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Abstract

Most pre-trained learning systems are known to suffer from
bias, which typically emerges from the data, the model, or
both. Measuring and quantifying bias and its sources is a
challenging task and has been extensively studied in image
captioning. Despite the significant effort in this direction, we
observed that existing metrics lack consistency in the inclusion
of the visual signal. In this paper, we introduce a new bias
assessment metric, dubbed ImageCaptioner2, for image cap-
tioning. Instead of measuring the absolute bias in the model
or the data, ImageCaptioner2pay more attention to the bias
introduced by the model w.r.t the data bias, termed bias am-
plification. Unlike the existing methods, which only evalu-
ate the image captioning algorithms based on the generated
captions only, ImageCaptioner2incorporates the image while
measuring the bias. In addition, we design a formulation for
measuring the bias of generated captions as prompt-based
image captioning instead of using language classifiers. Fi-
nally, we apply our ImageCaptioner2metric across 11 differ-
ent image captioning architectures on three different datasets,
i.e., MS-COCO caption dataset, Artemis V1, and Artemis
V2, and on three different protected attributes, i.e., gender,
race, and emotions. Consequently, we verify the effective-
ness of our ImageCaptioner2metric by proposing Anonymous-
Bench, which is a novel human evaluation paradigm for bias
metrics. Our metric shows significant superiority over the re-
cent bias metric; LIC, in terms of human alignment, where
the correlation scores are 80% and 54% for our metric and
LIC, respectively. The code and more details are available at
https://eslambakr.github.io/imagecaptioner2.github.io/.

Introduction
Most deep learning (DL) benchmarks (Deng et al. 2009) (Lin
et al. 2014) (Cireşan et al. 2011) (Kuznetsova et al. 2020)
(Liao, Xie, and Geiger 2022) are designed to rank differ-
ent architectures based on accuracy, neglecting other aspects
such as fairness. Recently, measuring the bias and under-
standing its sources have attracted significant attention due to
models’ social impact (Alvi, Zisserman, and Nellåker 2018)
(De Vries et al. 2019) (Khan and Fu 2021) (Stock and Cisse
2018) (Thong and Snoek 2021) (Wang et al. 2022) (Yang
et al. 2020) (Du et al. 2022) (Schick, Udupa, and Schütze
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Figure 1: An abstract overview for our metric pipeline. The
GT stream is in green, and the prediction stream is in blue.
Given an input image, the associated GT-caption, and the
predicted caption, a text pre-processing module is utilized to
refine the captions before feeding them to the prompt-based
image captioners. The text pre-processing module performs
two main functionalities: 1) Masking the protected-attribute
indicative words. 2) Appending the prompt template to the
caption. Finally, bias-amplification module is utilized to mea-
sure the model bias Bm w.r.t the GT bias Bd.

2021). For instance, image captioners may learn shortcuts
based on correlation, which inevitably suffers from unreliable
associations between protected attributes, e.g., gender, and
visual or textual clues (Zhao et al. 2017; Wang et al. 2019).

Recent efforts focus on estimating model bias, driven by
the fact that more than balanced data is needed to create unbi-
ased models (Wang et al. 2019). Bias (Zhang et al. 2023;
Bolukbasi et al. 2016; Caliskan, Bryson, and Narayanan
2017) is characterized by the model’s representation of dif-
ferent subgroups when generating the supergroup, such as as-
sessing whether it equally depicts men and women in images
of people. The primary cause of bias stems from spurious
correlations captured during training. we are interested in
the spurious correlation found within ordinary daily scenes,
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which typically do not evoke bias concerns. Accordingly,
BA (Zhao et al. 2017), DBA (Wang and Russakovsky 2021),
and LIC (Hirota, Nakashima, and Garcia 2022) measure the
model bias w.r.t the bias in the training dataset. In other words,
they emphasize the bias introduced by the model regardless
of the bias in the ground-truth dataset. Therefore, detecting
and measuring the bias is the first step toward a reliable and
accurate image captioner.

BA (Zhao et al. 2017) and DBA (Wang and Russakovsky
2021), calculate the co-occurrence frequency of protected
bias attribute and detected objects in the picture or some
specific words in the caption as a bias score. An apparent
limitation of these evaluations is that only limited visual or
language contexts are used for computing the statistics. Con-
sequently, several learnable bias measurements have been
proposed recently (Zhao, Wang, and Russakovsky 2021; Hi-
rota, Nakashima, and Garcia 2022; Wang et al. 2019). The
basic assumption of this line of work is that if the bias at-
tribute category, e.g., gender, can be inferred through context
even if the attribute feature does not exist, then it indicates
that the model is biased. For instance, the recent work, LIC
(Hirota, Nakashima, and Garcia 2022), estimates the bias in
image captioning models using trainable language classifiers,
e.g., BERT(Devlin et al. 2018).

Consequently, measuring the bias in image captioning is
notably challenging due to the task’s multimodal nature. Even
though significant progress has been achieved in quantifying
the bias and its amplification in image captioning models, it
remains to be investigated how to properly measure the bias
amplified by the image captioning model over the dataset
from both the vision and language modalities.

The existing bias metrics quantify the bias only from the
language side, where the image stream is omitted while mea-
suring the bias. Discarding the visiolinguistic nature of the
task in the metric may result in misleading conclusions. Ad-
dressing these limitations, we propose a novel bias metric
termed ImageCaptioner2, which incorporates the visiolinguis-
tic nature of the image captioning task by utilizing an image
captioner instead of a language classifier.

In addition to filling the multi-modalities gap in the exist-
ing bias metrics, ImageCaptioner2 better matches the under-
lying pre-training model, by proposing a prompt-based image
captioner, i.e., the training objective is text generation. In con-
trast, the existing bias metric, e.g., LIC, utilizes a language
classifier trained for a different objective, i.e., classification
objective; this leads to a potential under-utilization of the
pre-trained model we assess. In other words, our proposed
metric provides textual prompts that bring the evaluation task
closer to the pre-training task.

