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Abstract

We propose a novel single-loop decentralized algorithm,
DGDA-VR, for solving the stochastic nonconvex strongly-
concave minimax problems over a connected network of
agents, which are equipped with stochastic first-order ora-
cles to estimate their local gradients. DGDA-VR, incorporat-
ing variance reduction, achieves O(ϵ−3) oracle complex-
ity and O(ϵ−2) communication complexity without resort-
ing to multi-communication rounds – both are optimal, i.e.,
matching the lower bounds for this class of problems. Since
DGDA-VR does not require multiple communication rounds,
it is applicable to a broader range of decentralized computa-
tional environments. To the best of our knowledge, this is the
first distributed method using a single communication round
in each iteration to jointly optimize the oracle and communi-
cation complexities for the problem considered here.

Introduction
This paper considers a connected network G = (V, E) of M
agents which cooperatively solve

min
x∈Rd

max
y∈Rm

f(x,y) ≜
1

M

M∑
i=1

fi(x,y), (1)

where fi : Rd × Rm → R is smooth and possibly noncon-
vex in x ∈ Rd and are strongly-concave in y ∈ Rm for
i = 1, 2, ...,M . Furthermore, each agent-i can only access
unbiased stochastic gradients ∇̃fi rather than exact gradi-
ents ∇fi, and we assume that {∇̃fi}i∈V have finite vari-
ances, uniformly bounded by some σ > 0. The set V =
{1, 2, . . . ,M} indexes the M agents and (i, j) ∈ E ⊆ V×V
only if agent i can send information to agent j. Minimax op-
timization has garnered recent interest due to applications
in many machine learning settings such as adversarial train-
ing (Goodfellow et al. 2014; Liu et al. 2020), distribution-
ally robust optimization (Namkoong and Duchi 2016; Xian
et al. 2021), reinforcement learning (Zhang et al. 2021c),
and fair machine learning (Nouiehed et al. 2019). The prob-
lem in (1) arises naturally when the data is physically dis-
tributed among many agents or is too large to store on a sin-
gle computing device (Xin, Khan, and Kar 2021a). It is well
known that centralized methods suffer from communication
bottlenecks on the parameter server (Lian et al. 2017; Xian
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et al. 2021) and potential data privacy violations (Verbraeken
et al. 2020); hence, decentralized methods have emerged as
a practical alternative to overcome these issues.

In a decentralized setting, only agent-i has access to fi
and its stochastic gradient oracle; thus, in order for the M
agents to collaboratively solve (1), each agent-i will make a
local copy, denoted as (xi,yi), of the primal-dual variable
(x,y) and communicate the local variables and gradient in-
formation with its immediate (1-hop) neighbors. In this way,
(1) can be reformulated equivalently into the following prob-
lem in a decentralized format:

min
{xi}i∈V

max
{yi}i∈V

1

|V|
∑
i∈V

fi(xi,yi)

s.t. xi = xj , yi = yj , ∀ (i, j) ∈ E .
(2)

Consensus among the agents is then enforced through the
use of a mixing matrix encoding the topology of G.

Although there are decentralized algorithms for stochas-
tic nonconvex-strongly-concave minimax problems, the ex-
isting work (Liu et al. 2020; Chen, Ye, and Luo 2022) re-
quires multi-communication rounds at each iteration; hence,
they can be analyzed as a centralized algorithm with inexact
gradients. In a multi-agent setting, methods requiring multi-
communication rounds per iteration are not desired as they
require more strict coordination among the agents while sin-
gle round communication methods are much easier to im-
plement. We will design a decentralized algorithm for (1)
or equivalently (2) that only requires a single communica-
tion round per iteration. Although another recent work (Xian
et al. 2021) also proposed a decentralized algorithm for the
same setting with a single round of communication per iter-
ation, we noticed that its proof has a fundamental issue and
the claimed complexity results do not hold — we explain
this problem in detail when we compare our results with the
existing work below. In addition, the communication com-
plexity of the algorithm in (Xian et al. 2021) is intrinsically
of the same order with its oracle complexity; hence, it cannot
be optimal. In contrast, the method we propose can achieve
an optimal complexity result for both oracle complexity and
communication complexity in terms of its dependence on a
given tolerance ϵ > 0 for ϵ-stationarity, defined below.

Contributions. Our contributions are two-fold. First, we
propose a decentralized stochastic gradient-type method,
called DGDA-VR, for solving (1) or equivalently (2). At ev-
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ery iteration of the method, each agent-i performs a local
stochastic gradient descent step for xi and a local stochas-
tic gradient ascent step for yi, along a tracked (global)
stochastic gradient direction. DGDA-VR needs only a sin-
gle communication round per iteration among neighbors for
(weighted) averaging local variables and tracking the global
stochastic gradient information.

