73 73 73 73
h 013 172 173.8 168 168 167 167.2 167 167.6 167 167
h 015 72 73.9 70 70 70 70 70 70 70 70
h 017 184 185.7 182 182.2 182 182 182 182 182 182
h 019 122 124.2 121 121 121 121 121 121 121 121
h 021 62 62.2 61 61 61 61 61 61 61 61
h 023 130 130.4 126 126 126 126 126 126 126 126
h 025 193 194.8 190 191 190 190.6 190 190 190 190.2
h 027 127 128.7 124 124 124 124 124 124 124 124
h 029 254 256.9 252 252.2 251 251 251 251 251 251
h 031 192 194 186 186 186 186 186 186 186 186
h 033 193 195.8 190 191 190 190 190 190.2 190 190
h 035 3933 3933.2 3933 3933 3933 3933 3933 3933 3933 3933
h 037 3922 3922.1 3922 3922 3922 3922 3922 3922 3922 3922
h 039 2469 2473.9 2427 2427.4 2419 2419.6 2427 2429.2 2416 2416.8
h 041 4019 4019.3 4019 4019 4019 4019 4019 4019 4019 4019
h 043 3914 3914 3914 3914 3914 3914 3914 3914 3914 3914
h 045 3940 3941.6 3937 3937.6 3938 3938 3938 3938.2 3937 3937.8
h 047 3889 3891 3886 3886 3887 3887 3888 3888 3886 3886
h 049 3889 3889 3889 3889 3889 3889 3889 3889 3889 3889
h 051 3999 3999.9 3999 3999 3999 3999 3999 3999 3999 3999
h 053 4014 4014 4014 4014 4014 4014 4014 4014 4014 4014
h 055 4561 4565.4 4487 4488.8 4481 4481.6 4493 4494.8 4478 4479.6
h 057 3884 3884 3884 3884 3884 3884 3884 3884 3884 3884
h 059 499 500.8 496 496.8 497 497 498 498.4 496 496
h 061 3744 3744.9 3744 3744 3744 3744 3744 3744 3744 3744
h 063 920 926.6 899 900.6 886 887.4 908 912.6 881 881.6
h 065 3683 3683 3683 3683 3683 3683 3683 3683 3683 3683
h 067 5424 5425.1 5422 5422 5422 5422.8 5422 5422.8 5422 5422
h 069 6312 6314.1 6307 6309 6316 6317.6 6311 6311.4 6305 6306.4
h 071 6259 6259.3 6259 6259 6259 6259 6259 6259 6259 6259
h 073 9102 9105.8 9083 9084.6 9090 9091.8 9099 9103.8 9077 9077.4
h 075 10326 10330.5 10142 10143.6 10131 10132.6 10167 10169.6 10121 10124.4
h 077 1256 1260.4 1220 1223.8 1190 1193.6 1241 1247 1190 1191.4
h 079 10958 10962 10945 10948 10956 10958 10956 10958.8 10941 10942.4
h 081 21877 21878.5 21867 21867 21867 21868.8 21877 21878.2 21867 21867
h 083 20631 20633.3 20628 20628 20628 20628 20628 20628.6 20628 20628
h 085 12816 12819.4 12814 12817.2 12814 12816 12814 12816.4 12807 12808.4
h 087 14986 15008.3 14727 14730.4 14658 14667.6 14786 14796 14655 14660.8
h 089 7235 7238.1 7235 7235.6 7252 7256.6 7234 7237.2 7228 7229
h 091 12125 12126.3 12112 12115.4 12143 12148.4 12126 12130.4 12099 12099.8
h 093 21969 21976.6 21953 21956.2 21961 21962.2 21960 21964.4 21948 21950.2
h 095 23824 23827.3 23817 23819 23814 23816.4 23822 23824.6 23812 23815.6
h 097 12312 12317.9 12310 12313.6 12325 12340 12320 12324.4 12275 12279.2
h 099 24867 24871.8 24444 24462.4 24350 24364.4 24552 24571.2 24320 24329.2
h 101 46488 46490.3 46473 46473 46473 46473.4 46488 46493.4 46473 46473
h 103 13303 13303 13303 13303 13303 13303 13303 13303 13303 13303
h 105 48891 48895.4 48880 48880.2 48880 48881 48899 48902.2 48880 48880
h 107 23787 23794.1 23792 23814.4 23806 23820.4 23822 23828.6 23722 23726.6
h 109 7625 7628.3 7628 7629.4 7656 7658.2 7632 7634.4 7621 7621.6
h 111 22658 22658 22658 22658 22658 22658 22658 22658 22658 22658
h 113 18574 18574 18574 18574 18574 18574 18574 18574 18574 18574
h 115 130680 130684 130675 130675 130675 130675 130675 130675 130675 130675
h 117 41142 41143.4 41111 41111.6 41111 41111 41113 41115.8 41111 41111
h 119 97583 98009.4 93489 93492.8 93377 93415.4 94132 94155.2 93427 93488.8
h 121 15480 15483 15478 15482.4 15515 15528 15484 15489.6 15473 15474.4
h 123 4002 4003.1 4001 4003 4004 4006.2 4002 4003.4 4002 4002.4
h 125 15019 15031.4 15018 15024 15042 15056.4 15055 15067.4 15028 15039.2
h 127 29568 29576.4 29555 29562.6 29684 29702 29565 29573.4 29514 29521.6
h 129 28036 28049.4 28009 28019 28145 28156.4 28181 28184.8 28008 28023.8
h 131 15740 15743.8 15745 15745 15763 15765 15746 15749 15738 15740.2
h 133 94003 94061.3 93429 93436 93466 93469.4 93594 93599.4 93222 93226.6
h 135 28047 28057.5 28076 28082.2 28080 28092.4 28075 28086.2 27983 27988.6
h 137 28045 28048 28068 28070.6 28070 28079 28071 28088.2 27968 27982.8
h 139 15852 15853.9 15856 15856.8 15861 15865.6 15852 15855.2 15852 15853.6
h 141 57017 57049.5 56892 56901.2 57090 57101.2 56960 56963.2 56864 56870.4
h 143 30239 30256.8 30228 30235.8 30355 30359.8 30249 30255.4 30210 30213.8
h 145 30256 30268.6 30240 30243 30359 30369.2 30257 30265 30226 30228.6
h 147 28717 28726 28732 28743.8 28754 28773.8 28745 28754.8 28648 28655