Experimentally, we evaluate our metric through compre-
hensive experiments across 11 different image captioning
techniques on three different datasets, i.e., MS-COCO cap-
tion dataset(Lin et al. 2014), ArtEmis V1 (Achlioptas et al.
2021), and ArtEmis V2 (Mohamed et al. 2022), and on three
different protected attributes, i.e., gender, race, and emo-
tions. In addition, we introduce consistency measures to judge
which learnable metric is more consistent against classifiers
variations: 1) Introducing conflict-score to count the number
of mismatches between different classifiers. 2) Introducing

Ranking Consistency, which utilizes Pearson correlation. In
comparison to LIC, we show that based on the consistency
measures, our method is more consistent than LIC, where the
correlation ratio is 97% and 92%, respectively. Consequently,
we verify the effectiveness of our ImageCaptioner2 metric
by proposing AnonymousBench, depicted in Figure 2, which
is a novel human evaluation paradigm for bias metrics. Our
metric shows significant superiority over the recent bias met-
ric; LIC, in terms of human alignment, where the correlation
scores are 80% and 54% for our metric and LIC, respectively.

Our contributions can be summarized as follows:
• We develop a novel bias metric called ImageCaptioner2,

depicted in Figure 1. To the best of our knowledge,
ImageCaptioner2 is the first metric that is formulated
based on the visiolinguistic nature of the image captioning
while quantifying the bias.

• We propose a prompt-based image captioner that better
matches the underlying pre-training model we assess.

• Propose AnonymousBench to verify the effectiveness of
our ImageCaptioner2 metric, depicted in Figure 2.

• We propose a new scoring function that matches the ob-
jective of measuring the bias.

• We apply our metric across 11 different image captioning
techniques on three different datasets, i.e., MS-COCO
caption dataset, Artemis V1, and Artemis V2, and on
three different attributes, i.e., gender, race, and emotions.

Revisiting Fairness Metrics
In recent years, there have been rapid efforts toward designing
robust fairness metrics. Nonetheless, all the existing metrics
suffer from severe limitations that make them far from being
reliable; therefore, in this paper, we take one step toward
designing a more robust and reliable metric. In this section,
we first cover the different taxonomies of the existing fairness
metrics in image captioning. Then, we dissect them to show
their limitations, which raises several questions.

Taxonomy of Fairness Metrics
We classify the fairness metrics into three categories:
Source-Agnostic Vs. Source-Identification metrics.
Women also Snowboard (Hendricks et al. 2018), and GAIC
(Tang et al. 2021) assume access to the bias attribute in the
predicted captions while measuring the misclassification
rate. Accordingly, such metrics can not identify the bias
source, which is crucial in designing a debiasing technique.
In contrast, methods that rely on a pre-trained language
model to determine whether the model is biased or not,
such as (Zhao, Wang, and Russakovsky 2021), LIC (Hirota,
Nakashima, and Garcia 2022), and (Wang et al. 2019), or the
methods that rely on calculating the co-occurrences, i.e., BA
(Zhao et al. 2017) and DBA (Wang and Russakovsky 2021),
have the capability of determining the source of the bias.
Learnable Vs. Non-Learnable metrics. (Zhao, Wang, and
Russakovsky 2021) studies the racial bias, i.e., lighter and
darker, by utilizing a dedicated classifier to predict the race
based on the predicted caption. In addition, LIC (Hirota,
Nakashima, and Garcia 2022), and (Wang et al. 2019) train
additional language classifiers to measure the bias in the data
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Figure 2: AnonymousBench. Part A is the detailed pipeline which demonstrates how our novel benchmark is collected. First
annotators are asked to write a set of anonymous descriptions, then the generated prompts are fed to a text-to-image model to
generate the images. Finally, as a verification step, the same annotators are asked again to filter out the gender or race recognizable
images. Part B demonstrates some random samples of AnonymousBench.

and the model. In contrast, Women also Snowboard (Hen-
dricks et al. 2018), GAIC (Tang et al. 2021), BA (Zhao et al.
2017), and DBA (Wang and Russakovsky 2021) do not uti-
lize any additional learnable parameters to measure the bias.
Women also Snowboard (Hendricks et al. 2018) defines the
error rate as the number of gender misclassifications, i.e.,
whether the protected attribute words have been correctly pre-
dicted in the generated caption or not. Consequently, GAIC
(Tang et al. 2021) formulates the gender bias as the differ-
ence in performance between the subgroups of a protected
attribute, e.g., GAIC (Tang et al. 2021) creates three groups
for gender: male, female, and not-specified. BA (Zhao et al.
2017) and DBA (Wang and Russakovsky 2021) calculate the
co-occurrence between the desired bias attribute, e.g., gender,
and the predicted caption.

Absolute-Bias Vs. Bias-Amplification. Another compari-
son criterion is whether the metric measures the magnitude
of the bias introduced by the model over the bias already
existing in the data. This type of metric can be interpreted
as Bias-amplification metrics (Zhao et al. 2017) (Wang and
Russakovsky 2021) (Hirota, Nakashima, and Garcia 2022)
(Wang et al. 2019), where it answers the following ques-
tion: "Does the model introduce extra bias than ground-truth
dataset?" To this end, these models ground the model bias
score to the data bias score. In contrast, (Zhao, Wang, and
Russakovsky 2021) (Hendricks et al. 2018) (Tang et al. 2021)
do not provide this valuable information; that’s why we call
them absolute-bias metrics.