Second, we show that when each agent uses a SPIDER-
type stochastic gradient estimator (Fang et al. 2018), which
is a variant of SARAH (Nguyen et al. 2017a), DGDA-VR
can, in a decentralized manner, generate {zi(ϵ)}i∈V
with zi(ϵ) ≜

(
xi(ϵ),yi(ϵ)

)
such that the local deci-

sions {zi(ϵ)}i∈V and their average (x̄ϵ, ȳϵ) = z̄ϵ =
1
|V|

∑
i∈V zi(ϵ) have the following properties:

1. x̄ϵ is an ϵ-stationary point of the primal function Φ(·) ≜
maxy f(·,y), i.e., E[∥∇Φ(x̄ϵ)∥] ≤ ϵ;

2. ȳϵ is an O(ϵ)-optimal-response to x̄ϵ, i.e., E[∥ȳϵ −
y∗(x̄ϵ)∥] = O(ϵ), where y∗(x̄ϵ) = argmaxy f(x̄ϵ,y);

3. {zi(ϵ)}i∈V has O(ϵ)-consensus-violation, i.e.,
E[

∑
i∈V ∥zi(ϵ)− z̄ϵ∥2] = O(ϵ2);

4. computing {zi(ϵ)}i∈V requires O((1 − ρ)−2ϵ−2) com-
munication among neighboring nodes, which employ
O(σ(1 − ρ)−2ϵ−3) stochastic oracle calls, i.e., the sam-
pling complexity — here, ρ ∈ [0, 1) measures the con-
nectivity of the underlying communication network, and
a smaller ρ means a more connected network. The or-
ders O(ϵ−2) for communication rounds and O(ϵ−3)
for stochastic gradient oracles both match with existing
lower bounds (Sun and Hong 2019; Arjevani et al. 2022).

Notation and definitions. Throughout the paper, we use
bold lower-case letters x,y, . . . to denote vectors and upper-
case letters X,Y, . . . to denote matrices. ∥·∥ denotes the Eu-
clidean norm for a vector. ∥ · ∥F and ∥ · ∥2 denote the Frobe-
nius norm, and the spectral norm of a matrix, respectively.
The symbols I and 1 denote the identity matrix and the col-
umn vector with all elements 1, respectively. The symbol
E is used for expectation. W represents a mixing matrix
and Π ≜ 1

M 11⊤ ∈ RM×M the averaging matrix. We let
N+ ≜ N/{0}. Given M ∈ N+, [M ] denotes the integer set
{1, 2, ..,M}. Given a random variable ξ, for any i ∈ [M ],
∇̃fi(x,y; ξ) denotes an unbiased estimator of ∇fi(x,y), of
which properties are stated in Assumptions 4 and 5. We in-
terchangeably use Rd × Rm = Rd+m when it is convenient
to define the inputs to fi as a single vector. We will com-
pactly use matrix variables for the formulation in (2):
X ≜ [x1, . . . ,xM ]⊤, Y ≜ [y1, . . . ,yM ]⊤, Z ≜ [X,Y ].

Organization. We first briefly discuss the previous work
on decentralized minimax problems related to ours. After
we give some important definitions and state our assump-
tions, we describe our proposed method and main results in
detail. Finally, we test our method against the SOTA meth-
ods employing variance reduction on a game problem and
two different robust machine learning problems.

Related Work
We provide a brief literature review on decentralized opti-
mization methods (specifically for nonconvex and stochastic

problems), and discuss both centralized and decentralized
methods for minimax problems.

Decentralized optimization. D-PSGD (Lian et al. 2017)
first advocated for the use of decentralized methods and pro-
vided convergence analysis for a stochastic gradient-type
method. D2 (Tang et al. 2018) improved the analysis of D-
PSGD to allow for data heterogeneity. More recently, gra-
dient tracking has been utilized to further enhance the con-
vergence rate of new methods; see (Lu et al. 2019; Zhang
and You 2020; Koloskova, Lin, and Stich 2021; Xin, Khan,
and Kar 2021b) for further discussions. Variance reduction
methods that mimic updates from the SARAH (Nguyen
et al. 2017b) and SPIDER (Wang et al. 2019) methods
provide optimal gradient complexity results at the expense
of large batch computations; examples include D-SPIDER-
SFO (Pan, Liu, and Wang 2020), D-GET (Sun, Lu, and
Hong 2020), GT-SARAH (Xin, Khan, and Kar 2022), DE-
STRESS (Li, Li, and Chi 2022). To avoid the large batch
requirement of these methods, the STORM (Cutkosky and
Orabona 2019; Xu and Xu 2023) and Hybrid-SGD (Tran-
Dinh et al. 2022a) methods have also been adapted to the
decentralized setting; see GT-STORM (Zhang et al. 2021b)
and GT-HSGD (Xin, Khan, and Kar 2021a). Both types of
variance reduction have recently been extended to include
a proximal term in ProxGT-SR-O/E (Xin et al. 2021) and
DEEPSTORM (Mancino-Ball et al. 2023). There are many
other decentralized methods which handle various problem
settings, but an exhaustive discussion is beyond the scope of
this work; we refer interested readers to the references in the
above works for more details.

