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Abstract

While large language models (LLMs) exhibit impressive per-
formance on a wide range of NLP tasks, most of them fail
to learn the causality from correlation, which disables them
from learning rationales for predicting. Rethinking the whole
developing process of LLMs is of great urgency as they are
adopted in various critical tasks that need rationales, includ-
ing legal text prediction (e.g., legal judgment prediction). In
this paper, we first explain the underlying theoretical mech-
anism of their failure and argue that both the data imbal-
ance and the omission of causality in model design and se-
lection render the current training-testing paradigm failed
to select the unique causality-based model from correlation-
based models. Second, we take the legal text prediction task
as the testbed and reconstruct the developing process of
LLMs by simultaneously infusing causality into model ar-
chitectures and organizing causality-based adversarial attacks
for evaluation. Specifically, we base our reconstruction on
our theoretical analysis and propose a causality-aware self-
attention mechanism (CASAM), which prevents LLMs from
entangling causal and non-causal information by restricting
the interaction between causal and non-causal words. Mean-
while, we propose eight kinds of legal-specific attacks to form
causality-based model selection. Our extensive experimen-
tal results demonstrate that our proposed CASAM achieves
state-of-the-art (SOTA) performances and the strongest ro-
bustness on three commonly used legal text prediction bench-
marks. We make our code publicly available at https://github.
com/Carrot-Red/Rethink-LLM-development.

1 Introduction
Large language models (LLMs) have undergone significant
development and significantly impacted our life in a wide
range of applications (OpenAI 2023), including legal judg-
ment prediction (Feng, Li, and Ng 2022; Chalkidis et al.
2022a), drug discovery (Singha Roy and Mercer 2023), and
quantitative trading (Sawhney et al. 2021; Ju et al. 2023).
While we enjoy their human-surpassing performance, they
exhibit certain risks caused by confusing causality from
correlation (Chen, Chen, and Zhou 2023). Their failure of
learning causality (rationales) not only degrades their per-
formance but also renders them untrustworthy, thus imped-
ing their real-world applications, especially in those high-
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Figure 1: An example of reversed prediction caused by char-
acter substitution. We also present the frequency of evi-
dence words considered by Legal-BERT. Making predic-
tions merely according to these evidence words (5% words
of each input document) reserves 92.13% performance of
Legal-BERT. “No.” denotes the number of words.

stake tasks that require rationales for decisions (e.g., le-
gal judgment prediction). For example, we found clues that
the commonly adopted state-of-the-art (SOTA) LJP mod-
els (Chalkidis et al. 2020; Zheng et al. 2021; Chalkidis et al.
2022a) learn the spurious correlations and simultaneously
achieve the minimum training loss. As shown in Figure 1,
the prediction of Legal-BERT (Chalkidis et al. 2020) is re-
versed by a small change that does not cause an essential se-
mantic change. Furthermore, the most important keywords
deciding the model predictions mainly concentrate on punc-
tuation marks and function words. A large number of pre-
dictions only rely on less than 5% of words from the fact
descriptions rather than considering the whole text. These
potential risks make the causality-understanding model be-
come an urgent need. We have to rethink the whole develop-
ing process of LLMs.

In this paper, we first argue that data imbalance is the main
factor that hampers the traditional developing paradigm
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from obtaining a causality-based model. Both the unique
causality-based model and spurious-correlation-based mod-
els are able to achieve competitive or state-of-the-art (SOTA)
performance in traditional datasets due to the inevitable data
imbalance, which is caused by the sampling process and
linguistic rules. For example, function words like ‘a’ occur
more frequently than many other words. Since data-driven
AI models are tied to datasets where training and test data
are assumed to be identically and independently distributed
(i.i.d. assumption), spurious correlations in the training data
are also established in the test data. Therefore, spurious-
correlation-based models are able to achieve SOTA perfor-
mance. The current training-testing paradigm, focusing on
chasing the SOTA performance, fails to train and select the
unique causality-based model and distinguish causality from
correlation.

Second, we take a step further toward revealing two
long-standing omissions of previous SOTA-chasing meth-
ods from the causal perspective. According to our theoreti-
cal analysis, the two omissions exacerbate the confusion of
learning models between causality and correlation under the
data imbalance circumstance. The first omission is that the
learning models miss the guidance of causality (e.g., the use
of human knowledge), which largely increases their uncer-
tainty when inferring causal relationships from the training
data. For example, if we tell a linear model to zero the weight
of all non-causal variables, the model will possess a strong
ability to learn causality despite the data imbalance. The sec-
ond omission is that most current evaluation methods focus
on measuring average error across a held-out test set instead
of evaluating the causality-understanding ability of models.
Models just need to greedily absorb all correlations that hap-
pen to be predictive in the test set even if they are not causal
relationships.