Fairness Metrics Limitations
Table 1 summarizes the existing bias metric limitations.
Ignore Multi-Modality. Image captioning is a multi-modal
task, making evaluating its bias and determining its source
more challenging. However, to the best of our knowledge,
non-of the existing image captioning bias metrics (Hendricks
et al. 2018) (Tang et al. 2021) (Zhao, Wang, and Russakovsky
2021) (Zhao et al. 2017) (Wang and Russakovsky 2021)
(Hirota, Nakashima, and Garcia 2022), as shown in Table
1, include the image while measuring the bias. All of them
degrade the captioning task to a text generation task, which is
a flawed approximation. Driven by this, we propose a novel
metric termed ImageCaptioner2, which respects the multiple
modalities nature of the image captioning task by including
both the image and the text while measuring the bias. In other
words, we instead argue for a formulation of measuring the
bias of generated caption from the image captioning model
as a prompt-based image captioning task.
Limited context. Women also Snowboard (Hendricks et al.
2018), GAIC (Tang et al. 2021), BA (Zhao et al. 2017), and
DBA (Wang and Russakovsky 2021) achieve a consistent
performance as they use a fixed formula while computing the
bias, e.g., co-occurrence, instead of using learnable classifiers,
however, they measure the bias based on the appearance
of the protected attributes in the caption and discard the
rest of the caption in their bias formula. In contrast, our
metric ImageCaptioner2, considers the entire context while
measuring the bias and determining its sources.
Inconsistency. A reliable evaluation metric should have the
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Method Women also
snowbard GAIC Understanding

racial biases BA DBA LIC Ours

Full-Context ✗ ✗ ✓ ✗ ✗ ✓ ✓
Multi-Modal ✗ ✗ ✗ ✗ ✗ ✗ ✓
Consistency ✓ ✓ ✓ ✓ ✓ ✗ ✓
Learnable ✗ ✗ ✓ ✗ ✗ ✓ ✓

Amplification Magnitude ✗ ✗ ✗ ✓ ✓ ✓ ✓

Table 1: Comparison of various bias metrics, i.e. Women also snowbard (Hendricks et al. 2018), GAIC (Tang et al. 2021),
Understanding racial biases (Zhao, Wang, and Russakovsky 2021), BA (Zhao et al. 2017), DBA (Wang and Russakovsky 2021),
LIC (Hirota, Nakashima, and Garcia 2022). Where Full-Context indicates, the whole caption is utilized, not only protected
attributes. Multi-Modal reveals the metric incorporates the image alongside the text while measuring the bias of image captioning
models. Consistency means the metric gives the same results on multiple runs. Learnable determines whether the metric exploits
additional learnable parameters, e.g., language classifiers. Finally, Amplification-Magnitude demonstrates the metric provides
information regarding the extra bias introduced by the model over the data.

following characteristics: 1) Encapsulated: could be applied
to any method without assuming access to its internal parame-
ters or weights. 2) Consistent and reliable: must give the same
result and conclusion regardless of the multiple runs. We no-
ticed an inconsistency in LIC (Hirota, Nakashima, and Gar-
cia 2022), when varying the language encoders, where two
language encoders are utilized as classifiers; BERT (Devlin
et al. 2018), and LSTM (Hochreiter and Schmidhuber 1997).
For instance, based on the results reported in the LIC paper
(Hirota, Nakashima, and Garcia 2022), when the LSTM clas-
sifier is utilized, the LIC score indicates that the Transformer
(Vaswani et al. 2017) is better than the UpDn (Anderson et al.
2018), where the LIC score is 8.7 and 9, respectively, as the
lower LIC score indicates a better model. While based on the
BERT classifier, the UpDn (Anderson et al. 2018) is much
better than the Transformer (Vaswani et al. 2017), where
the LIC score is 4.7 and 5.9, respectively. This motivates us
to propose a more robust metric, termed ImageCaptioner2,
which, as shown in Table 1, belongs to the bias-amplification,
learnable, and source-identification families.

Prompt-Based Bias Amplification Metric
Based on the aforementioned analysis and limitations, several
questions and concerns arose:
1. Can we regard the multi-modality nature by incorporating

the image while measuring the bias introduced by the
image captioning models? To this end, we utilize the
image captioning model to assess the bias introduced
by the image captioning model, dubbed ImageCaptioner2.

2. Can we design a bias metric that better matches the un-
derlying pre-training model we assess? To this end, we
design a formulation of measuring the bias of generated
caption as prompt-based image captioning instead of us-
ing language classifiers (Hirota, Nakashima, and Garcia
2022).

3. Can we assess the inner bias of a model without introduc-
ing any additional parameters? To this end, we show an
interesting property of our metric, called Self-Assessment,
where we use the same image captioning model we need
to assess to measure its own bias.

4. Does the existing scoring function match the objective of
measuring the bias?

ImageCaptioner2

Driven by the aforementioned limitations, we pro-
pose a prompt-based bias amplification metric, termed
ImageCaptioner2.
Bias-Amplification. We not only measure the severity of
the bias in predicted captions but also detect the source of
the bias. That means, on one hand, we measure the bias
from the dataset; on the other hand, we estimate the bias of
the caption model. As shown in Figure 1, two streams are
utilized to evaluate an arbitrary image captioning model; 1)
ground-truth stream (In green), 2) model stream (In blue).
To measure the caption model bias Bm w.r.t the ground-
truth bias Bd, a bias-amplification module is utilized, i.e.,
subtraction operation; Bamp = Bm − Bd. Other relational
operator can be utilized, e.g., division, however the division
could be thought of as a normalized version of the subtraction;
Bm