Minimax optimization. Before discussing purely decen-
tralized minimax optimization methods, we first provide a
brief overview of minimax optimization methods in the cen-
tralized setting. In recent years, a significant amount of work
has been proposed (Chen, Ma, and Zhou 2021; Jin, Ne-
trapalli, and Jordan 2020; Lin, Jin, and Jordan 2020; Lin,
Jin, and Jordan 2020; Lu et al. 2020; Ostrovskii, Lowy, and
Razaviyayn 2021; Thekumparampil et al. 2019; Zhang, Ay-
bat, and Gürbüzbalaban 2021; Yang et al. 2022). Moreover,
the lower complexity bounds have also been studied for cen-
tralized minimax algorithms in (Zhang, Hong, and Zhang
2019; Zhang et al. 2021a; Li et al. 2021). Additionally, more
methods employing variance reduction have been consid-
ered to improve the performance of the stochastic minimax
algorithms, e.g., see (Xu et al. 2020; Huang, Wu, and Huang
2021; Luo et al. 2020; Zhang, Aybat, and Gurbuzbalaban
2022). In this paper, to control the noise accumulation, we
propose DGDA-VR, a decentralized method employing the
SPIDER variance reduction technique (Fang et al. 2018), a
variant of SARAH (Nguyen et al. 2017a).

For the decentralized setting, we summarize some repre-
sentative work for solving the minimax problem in Table 1.
The method GT-DA (Tsaknakis, Hong, and Liu 2020) is pro-
posed for a slightly modified version of (2) in the determin-
istic setting; this method only enforces consensus on xi vari-
ables and as such requires the y-subproblem to be solved to
an increasing accuracy at each iteration. GT-SRVR (Zhang
et al. 2021c) is closely related to DGDA-VR, our proposed

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20866



Method P U Oracle Comp. Comm. Comp. Requirement

GT-DA (Tsaknakis, Hong, and Liu 2020)† FS D Õ
(

nκas

(1−ρ)bsε2

)
Õ

(
κac

(1−ρ)bcε2

)
mult. y-update

GT-SRVR (Zhang et al. 2021c) FS S O
(
n+

√
nκcs

(1−ρ)dsε2

)⋄
O

(
κcc

(1−ρ)dcε2

)
✗

DSGDA (Gao 2022) FS S O
( √

nLκ3

(1−ρ)2ε2

)¶
O

(
Lκ3

(1−ρ)2ε2

)
✗

DPOSG (Liu et al. 2020) S S O
(

σ2

(1−ρt)2ε12

)‡
O

(
σ2

(1−ρt)2ε12

)‡
mult. comm.

DREAM (Chen, Ye, and Luo 2022) S S O
(

Lκ3σ
ε3

)
O

(
Lκ2

√
1−ρε2

)
mult. comm.

This Paper (DGDA-VR) S S O
(

Lκ3σ
min{1/κ,(1−ρ)2}ϵ3

)
O

(
Lκ2

min{1/κ,(1−ρ)2}ε2

)
✗

Lower Bounds◦ S S Ω
(
Lσϵ−3

)
Ω
(

L√
1−ρϵ2

)
✗

Table 1: The P column shows the problem setting: finite-sum (FS) or stochastic (S) –for FS setting, n denotes the number of
component functions. The U column indicates whether stochastic (S) or deterministic (D) gradients are used. Some works do
not explicitly state the dependence upon the spectral gap or condition number –we use constants a, b, c, d > 0 with subscripts s
and c indicating that these unknowns are related to the sample or communication complexities, respectively. An ✗ in the final
column indicates there is no special requirement for the theoretical results to hold. Table notes: †GT-DA considers a slightly
different problem than (2) as consensus is only enforced on {xi} or {yi}; additionally, GT-DA performs deterministic updates;
hence, σ does not appear in the complexity results. ⋄GT-SRVR can remove the dependence upon σ by computing a full gra-
dient periodically. ¶DSGDA uses a variance reduction technique which removes the bounded variance assumption (hence σ
does not appear); however, it is unclear whether this technique can be extended to the stochastic setting. ‡DPOSG considers
the nonconvex-nonconcave problem, hence κ is undefined for this setting; additionally, t > 1 represents the required number
of communications per iteration. ◦ (Arjevani et al. 2022) considers centralized nonconvex minimization problems defined by
functions with Lipshitz gradients and assumes that their stochastic oracles are unbiased and have bounded variance. Similarly,
(Sun, Lu, and Hong 2020) considers a deterministic distributed nonconvex minimization problem under the same conditions.
The oracle complexity of distributed methods cannot be less than that of centralized methods, and the communication complex-
ity of minimax problems cannot be less than that of minimization problems; therefore, their lower bounds apply here.