Table 4: Experimental results on 100 PACE 2022 instances.
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Ins.
SA-FVSP DiVerSeS DreyFVS HustFVS TRSA

fmin favg fmin favg fmin favg fmin favg fmin favg

h 149 91608 91622.9 91607 91607 91607 91607 91607 91609 91607 91607
h 151 58048 58115.1 57940 57947.4 58066 58087.4 57983 57993.4 57920 57928
h 153 30587 30598.5 30561 30562.8 30648 30657.8 30583 30588.4 30547 30551.6
h 155 101168 101274 100426 100442 100586 100599 100560 100588 100310 100312
h 157 89694 89707 89626 89626 89626 89626 89630 89630.4 89626 89626
h 159 29226 29247.1 29232 29239 29298 29303.8 29249 29275.2 29165 29172
h 161 28847 28852 28799 28810.6 28895 28907.2 28974 29000.4 28850 28872.2
h 163 30922 30931.3 30908 30915.4 30945 30953.8 30919 30924.6 30901 30904.2
h 165 104271 104501 103535 103541 103701 103718 103664 103674 103451 103462
h 167 61307 61311.1 61299 61301.2 61301 61306.6 61297 61304 61301 61309
h 169 29696 29707.5 29685 29690 29754 29761.4 29716 29729.4 29630 29634.6
h 171 90683 90724.5 90647 90647 90647 90647 90652 90653.8 90647 90647
h 173 31676 31679.5 31696 31697.4 31674 31677.4 31689 31694.8 31684 31688.4
h 175 100743 100909 100540 100541 100542 100543 100562 100569 100540 100542
h 177 100704 100871 100466 100467 100469 100469 100489 100493 100468 100468
h 179 95757 95898.5 95730 95730 95730 95730 95734 95735.2 95730 95730
h 181 109963 110153 109354 109374 109362 109369 109402 109417 109290 109300
h 183 112805 112974 112410 112422 112359 112371 112432 112459 112344 112350
h 185 29398 29421.8 29353 29372.8 29427 29448.2 29543 29568 29365 29378.2
h 187 110074 110074 110074 110074 110074 110074 110074 110074 110074 110074
h 189 216567 217744 213507 213511 213586 213593 213562 213588 213495 213504
h 191 116156 116157 116156 116156 116156 116156 116156 116156 116156 116156
h 193 31437 31447.4 31444 31444.4 31468 31476.2 31443 31452.4 31431 31433.6
h 195 4051 4051.3 4050 4050.4 4051 4052.4 4049 4050.4 4049 4049.6
h 197 8002 8004.6 7999 8001 8002 8003.2 8001 8004 7998 7999.4
h 199 178898 179336 178686 178686 178686 178686 178686 178686 178686 178686
#B/#E/#W 75/22/3 85/12/3 47/47/6 53/39/8 51/47/2 58/39/3 58/41/1 66/32/2
p-value 3.4E-13 2.1E-14 6.8E-08 4.0E-08 3.9E-09 6.1E-10 3.6E-11 1.8E-12
#best 21 12 52 47 48 41 41 33 92 89
gap(%) 64.28 87.00 11.25 13.09 11.25 12.63 19.70 21.82 0.40 0.57

Table 4 (Continue): Experimental results on 100 PACE 2022 instances.
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Figure 2: Evolution of the objective value gaps by TRSA, TRSA-A, TRSA-B, and TRSA-C on three largest instances.

We conduct experiments on three hard instances (h 141,
h 165, and h 181). Figure 2 depicts the evolution of the ob-
jective value gaps of TRSA, TRSA-A, TRSA-B, and TRSA-
C as the search proceeds. Each point (x; y) on the curves de-
notes that the gap between the number of FVS of the current
solution and the best known one is y at x seconds.

From Figure 2, one can observe that TRSA is the best per-
forming algorithm among the four versions. Moreover, the
improvement rate of TRSA is obviously faster than TRSA-B
and TRSA-C. These results indicate that the new reduction
rules, the neighborhood reduction based on bidirectional
edge elimination, and the threshold-based first-fit strategy all
play important roles, and they are essential for the efficacy
of TRSA in terms of both effectiveness and efficiency. (The
detailed results are available at https://github.com/Zhang-

qingyun/DFVSP-TRSA.)

Conclusion

This paper proposes an effective threshold-based responsive
simulated annealing (TRSA) algorithm for solving the di-
rected feedback vertex set problem. TRSA adopts several
reduction techniques to simplify the problem instances, as
well as employing a threshold-based responsive simulated
annealing technique. In the local search procedure, TRSA
uses three neighborhood acceleration strategies to acceler-
ate the search. The proposed algorithm improves the best
known results for totally 53 instances out of the 140 ones
used in the literature and in the PACE 2022 competition.
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