Bd
∝ Bm−Bd

Bd
. The normalized version will make it hard to

compare performances across different datasets, but provide
similar meaning if the dataset is fixed.
Text Pre-processing. As shown in Figure 1, given an input
image, the associated GT-caption, and the predicted caption,
a text pre-processing module is utilized to refine the captions
before feeding them to the prompt-based image captioners.
The text pre-processing module performs two main function-
alities: 1) Masking the protected-attribute indicative words.
2) Appending the prompt template to the caption. We hypoth-
esize that if the fed captions are not biased, whether GT or
predicted captions, then an arbitrary protected-attribute clas-
sifier performance should be around the random performance.
Therefore, masking the protected-attribute indicative words
is essential to make our hypothesis reasonable. For instance,
if we are concerned by the gender bias, and the input caption
is “A man sitting in front of his laptop computer”, then the
output of the masking operation should be “A [MASK] sitting
in front of [MASK] laptop computer”, where all the words
that reveal gender information are replaced by mask token.
Image Matters. As shown in Table 1, all the existing metrics
ignore the image stream while measuring the bias. This moti-
vates us to propose a metric that respects the multi-modality
nature by incorporating the input image. In other words, we
design a formulation of measuring the bias in the caption as
an image captioning task, not a plain text generation task.
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Therefore, in contrast to the existing bias metrics, we are
the first work that assesses the image captioning bias using
image captioner instead of language classifiers.
Bias image masking. Consequently, masking the input image
is as vital as masking the protected-attribute indicative words.
To ensure our hypothesis is valid, we prevent all leakage
sources, i.e., images and text. We assume access on bounding
boxes or segmentation masks to mask the protected attribute
visual clues. However, this assumption is practical as most
of the existing image captioning models inherently contain
an object detection phase, which we can utilize. Figure 1
demonstrates an example of a masked image.

Prompt Implementation
Motivation. One possible solution to adapt the image cap-
tioner to judge whether the model is biased is to stack a
classification head. A key drawback of this solution is that
the added classifier is trained for a different objective, i.e.,
classification objective, rather than the image captioning
model objective, i.e., text generation. In contrast, we intro-
duce a prompt-based metric to better match the underlying
pre-training objective of the image captioner that we assess.
Prompt engineering. To this end, we reformulate the bias
measurement by introducing a prompt function fprompt, from
a classification objective to a text generation objective by re-
fining the input caption by adding a predefined template T .
The prompt function fprompt could be implemented in vari-
ous ways, depending on the position of the empty slot, i.e.,
[Answer]. The cloze prompt function incorporates the empty
slot in the middle of the caption, while the prefix prompt
function incorporates it at the end. We designed our prompt
function fprompt in prefix fashion to fit in both language
model families, i.e., autoregressive and masked language
models (MLM). For instance, if the protected attribute a is
gender, then the template T is incorporated to the masked in-
put xm, such as, xp = T?xmA, e.g., “What is the gender of
the following sentence? A [MASK] sitting ... computer. [An-
swer]”, or xp = xmTA, e.g., “A [MASK] sitting ... computer.
Therefore the gender is [Answer]”.
Implementation Details. During training, we fine-tune the
prompt-based image captioner to predict the last word, i.e.,
[Answer]. More specifically, given the predicted caption xm,
the prompt T , and the masked image Im, our prompt-based
judge model predicts the answer A, e.g., male or female.
Therefore the training objective is interpreted as follows:

LCE = log(P (A|xmT, Im)). (1)

Then the bias scores, i.e., Bm and Bd, are interpreted as
to what extent the model is confident while predicting the
answer A;

Bd,m =
1

|D|
∑

(xm,Im)∈D

P (A|xmT, Im), (2)

where D is the GT and predicted captions for Bd and Bm,
respectively. During the inference, we deliberately ignore
the model’s predictions by injecting the input refined text as
a predicted word at each time-step t, which could be inter-
preted as a teacher-forcing (Cho et al. 2014) with a different

Method Leakage ↓ LIC ↓ Ours ↓
NIC -0.47 1.84 2.68
SAT -0.47 1.96 1.64
FC -0.61 1.56 6.29

Att2in -0.51 3.07 6.17
UpDn -0.65 1.24 6.64
Trans. 1.06 1.39 6.19
Oscar -0.56 1.58 5.09
NIC+ -0.47 2.91 3.18

NIC+Equ. -0.56 0.33 5.93

Table 2: Ablation study about different scoring functions;
Eq. 4, across different models. i.e., NIC (Vinyals et al. 2015),
SAT (Xu et al. 2015), FC (Rennie et al. 2017), Att2in (Rennie
et al. 2017), UpDn (Anderson et al. 2018), Trans. (Vaswani
et al. 2017), OSCAR (Li et al. 2020), NIC+ (Hendricks et al.
2018), NIC+Equ. (Hendricks et al. 2018). Leakage (Wang
et al. 2019) exploits only the indicator function which mea-
sures the classification accuracy. LIC (Hirota, Nakashima,
and Garcia 2022) considers also the confidence score along-
side the classification accuracy. In contrast, we remove the
accuracy measure, and define the bias score as only the confi-
dence score, as shown in Eq. 4.

intention. As our main objective is to predict the [Answer]
based on the input caption xp, not the predicted one.

Self-Assessment
Self-Assessment could be interpreted as a special case of our
metric; ImageCaptioner2, where the same image captioning
model, is used to measure its own bias. This allows us to
fully take advantage of the parameters learned during the pre-
training phase without adding any additional computations.
Avoiding adding any new parameters does not only improve
efficiency but also avoids adding an extra source of bias,
making the evaluation more robust.

Confidence Is All You Need
Leakage (Wang et al. 2019) and LIC (Hirota, Nakashima, and
Garcia 2022) estimate the gender bias for image classification
and image captioning, respectively, using external classifiers
fcls, depicted in Eq. 3.