algorithm; that said, the analysis for GT-SRVR is only pro-
vided for the finite-sum problem, and the dependence upon
important parameters such as κ and ρ is unclear. Simi-
larly, DSGDA (Gao 2022) is proposed for the finite-sum set-
ting, and employs a stochastic gradient estimator from (Li,
Hanzely, and Richtárik 2021), for which it is unclear on how
to theoretically extend to the general stochastic setting. For
the purely stochastic case, DPSOG (Liu et al. 2020) is a gen-
eral method that solves the nonconvex-nonconcave problem,
however, its oracle complexity is sub-optimal. Furthermore,
DPSOG requires multiple communications per iteration in
order to guarantee the convergence to a stationary point.

Comparison with DM-HSGD and DREAM. We provide
a detailed comparison of DGDA-VR to two closely related
methods: DM-HSGD (Xian et al. 2021) and DREAM (Chen,
Ye, and Luo 2022). The recent DM-HSGD (Xian et al. 2021)
algorithm adapts the STORM-type update to the decentral-
ized minimax setting; however, there are several critical er-
rors in their proof which impact their results. First, their
equation (28) does not hold with the given choice of θ. In
fact, θ must depend on L, for which it is not clear whether
their convergence analysis will go through if one chooses
θ = Θ(1/L) to make their equation (28) valid, e.g., in this
scenario the coefficient of E∥ūt∥ becomes positive and can-
not be dropped from the final bound while their convergence
analysis requires this term to be dropped. Second, the algo-

rithm is claimed to solve the minimax problem in (2) such
that y ∈ Y for a convex set Y ⊆ Rm; however, equation
(29) in their Lemma 5 cannot hold unless Y ≜ Rm which
means that at best, their analysis is only applicable to (2)
without simple constraint sets. The recent DREAM (Chen,
Ye, and Luo 2022) is similar to our method in terms of
the variance reduction technique used to reduce the oracle
complexity. However, their proof requires the use of multi-
communication rounds, i.e., rather than using a mixing ma-
trix W (satisfying Assumption 6), each iteration of DREAM
uses WK for K = O(log(M)/(1 − ρ)) which exhibits the
typical behavior of a centralized method.1 Our proof tech-
nique removes such a requirement while ensuring the con-
vergence of DGDA-VR for any connected network.

Preliminaries
Throughout the paper, for notational convenience, we define
z = (x,y) ∈ Rd+m to be the concatenation of the x and y
variables. We start with some basic definitions.

Definition 1. A differentiable function r is L-smooth if
∃L > 0 such that ∥∇r(z)−∇r(z′)∥ ≤ L∥z− z′∥, ∀ z, z′.

Since only stochastic estimates of {∇fi} are available to
the agents, we introduce the concept of a stochastic oracle

1Indeed, for W satisfying Assumption 6, as k → ∞, W k con-
verges linearly to the averaging matrix 1

M
11⊤ ∈ RM×M .
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and state our assumptions on the oracle below.

Definition 2. For all i ∈ [M ], given a random sample ξ,
we define the stochastic oracle of ∇fi(x,y) at (x,y) to be
∇̃fi(x,y; ξ). Additionally, given a set of random samples B,

Gi(B) ≜
1

|B|
∑
ξ∈B

∇̃fi(xi,yi; ξ) (3)

is the averaged stochastic estimator for ∇fi(xi,yi) with
random samples B. Gt

i(B) denotes (3) evaluated at (xt
i,y

t
i).

Below we state our assumptions on the functions {fi}i∈V
and their stochastic gradient oracles and also, assumptions
on the primal objective Φ(·) and the mixing matrix W .

Assumption 1. There exists L > 0 such that fi : Rd+m →
R is L-smooth for all i ∈ [M ].

Assumption 2. There exists µ > 0 such that fi(x, ·) is µ-
strongly concave for all fixed x and i ∈ [M ].

Remark 1. Assumptions 1 and 2 imply that f is L-smooth
and f(x, ·) is µ-strongly concave for all x.

Definition 3. The condition number of (1) is κ ≜ L/µ. The
primal function is defined as Φ(·) ≜ maxy f(·,y).
Assumption 3. Φ is lower bounded, i.e., infx Φ(x) > −∞.

Assumptions 1, 2, and 3 are standard in the minimax
literature, e.g., see (Li et al. 2021). For all i ∈ [M ], we
make the following assumptions for the stochastic oracles
∇̃fi(x,y; ξ) (see Definition 2).