Bd =
1

|D|
∑

(y,a)∈D

fs(y, a). (3)

Consider a sample (I, y, a), where I is the input image, y
is the corresponding output, e.g., caption in image caption
task, and a is the protected attribute, e.g., gender, both of
them (Wang et al. 2019) (Hirota, Nakashima, and Garcia
2022) use a scoring function fs that mixes up the accuracy
objective with the bias objective. As shown in Eq. 4, the leak-
age (Wang et al. 2019) exploits only the indicator function
which measures the classification accuracy. Consequently,
LIC (Hirota, Nakashima, and Garcia 2022) argues that the
uncertainty measure provides additional evidence for mea-
suring bias, so LIC considers also the confidence score, as
shown in Eq. 4.
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Method LIC ↓ Ratio ↓ Error ↓ BA ↓ DBAG ↓ DBAO ↓ Ours ↓
NIC 3.7 2.47 14.3 4.25 3.05 0.09 2.68
SAT 5.1 2.06 7.3 1.14 3.53 0.15 1.64
FC 8.6 2.07 10.1 4.01 3.85 0.28 6.29

Att2in 7.6 2.06 4.1 0.32 3.60 0.29 6.17
UpDn 9.0 2.15 3.7 2.78 3.61 0.28 6.64
Trans. 8.7 2.18 3.6 1.22 3.25 0.12 6.19

OSCAR 9.2 2.06 1.4 1.52 3.18 0.19 5.09
NIC+ 7.2 2.89 12.9 6.07 2.08 0.17 3.18

NIC+Equ. 11.8 1.91 7.7 5.08 3.05 0.20 5.93

Table 3: The bias amplification results for the gender at-
tribute on MS-COCO dataset using different models. i.e.,
NIC (Vinyals et al. 2015), SAT (Xu et al. 2015), FC (Rennie
et al. 2017), Att2in (Rennie et al. 2017), UpDn (Anderson
et al. 2018), Trans. (Vaswani et al. 2017), OSCAR (Li et al.
2020), NIC+ (Hendricks et al. 2018), NIC+Equ. (Hendricks
et al. 2018). The ratio and the error are introduced in (Hen-
dricks et al. 2018). The ratio is definded based on the num-
ber of sentences which belong to a female set to sentences
which belong to a male set. The error rate is the number of
gender misclassifications. BA (Zhao et al. 2017) and DBA
(Wang and Russakovsky 2021) measure the bias based on
the appearance of the protected attributes in the caption, i.e.,
co-occurrence.

fs(y, a) =


1[fcls(y) = a] Leakage

Sa(y) ∗ 1[fcls(y) = a] LIC

Sa(y) Ours

. (4)

In contrast, aligned with the bias objective, we remove
the accuracy measure represented in the indicator function,
and define the bias score as only the confidence score, i.e.,
Bd,m = Sa(y) following Eq. 2. The assumption of such
adjustment can be shown in the following case, taking the
gender bias measurement as an example, where the protected
attribute a = female. If the output confidence score Sa(y)
for male and female are 0.51 and 0.49, this means that the
attribute classifier fcls predicts male. According to the indi-
cator function this given sample will be discarded, even if
we know that the confidence score near 0.5 means there is no
bias. Driven by this, we argue that confidence is all you need
for bias scoring.

Experiments
Datasets and Models
We evaluate our proposed metric, ImageCaptioner2, on two
datasets, i.e., MS-COCO captioning dataset (Lin et al. 2014)
for gender and race attributes, Artemis V1 (Achlioptas et al.
2021), and V2 (Mohamed et al. 2022) for emotions attribute.
For gender and race, we validate the effectiveness of our
metric on a wide range of image captioning models, i.e.,
NIC (Vinyals et al. 2015), SAT (Xu et al. 2015), FC (Rennie
et al. 2017), Att2in (Rennie et al. 2017), UpDn (Anderson
et al. 2018), Transformer (Vaswani et al. 2017), OSCAR
(Li et al. 2020), NIC+ (Hendricks et al. 2018), and NIC+Eq
(Hendricks et al. 2018). While for Artemis V1 (Achlioptas

Method LIC ↓ Ours ↓
LSTM BERT SAT GRIT

NIC 3.7 (1) -0.8 (1) 2.68 (2) 1.02 (2)
SAT 5.1 (2) 0.3 (2) 1.64 (1) 0.61 (1)
FC 8.6 (5) 2.9 (5) 6.29 (8) 2.30 (5)

Att2in 7.6 (4) 1.1 (3) 6.17 (6) 2.78 (6)
UpDn 9.0 (7) 4.7 (6) 6.64 (9) 2.82 (7)
Trans. 8.7 (6) 5.9 (8) 6.19 (7) 2.90 (8)

OSCAR 9.2 (8) 4.9 (7) 5.09 (4) 2.21 (4)
NIC+ 7.2 (3) 1.8 (4) 3.18 (3) 1.16 (3)

NIC+Equ. 11.8 (9) 7.3 (9) 5.93 (5) 3.08 (9)

Table 4: The bias amplification results for the gender attribute
on MS-COCO datasets for LIC and our metric using different
judge models across different image captioning models. i.e.,
NIC (Vinyals et al. 2015), SAT (Xu et al. 2015), FC (Rennie
et al. 2017), Att2in (Rennie et al. 2017), UpDn (Anderson
et al. 2018), Trans. (Vaswani et al. 2017), OSCAR (Li et al.
2020), NIC+ (Hendricks et al. 2018), NIC+Equ. (Hendricks
et al. 2018). The down arrows indicates less is better. The
ranking of captioning models is reported in red, which indi-
cates to what extend the metric is consistent when changing
the judging model.

et al. 2021) and V2 (Mohamed et al. 2022), we explor SAT
(Xu et al. 2015), and Emotion-Grounded SAT (EG-SAT)
(Achlioptas et al. 2021) with its variants. The EG-SAT is an
adapted version of SAT that incorporates the emotional signal
into the speaker to generate controlled text. Two variants of
EG-SAT are studied based on the source of the emotion:
1) Img2Emo. A pre-trained image-to-emotion classifier is
utilized to predict the emotion. 2) Voting. Each image has, on
average, eight different captions; therefore, the input emotion
is conducted by a simple voting mechanism to pick the most
frequent emotion in the GT captions.

Implementation Details
Masking Attribute Clues. To measure gender bias, we mask
attribute-related information in both image and text. Specifi-
cally, for gender and racial bias, the image is masked using
GT masks or predicted bboxes. In addition, the protected
attribute-related words are replaced by a [MASK] token. In
contrast, we do not mask any image region when focusing
on emotion bias, as emotion attributes are not represented di-
rectly in artworks. Instead, we only mask sentimental words
that leak the emotion attribute in captions.
Network and Training Configuration. We explore two dif-
ferent prompt-based image captioning models, i.e., SAT (Xu
et al. 2015) and GRIT (Nguyen, Suganuma, and Okatani
2022) to act as classifiers. To train our prompt-based im-
age captioner, we split the original validation set, around
104 images, into training, validation, and testing sets, i.e.,
70%, 10%, and 20%, respectively. These splits are balanced
based on the protected attribute. All captioning models are
trained using the same training configurations mentioned in
(Hirota, Nakashima, and Garcia 2022). The added template T
is “Therefore, the gender is [Answer]”, "Therefore, The race
is [Answer]" and “Therefore, the emotion is [Answer]” for
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gender, race, and emotions, respectively. We train our prompt-
based image captioner for 40 epochs from scratch, using the
weight initialization strategy described in (He et al. 2015).
Adam optimizer (Kingma and Ba 2014) and mini-batch size
of 128 are used for training all our models.
Software and Hardware Details. Our metric is implemented
in Python using the PyTorch framework. All experiments are
conducted using four NVIDIA V100 GPUs.

Scoring Function Ablation Study
As shown in Table 2, the scoring function heavily influences
the results. Whereas, the uncertainty or confidence score of
the model is a direct reflection of the severity of bias. The
higher confidence score of the model predictions indicates
more severe bias. Leakage, LIC, and ImageCaptioner2 share
the same model weights, however, it is hard to get reason-
able and insightful observations from the result of Leakage
as most models achieve the same bias score; almost -0.5.
Consequently, when the confidence score is added as in LIC,
the bias scores influenced a lot, which indicates that confi-
dence has the dominant role. This supports the importance of
removing the accuracy indicator from the scoring function.
Therefore, we adapt the scoring function to rely only on the
confidence score, Eq. 3.

Gender Bias Benchmark on MS-COCO
We benchmark our metric across a wide range of captioning
models, against the existing bias metrics. For fair comparison,
we follow the training configurations mentioned in (Hirota,
Nakashima, and Garcia 2022). Based on our metric, all cap-
tioning models amplify the bias, which is consistent with
other bias metrics. In addition, we observe the same observa-
tion presented in (Hirota, Nakashima, and Garcia 2022) and
(Wang and Russakovsky 2021), where the NIC-Equ amplifies
the gender bias despite enhancing the classification accuracy.
Interestingly, the equalizer almost tripled the bias score com-
pared to NIC based on LIC. In contrast, the bias score is
only doubled based on our measure. This decrease in the gap
between NIC and NIC-Equ between LIC and our metric, 3x
and 2x, respectively, is reasonable as the Equalizer allows
models to make accurate predictions of the gender based on
the visual region of the person. Therefore, intuitively, the
equalizer effect will be included in our metric as it respects
the multi-modality nature of the task.

Which Metric Is Better?
Despite the intuitive superiority of our method over the exist-
ing metrics, the ranking inconsistency among different bias
metrics raises the importance of developing a method to eval-
uate the effectiveness of each bias metric. Consequently, this
raises the importance of developing a method to evaluate the
effectiveness of each bias metric quantitatively. Especially
our metric and LIC. As both of them are learnable metrics,
measure the amplification magnitude, and include the full-
context while measuring the bias.
Human Evaluation. To fairly compare the different bias
evaluation metrics, a human evaluation has to be conducted.
However, it is hard design such an evaluation for the bias.

Figure 3: Comparison between our metric, LIC, and the multi-
modal variant of LIC, termed VL-LIC, in terms of human
evaluation using our AnonymousBench, ranking consistency,
and conflict score.

For instance, one possible solution is asking the annotators
to try to guess the gender given the AI generated captions,
as shown in Figure 4. Unfortunately, the formulation will be
not accurate enough as humans already biased, therefore this
approach could lead to human bias measurement instead of
metric evaluation. To tackle this critical point, we introduce
AnonymousBench, depicted in Figure 2.
To prove the effectiveness of our method, we propose Anony-
mousBench, Figure 2; gender and race agnostic benchmark
that consists of 1k anonymous images. First, we ask anno-
tators to write 500 text prompts about various scenes with
anonymous people. Secondly, Stable-Diffusion V2.1 (Rom-
bach et al. 2022) is utilized to generate ten images per prompt
resulting in 5k images. To address any potential bias (Zhang
et al. 2023; Bakr et al. 2023) in the generated images, a hu-
man evaluation was conducted to filter out the non-agnostic
images based on two simple questions; 1) Do you recognize
a human in the scene? 2) If yes, Are the gender and race
anonymous? Finally, the filtered images, 1k images, are fed
to each model, to generate the corresponding captions. An
unbiased model would predict gender-neutral words, e.g.,
person instead of man or woman, as the gender is not appar-
ent. Therefore, the GT score is defined based on whether a
human can guess the gender from the generated captions and
averaged across the whole data. Table 5 demonstrates LIC,
ImageCaptioner2, and GT results on our proposed bench-
mark; AnonymousBench. The Pearson correlation is em-
ployed to measure the alignment between the metrics and
human evaluation. As shown in Figure 3, our metric is more
aligned with the human evaluation, where the correlation
scores are 80% and 54% for our metric and LIC, respectively.
Learnable Metrics Consistency. The learnable metrics uti-
lize additional language classifiers to measure the bias. Conse-
quently, they may be inconsistent across different classifiers.
To measure the consistency, LIC relies on the agreement be-
tween different classifiers on the best and the worst models
in terms of bias. Following such a naive approach may lead
to an inadequate conclusion. For instance, we observe an
inconsistency in ranking, i.e., shown in red parenthesis in
Table 4. In addition, there is no agreement on whether the
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Figure 4: Human evaluation UI.