Assumption 4. The stochastic gradients are unbiased and
have finite variance. Namely, there exists σ > 0 such that
for all i ∈ [M ] and for any z = (x,y) ∈ Rd+m, the
stochastic gradient ∇̃fi(z; ξ) satisfies the conditions:

1. E
[
∇̃fi(z; ξ) | z

]
= ∇fi(z);

2. E
[
∥∇̃fi(z; ξ)−∇fi(z)∥2 | z

]
≤ σ2.

Assumption 4 is common in the literature, e.g., (Can, Gur-
buzbalaban, and Aybat 2022; Fallah, Ozdaglar, and Pattathil
2020; Yang et al. 2022), and satisfied when gradients are
estimated from randomly sampled data points with replace-
ment. We also make the following assumption on fi.

Assumption 5. Given random ξ, for any z, z′ ∈ Rd+m, we
assume E[∥∇̃fi(z; ξ)− ∇̃fi(z

′; ξ)∥2] ≤ L2E[∥z− z′∥2].
Indeed, Assumptions 4 and 5 imply Assumption 1 holds,

see section 2.2 in (Tran-Dinh et al. 2022b). Finally, we state
our assumptions on the mixing matrix W ∈ RM×M .

Assumption 6. Consider a connected network G ≜ (V, E),
where V denotes the set of M agents and E ⊆ V × V is the
set of edges. An ordered pair (i, j) ∈ E if agent i can directly
communicate with agent j. Let W ≜ (wij)∈ RM×M be a
matrix with non-negative entries such that

1. (Decentralized property) If (i, j) /∈ E , then wij = 0;
2. (Doubly stochastic property) W1 = 1 and W⊤1 = 1;
3. (Spectral property) ρ ≜ ∥W −Π∥2 ∈ [0, 1);

where Π ≜ 1
M 11⊤ ∈ RM×M denotes the average operator.

Algorithm 1: DGDA-VR
1: Input: Z0, {ηx, ηy}, {S1, S2, q, T}
2: for t = 0, 1, 2, ..., T − 1 do
3: Xt+1 = WXt − ηxD

t
x

4: Y t+1 = WY t + ηyD
t
y

5: if mod(t, q) = 0 then
6: Let Ct+1

i be random samples with |Ct+1
i | = S1

7: vt+1
i = Gt+1

i (Ct+1
i ), ∀i ∈ [M ]

8: else
9: Let Bt+1

i be random samples with |Bt+1
i | = S2

10: vt+1
i = Gt+1

i (Bt+1
i )−Gt

i(B
t+1
i ) + vt

i , ∀i ∈ [M ]
11: end if
12: Dt+1

x = W (Dt
x + V t+1

x − V t
x )

13: Dt+1
y = W (Dt

y + V t+1
y − V t

y )

14: end for
15: Output:(Xτ , Y τ ), where τ is selected from

{0, . . . , T − 1} uniformly at random

Notice that W is not assumed to be symmetric; hence, As-
sumption 6 covers both strongly-connected weight-balanced
directed networks and undirected ones (Xin, Khan, and Kar
2021a). This is a weaker assumption compared to some re-
lated papers (Liu et al. 2020; Zhang et al. 2021b; Chen, Ye,
and Luo 2022), which require a symmetric W and hence are
only theoretically applicable to undirected networks.

Indeed, the main problem in (1) is equivalent to
minx Φ(x). Moreover, the norm of the gradient of the primal
function Φ(x), i.e., ∥∇Φ(x)∥, is widely used as the conver-
gence metric in the algorithmic analysis for nonconvex min-
imax problems in the literature. Given that we solve (2), we
quantify the consensus errors among the agents related to
the average point z̄ = (x̄, ȳ) and also ∥∇Φ(x̄)∥.

DGDA-VR Method
We introduce our proposed Decentralized Gradient Decent
Ascent - Variance Reduction, DGDA-VR, method in Algo-
rithm 1 for solving (2). Specifically, through local compu-
tations and communicating with neighboring agents, each
agent-i for i ∈ [M ] iteratively updates its local variable
zi ≜ (xi,yi) ∈ Rd+m – its value at iteration t ∈ N is
denoted by zti ≜ (xt

i,y
t
i) ∈ Rd+m. For notational conve-

nience, we define the following terms.
Definition 4. (Xt, Y t), Dt, V t ∈ RM×(d+m) such that

Xt ≜ [xt
1, . . . ,x

t
M ]⊤, Y t ≜ [yt

1, . . . ,y
t
M ]⊤,

V t ≜ [vt
1, . . . ,v

t
M ]⊤, Dt ≜ [dt

1, . . . ,d
t
M ]⊤,

where (Xt, Y t) denotes the iterates of DGDA-VR displayed
in Algorithm 1, dt

i = (dt
x,i,d

t
y,i) denotes the gradient-

tracking term, and vt
i = (vt

x,i,v
t
y,i) denotes the SPIDER-

type stochastic gradient estimates of agent-i at iteration t ∈
N. Let Zt =

(
Xt, Y t

)
∈ RM×(d+m) for t ∈ N.