Method LIC ↓ Ours ↓ GT ↓
NIC (Vinyals et al. 2015) 97.5 95.8 74.0

SAT (Xu et al. 2015) 92.0 94.0 33.0
FC (Rennie et al. 2017) 94.5 94.8 48.5

Att2in (Rennie et al. 2017) 93.0 92.3 48.5
UpDn (Anderson et al. 2018) 96.0 95.2 78.5
Trans. (Vaswani et al. 2017) 99.0 95.0 63.0

OSCAR (Li et al. 2020) 96.5 91.5 27.0
NIC+ (Hendricks et al. 2018) 97.5 95.6 87.5

NIC+Eq (Hendricks et al. 2018) 94.5 94.7 61.5

Table 5: Human evaluation results on AnonymousBench.

model is bias-amplified, e.g., NIC based on LSTM amplifies
the bias (3.7) opposed to BERT (-0.8), where a positive score
indicates the model amplifies the bias. Consequently, this
motivates us to introduce two consistency measures to judge
which learnable metric is classifier invariant; more consis-
tent against classifier variations. 1) The conflict score (CS):
Count the number of conflicts when changing the classifier. 2)
Ranking consistency (RC): Measure the correlation between
different classifiers.
Conflict Score. A reliable metric should be classifier in-
variant, at least in terms of the conclusion, i.e., whether the
model is biased. Therefore, we introduce a conflict score
to measure the percentage of mismatches between different
classifiers, where the less conflict score is better. First, we
classify the models into binary categories, biased and not
biased, where positive means the model is biased. Then, we
calculate the miss-classification rate among different classi-
fiers. Based on results reported in Table 4 and Figure 3, our
metric, ImageCaptioner2, is more robust, as the conflict score
is 0 and 11.11 % for ours and LIC, respectively.
Ranking Consistency. We utilize the Pearson correlation.
Aligned with the conflict score, the correlation score, depicted
in Figure 3 and Table 4, also probes that our metric is more
robust than LIC, where the correlation score is 97% and 92%
for ours and LIC, respectively. Where a higher correlation
score indicates a more consistent metric.

Replacing GT Masks by Detectors
Relying on GT masks could be considered as a major draw-
back. Therefore, to show that our metric is orthogonal with

Method GT-Masks YOLOX M-RCNN

NIC (Vinyals et al. 2015) 2.7 2.9 2.7
SAT (Xu et al. 2015) 1.6 1.4 1.8

FC (Rennie et al. 2017) 6.3 6.5 6.5
Att2in (Rennie et al. 2017) 6.2 6.3 6.2

UpDn (Anderson et al. 2018) 6.6 7.1 6.9
Trans. (Vaswani et al. 2017) 6.2 6.1 6.4

OSCAR (Li et al. 2020) 5.1 5.4 5.2
NIC+ (Hendricks et al. 2018) 3.2 3.3 3.6

NIC+Eq (Hendricks et al. 2018) 5.9 6.0 6.2

Table 6: Comparison of various detectors against the GT
masks using ImageCaptioner2.

the predicted masks, we replace GT masks, using two off-the-
shelf detectors to predict the humans to mask them from the
image. As shown in Table 6, both YOLOX (Ge et al. 2021)
and MaskR-CNN (He et al. 2017) almost achieve the same
bias score as the GT segmentation masks. In addition, they
are fully correlated, which indicates that the detection phase
does not introduce additional bias.

Multi-Modal Classifier
To highlight the impact of incorporating the image while mea-
suring the bias, we implement a simple vision-and-language
classifier, termed VL-LIC, as a baseline. Accordingly, we
have integrated ResNet50 as the visual backbone in conjunc-
tion with the BERT language encoder utilized by LIC. As
depicted in Figure 3, incorporating the image, referred to
as VL-LIC, demonstrates an enhancement in human corre-
lation on our AnonymousBench and improved consistency
compared to LIC, which relies solely on language. Further-
more, including the image lies in accessing a richer signal
and capturing spurious correlations more accurately, as the
generated caption alone may not provide comprehensive de-
tails encompassed by the image. However, the prompt-based
metric remains superior due to its alignment with the under-
lying pre-trained model, which follows an auto-regressive
approach by predicting subsequent words based on preceding
ones. Furthermore, employing pre-trained vision and lan-
guage classifiers as judge models introduces additional bias,
thus posing challenges in drawing robust conclusions.

Conclusion
In this paper, we identify and address limitations in existing
fairness metrics for image captioning, e.g., lack of consid-
eration for the multi-modality nature of image captioning.
We introduce ImageCaptioner2, which incorporates the visi-
olinguistic aspects of image captioning to estimate bias more
effectively. Leveraging a prompt-based image captioner, we
reformulate the bias metric as a text generation objective
aligned with the underlying pre-training objective. We eval-
uate our metric across 11 image captioning techniques on
MS-COCO, Artemis V1, and Artemis V2 datasets, consid-
ering three protected attributes—gender, race, and emotions.
Finally, our proposed AnonymousBench demonstrates supe-
rior alignment with human judgments, outperforming recent
bias metric LIC by 80% and 54%, respectively.
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Cireşan, D. C.; Meier, U.; Masci, J.; Gambardella, L. M.; and
Schmidhuber, J. 2011. High-performance neural networks for
visual object classification. arXiv preprint arXiv:1102.0183.
De Vries, T.; Misra, I.; Wang, C.; and Van der Maaten, L.
2019. Does object recognition work for everyone? In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, 52–59.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Du, X.; Wang, Z.; Cai, M.; and Li, Y. 2022. VOS: Learning
What You Don’t Know by Virtual Outlier Synthesis. arXiv
preprint arXiv:2202.01197.
Ge, Z.; Liu, S.; Wang, F.; Li, Z.; and Sun, J. 2021.
Yolox: Exceeding yolo series in 2021. arXiv preprint
arXiv:2107.08430.
He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In Proceedings of the IEEE international conference
on computer vision, 2961–2969.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on ima-
genet classification. In Proceedings of the IEEE international
conference on computer vision, 1026–1034.

Hendricks, L. A.; Burns, K.; Saenko, K.; Darrell, T.; and
Rohrbach, A. 2018. Women also snowboard: Overcoming
bias in captioning models. In Proceedings of the European
Conference on Computer Vision (ECCV), 771–787.
Hirota, Y.; Nakashima, Y.; and Garcia, N. 2022. Quantifying
Societal Bias Amplification in Image Captioning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 13450–13459.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.
Khan, Z.; and Fu, Y. 2021. One label, one billion faces:
Usage and consistency of racial categories in computer vi-
sion. In Proceedings of the 2021 acm conference on fairness,
accountability, and transparency, 587–597.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.
Kuznetsova, A.; Rom, H.; Alldrin, N.; Uijlings, J.; Krasin,
I.; Pont-Tuset, J.; Kamali, S.; Popov, S.; Malloci, M.;
Kolesnikov, A.; et al. 2020. The open images dataset v4. In-
ternational Journal of Computer Vision, 128(7): 1956–1981.
Li, X.; Yin, X.; Li, C.; Zhang, P.; Hu, X.; Zhang, L.; Wang,
L.; Hu, H.; Dong, L.; Wei, F.; et al. 2020. Oscar: Object-
semantics aligned pre-training for vision-language tasks.
In European Conference on Computer Vision, 121–137.
Springer.
Liao, Y.; Xie, J.; and Geiger, A. 2022. KITTI-360: A novel
dataset and benchmarks for urban scene understanding in 2d
and 3d. IEEE Transactions on Pattern Analysis and Machine
Intelligence.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.;
Ramanan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In European conference
on computer vision, 740–755. Springer.
Mohamed, Y.; Khan, F. F.; Haydarov, K.; and Elhoseiny, M.
2022. It is Okay to Not Be Okay: Overcoming Emotional
Bias in Affective Image Captioning by Contrastive Data Col-
lection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 21263–21272.
Nguyen, V.-Q.; Suganuma, M.; and Okatani, T. 2022. GRIT:
Faster and Better Image Captioning Transformer Using Dual
Visual Features. In European Conference on Computer Vi-
sion, 167–184. Springer.
Rennie, S. J.; Marcheret, E.; Mroueh, Y.; Ross, J.; and Goel,
V. 2017. Self-critical sequence training for image captioning.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 7008–7024.
Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; and Om-
mer, B. 2022. High-resolution image synthesis with latent dif-
fusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 10684–10695.
Schick, T.; Udupa, S.; and Schütze, H. 2021. Self-diagnosis
and self-debiasing: A proposal for reducing corpus-based bias
in nlp. Transactions of the Association for Computational
Linguistics, 9: 1408–1424.
Stock, P.; and Cisse, M. 2018. Convnets and imagenet beyond
accuracy: Understanding mistakes and uncovering biases. In

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20910



Proceedings of the European Conference on Computer Vision
(ECCV), 498–512.
Tang, R.; Du, M.; Li, Y.; Liu, Z.; Zou, N.; and Hu, X. 2021.
Mitigating gender bias in captioning systems. In Proceedings
of the Web Conference 2021, 633–645.
Thong, W.; and Snoek, C. G. 2021. Feature and label embed-
ding spaces matter in addressing image classifier bias. arXiv
preprint arXiv:2110.14336.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. Advances in neural information processing
systems, 30.
Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015.
Show and tell: A neural image caption generator. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 3156–3164.
Wang, A.; Liu, A.; Zhang, R.; Kleiman, A.; Kim, L.; Zhao,
D.; Shirai, I.; Narayanan, A.; and Russakovsky, O. 2022.
REVISE: A tool for measuring and mitigating bias in visual
datasets. International Journal of Computer Vision, 1–21.
Wang, A.; and Russakovsky, O. 2021. Directional bias ampli-
fication. In International Conference on Machine Learning,
10882–10893. PMLR.
Wang, T.; Zhao, J.; Yatskar, M.; Chang, K.-W.; and Ordonez,
V. 2019. Balanced datasets are not enough: Estimating and
mitigating gender bias in deep image representations. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 5310–5319.
Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudi-
nov, R.; Zemel, R.; and Bengio, Y. 2015. Show, attend and
tell: Neural image caption generation with visual attention.
In International conference on machine learning, 2048–2057.
PMLR.
Yang, K.; Qinami, K.; Fei-Fei, L.; Deng, J.; and Russakovsky,
O. 2020. Towards fairer datasets: Filtering and balancing
the distribution of the people subtree in the imagenet hier-
archy. In Proceedings of the 2020 conference on fairness,
accountability, and transparency, 547–558.
Zhang, Y.; Jiang, L.; Turk, G.; and Yang, D. 2023. Auditing
Gender Presentation Differences in Text-to-Image Models.
arXiv preprint arXiv:2302.03675.
Zhao, D.; Wang, A.; and Russakovsky, O. 2021. Under-
standing and evaluating racial biases in image captioning. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 14830–14840.
Zhao, J.; Wang, T.; Yatskar, M.; Ordonez, V.; and Chang,
K.-W. 2017. Men also like shopping: Reducing gender bias
amplification using corpus-level constraints. arXiv preprint
arXiv:1707.09457.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20911