Definition 5. For t ≥ 0, given a matrix Xt ∈ RM×d, we
define X̄t ≜ Π(Xt), i.e., let

x̄t ≜
1

M

M∑
i=1

xt
i, X̄t = 1x̄t⊤, X⊥≜Xt − X̄t, (4)
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and {Ȳ t, Y t
⊥, Z̄

t, Zt
⊥, D̄

t, Dt
⊥, V̄

t, V t
⊥} is defined similarly.

Notice that under Assumption 6, Algorithm 1 implies that
x̄t+1 = x̄t − ηxd̄

t
x, d̄t+1

x = d̄t
x + v̄t+1

x − v̄t
x,

ȳt+1 = ȳt + ηyd̄
t
y, d̄t+1

y = d̄t
y + v̄t+1

y − v̄t
y,

(5)

hold for all t ≥ 0. Moreover, when d̄0 = v̄0, it holds that
d̄t = v̄t for t ∈ N; thus, in such scenarios, we have
x̄t+1 = x̄t − ηxv̄

t
x, ȳt+1 = ȳt + ηyv̄

t
y, ∀ t ∈ N. (6)

Main Results
In a multi-agent system, for any ϵ > 0, our aim for each
agent-i is to compute zi(ϵ) =

(
xi(ϵ),yi(ϵ)

)
such that

E
[
∥∇Φ(x̄ϵ)∥

]
≤ ϵ, (7a)

E
[
∥ȳϵ − y∗(x̄ϵ)∥2

]
= O(ϵ2), (7b)

E
[ M∑

i=1

∥zi(ϵ)− z̄ϵ∥2
]
= O(ϵ2), (7c)

where z̄ϵ = (x̄ϵ, ȳϵ) ≜ 1
M

∑M
i=1

(
xi(ϵ),yi(ϵ)

)
and

y∗(·) ≜ argmax
y

f(·,y) (8)

denotes the best-response function. We show that DGDA-VR
can indeed generate {zi(ϵ)}i∈V such that (7) holds. More
importantly, in the decentralized optimization context, let Tϵ

denote the minimum number of communication rounds re-
quired to compute {xi(ϵ)}i∈V satisfying (7) in a decentral-
ized manner — in each communication round, each agent-i
transmits two vectors of size (d+m) to its neighbors, i.e., zti
and dt

i. According to DGDA-VR, Tϵ communication rounds
require each agent-i to make Cϵ ≜ ⌈Tϵ

q ⌉S1 + TϵS2 calls to
its stochastic oracle ∇̃fi. Our aim is to provide bounds on
the expected communication and oracle complexities, i.e.,
Tϵ and Cϵ. Moreover, we will provide precise bounds on the
dual suboptimality as in (7b) and on the consensus violation
(the deviation from the average) for {zi(ϵ)}i∈V as in (7c).
The result below shows our guarantee on (7a).
Theorem 1. Suppose Assumptions 1-6 hold, and {ηx, ηy}
and {S1, S2, q} are chosen such that

ηy = Θ

(
1

L
min

{
(1− ρ)2,

1

κ

})
, ηx = Θ

( ηy
κ2

)
,

S1 = Θ

(
κ2σ2

ϵ2

)
, S2 ≥ q, q ≥ 1.

(9)

Given ϵ > 0, there exists Tϵ ∈ N such that

Tϵ = O
(
max

{
1

ηx
,
Lκ

ηy
,

L2κ2

(1− ρ)M

}
ϵ−2

)
,

and {Xt}Tt=0 generated by DGDA-VR satisfies

1

T

T−1∑
t=0

E
[
∥∇Φ(x̄t)∥

]
≤ ϵ, ∀ T ≥ Tϵ, (10)

where x̄t is defined in (4).
Remark 2. Without loss of generality, L ≥ 1. Indeed, As-
sumption 5 holds for all L̂ such that L̂ ≥ L; therefore,

Tϵ = O
( max{Lκ2, L2κ}
min{1/κ, (1− ρ)2} · 1

ϵ2

)
.

Given T = Tϵ, S1 and S2 ≥ q, the optimal q = Θ(
√
S1) =

Θ
(

κσ
ϵ

)
and S2 = Θ(q), so TS2 + TS1/q ∼ 2TS2 =

O
(

max{Lκ3,L2κ2}σ
min{1/κ,(1−ρ)2}ϵ3

)
.

The result below shows our guarantee on (7b) and (7c).
Theorem 2. Under the premise of Theorem 1,

1

T

T−1∑
t=0

E[∥Zt
⊥∥2F ] = O

(
Mϵ2/(L2κ2)

)
, ∀ T ≥ Tϵ, (11)

1

T

T−1∑
t=0

E[∥yt − y∗(x̄t)∥2] = O(ϵ2/L2), ∀ T ≥ Tϵ, (12)

where Λ0 ≜ max{∥Z0
⊥∥2F , ∥D0

⊥∥2F }.

Remark 3. Let τϵ be a random variable with a uni-
form distribution over {0, . . . , Tϵ − 1}. Then (10) im-
plies that E

[
∥∇Φ(x̄τϵ)∥

]
≤ ϵ. Furthermore, we also have

E[∥Zτϵ
⊥ ∥F ] = O(ϵ) and E[∥yτϵ − y∗(x̄τϵ)∥] = O(ϵ).

Remark 4. Since the final complexity bound depends on
the choice of ηx, ηy, S1, S2, q, we evaluate the tightness of
our results by comparing these parameters with those in
related work. Our selection of the VR parameters S1 =
O(κ2ϵ−2), S2 = O(κϵ−1), q = O(κϵ−1) is consistent with
the optimal choice in single-loop centralized VR methods,
e.g., (Luo et al. 2020). The time-scale ratio ηy/ηx = κ2

aligns with the ratios used in existing works on GDA meth-
ods (Lin, Jin, and Jordan 2020). To adapt the GDA to the
decentralized setting, we have introduced a factor of 1

κ into
the selection of ηy . DREAM can set ηy = 1

L but requires
multi-communication rounds. It is not yet clear if this cost
can be further reduced, and whether 1

κ represents the opti-
mal adjustment – nevertheless, our analysis seems to be tight
when compared to the existing results.

Numerical Experiments
We test our proposed method on three problems: a quadratic
minimax problem, robust non-convex linear regression, and
robust neural network training. For the first and third prob-
lem, we let M = 8 such that each agent is represented
by an NVIDIA Tesla V100 GPU. For the second problem,
we test methods in a serial manner to facilitate more gen-
eral reproducibility; here, we let M = 20. In all cases,
we use a ring (cycle) graph with equal weights on edges
including self loops, i.e., wi,i−1 = wi,i = wi,i+1 =
1/3 for all i ∈ [M ]. The learning rates for all tests
are chosen such that ηy ∈ {10−1, 10−2, 10−3} and we
tune the ratio ηx

ηy
∈ {1, 10−1, 10−2, 10−3}. We test our

proposed method against 3 methods: DPSOG (Liu et al.
2020), DM-HSGD (Xian et al. 2021), and the determinis-
tic GT/DA (Tsaknakis, Hong, and Liu 2020). The code is
made available at https://github.com/gmancino/DGDA-VR.

A Polyak-Lojasiewicz game
We consider a slightly modified version of the two-
player Polyak-Lojasiewicz game from (Chen, Yao, and Luo
2022). Namely, we make the problem decentralized by
letting each agent i ∈ [M ] contain a dataset of triples
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Figure 1: Pictures 1-6 are for the PL game (13). Pictures 7-10 for the robust non-convex linear regression model (15); the first
two correspond to the a9a dataset, while the last two correspond to the ijcnn1 dataset. Pictures 11-16 for the robust neural
network training problem (16). The arrangement of these pictures follows a left-to-right, then top-to-bottom order.

{(pij ,qij , rij)}nj=1 where each vector lies in Rd. For all
i ∈ [M ], let fi : Rd × Rd → R such that

fi(xi,yi) =
1

2
(xi)

⊤Pixi −
1

2
(yi)

⊤Qiyi + (xi)
⊤Riyi, (13)

where Pi = 1
n

∑n
j=1 pijp

⊤
ij , Qi = 1

n

∑n
j=1 qijq

⊤
ij + αI,

Ri = 1
n

∑n
j=1 rijr

⊤
ij for some α > 0 which guarantees

the problem is strongly-concave in y; we choose α = 1
for these experiments. Data is generated in the same man-
ner as in (Chen, Yao, and Luo 2022)2 to guarantee that
Pi is singular; hence, the problem is not strongly-convex
in x. Here, n = 1,000 and we fix the mini-batch size
for all methods to be 1 (besides GT/DA). For our pro-
posed method, we set q = S1 = 100. We run each algo-
rithm for 50,000 iterations and plot the results of 50 epochs
(one pass over the whole dataset through sampling is an

2See https://github.com/TrueNobility303/SPIDER-GDA/blob/
main/code/GDA/pl data generator.m

epoch) for each method. We measure the stationarity viola-
tion as ∥

∑M
i=1 ∇xfi(x̄,y

(∗))∥22+∥X⊥∥2F +∥Y⊥∥2F , where
y(∗) ≜ argmaxy

∑M
i=1 fi(x̄,y) for x̄ = 1

M

∑M
i=1 xi. Re-

sults shown in Figure 1 demonstrate that DGDA-VR is com-
petitive against SOTA for computing a stationary point.
Sensitivity Analysis To assess the influence of graph
connectivity, we compared DGDA-VR against DM-HSGD
on random connected graphs, generated such that there
is an edge between any two nodes with probability p ∈
{0.05, 0.95} — corresponding to low and high connectivity
scenarios, respectively. For each p, we generate 15 random
graphs of size M ∈ {8, 20} – the average value of ρ over 15
realizations is 0.94, 0.97, 0.16, 0.1 for (p,M) combinations
(0.05, 8), (0.05, 20), (0.95, 8), (0.95, 20), respectively. The
first two plots in Fig. 2 report the sum of squared norms of
the x and y consensus violations against the oracle complex-
ity. In addition, we generate 15 random graphs for M = 8
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Figure 2: Sensitivity analysis results for the PL game (13). The first two plots show the sensitivity analysis in terms of graph
connectivity ρ, while the last three show the sensitivity analysis in terms of the batchsizes S1, S2 and the frequency q. Here,
oracle complexity refers to data points visited.

and p = 0.6, i.e., moderate connectivity with ρ ≈ 0.63, to
test DGDA-VR using low, moderate, high levels for each pa-
rameter S1, S2, q while fixing the other two at the moderate
level. Results are reported in the last three plots of Fig. 2
which show that our method is not sensitive to the choice of
hyper-parameters S1, S2, q.

Robust Machine Learning
We consider two robust machine learning problems: non-
convex linear regression with tabular data and neural net-
work training with image data. Let each agent i ∈ [M ] con-
tain a dataset of points and labels denoted by {(aij , bij)}nj=1

where bij is the class label of data point aij . For these prob-
lems, y(∗)

i ≜ argmaxyi fi(x,yi) is not easily computable;
as a proxy, we report the stationarity violation using

∥
M∑
i=1

∇fi(x̄, ȳ)∥22 + ∥X⊥∥2F + ∥Y⊥∥2F . (14)

Robust Non-convex Linear Regression We consider
training a robust version of the non-convex linear regression
classifier from (Sun, Lu, and Hong 2020). For i ∈ [M ], let

fi(xi,yi) =
1

n

n∑
j=1

ln

((
bij − x⊤

i (aij + yi)
)2

/2 + 1

)
−α

2
∥yi∥22

(15)
where bij ∈ {−1,+1} and α > 0 is a penalty term which
guarantees that fi is strongly-concave in yi –we set α = 1
for these experiments. The y variable acts as a perturbation
to the data; hence, we seek to minimize the loss on the worst-
case data perturbation. We test DGDA-VR on two datasets:
a9a and ijcnn13. We fix the mini-batch to be 32 for all meth-
ods beside GT/DA and set S1 = 1,000, q = 32 for our
method. We run each method for 5,000 iterations and plot
the results of 50 epochs for each method. Results shown in
Figure 1 demonstrate that in contrast to DGDA-VR, the main
bottleneck for other methods is to achieve consensus among
agents.

3See: https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/

Robust Neural Network Training We consider a slightly
modified version of the robust neural network training prob-
lem from (Deng and Mahdavi 2021; Sharma et al. 2022). For
all i ∈ [M ], let

fi(xi,yi) =
1

n

n∑
j=1

ℓ (gxi(aij + yi), bij)−
α

2
∥yi∥22, (16)

where gxi is a neural network parameterized by xi, ℓ is the
cross-entropy loss function, and α > 0 is a penalty parame-
ter which guarantees that fi is strongly-concave in yi –we
set α = 1 for these experiments. Inspired by (Deng and
Mahdavi 2021), we adopt gxi

corresponding to a two-layer
network (200 hidden units) with a tanh activation function,
and we use the MNIST (LeCun 1998) dataset for training.
We fix the mini-batch size for all methods to be 100 (besides
GT/DA). For DGDA-VR, we set q = 100 and S1 = 7, 500.
We run each algorithm to 50,000 iterations and plot the
results of 500 epochs for each method. Results shown in
Figure 1 verify that DGDA-VR is competitive against the
stochastic methods and still outperforms the deterministic
method in terms of data passes required to compute a near
stationary point.

Conclusion
In this work, we proposed a Decentralized Gradient Decent
Ascent - Variance Reduction method, DGDA-VR, for solving
the stochastic nonconvex strongly-concave minimax prob-
lem over a connected network of M computing agents. Un-
der the assumption that the computing agents only have
access to stochastic first-order oracles, our method incor-
porates variance reduction and gradient tracking to jointly
optimize the sample and communication complexities to
be O

(
ϵ−3

)
and O

(
ϵ−2

)
, respectively, for reaching an ϵ-

accurate solution. For the class of problems considered here,
this is the first work which does not require multiple coor-
dinated communications in each iteration to achieve these
optimal complexities.
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