Third, to address the issue, we reconstruct the whole de-
veloping process of LLM and take the legal text prediction
tasks as our testbed to verify the effectiveness of our re-
construction. Our reconstruction includes infusing causal-
ity into the architecture of models and evaluating their
causality-understanding ability. Specifically, to infuse causal
knowledge into learning models, we aim to prevent them
from learning non-causal information by restricting the in-
teraction (represented by attention weights) between causal
and non-causal words. We propose a causality-aware self-
attention mechanism (CASAM) to reallocate the attention
weights throughout the overall transformer encoder, which
leads the LLM to pay more attention to causal information.
Meanwhile, we accurately select the causality-based model
by adopting our proposed testing method named causality-
based adversarial attacks consisting of eight kinds of attacks.
Models can pass the evaluation only when they success-
fully learn stable causal relationships. Otherwise, their per-
formances drop sharply as spurious correlations are not es-
tablished in adversarial samples. The extensive experimental
results show that our proposed CASAM performs better on
generalization and robustness than the baseline models and
achieves new SOTA performance on the three commonly
used legal prediction datasets.
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Figure 2: Problem illustration. C, N , and Y denote causal
information, non-causal information, and final prediction,
respectively. Rationales (causality) generate training data,
and models are expected to accurately estimate the corre-
lations between variables (causal relationships in purple).
Multiple potential results are all optimal and possible to be
learned by models. Data augmentation (in orange), merely
controlling the effect of N on Y , filters the six orange
graphs. A causality-aware learning model (in blue) filters ten
graphs, including all the orange and blue ones.

2 Failure of Learning Causality
In this section, we point out three main problems, namely
data imbalance, missing causality in model architecture, and
missing causality in model selection, that hamper the previ-
ous LLM-developing methods from both training and select-
ing a causality-based model. The problems and the nature of
the methods are depicted in Figure 2: Data imbalance makes
multiple learning results of the same model architecture pos-
sible to be optimal and succeed in passing the evaluation
stage. We elaborate on this issue and the underlying causes
as follows.
Data Imbalance. Data imbalance actually distorts the in-
formation adopted to train and test models. We use data-
driven methods to train different models for learning the
correlation relationships between input variables and out-
put variables (Cui and Athey 2022). The learned correla-
tions among variables can be generated in either of the three
ways: causality, confounding, and data selection bias (Cui
and Athey 2022). Only the correlations generated by causal-
ity are what we expect the models to learn from. However,
both natural language and social unfairness make the raw
data of case descriptions compose an imbalanced dataset of
C, N , and Y , which exacerbates the data selection bias (data
imbalance) and thus leads to the correlations generated by
it. Such correlations are referred to as spurious correlations.
Learning models greedily absorb all correlations to mini-
mize the training loss (Ye et al. 2021), which renders them
spurious-correlation-based models.
Multiple Learning Results. It becomes a random event R
whether our selected model trained by the imbalanced data
is the unique causality-based model (which learns the corre-
lation generated by C → Y ). The randomness of R stems
from the stochastic learning process and the number of spu-
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rious correlations established in the test data, which leads to
a certain probability distribution across all potential learning
(estimating) results shown on the right of Figure 2. They are
possible to be optimal as they can experimentally and the-
oretically minimize the loss function to zero by absorbing
all correlations. Note that different Learning results present
distinctive decision rules of models (e.g., making legal judg-
ments according to gender).
Missing Causality in Model Architecture. Without prior
knowledge containing causal information, models merely
learn the correlations between variables without distinguish-
ing causal information from non-causal information. In that
case, the spurious correlations generated by data imbalance
are inevitably learned by models. As shown in Figure 2, the
four blue causal graphs remain possible for becoming the
decision rules of learning models.
Missing Causality Evaluation in Model Selection. By
learning spurious correlations, models can succeed in mak-
ing the right predictions as causal-based models do due to
the i.i.d. assumption: the learned spurious correlations in
training data will also be predictive in testing data. There-
fore, it is of great essence to design causality-specific evalua-
tion methods for selecting the unique causality-based model.

3 Redesigning the Developing Process of LM
We posit three solutions to address the issue mentioned in
Section 2 and adopt the latter two to propose our method.
Data Governance. We can constrict the effect of N on Y
by data governance (e.g., data augmentation). However, as
shown in Figure 2, such kind of method only filters 6 out of
10 potential learning results without interrupting the corre-
lation between C and N , which suppresses the probability
of R.
Infusing Causality into Model. We improve the under-
standing ability of models, making them able to distinguish
and avoid learning spurious correlations. For example, a
straightforward linear model can avoid the disturbance of
non-causal information if it knows the legal knowledge: It
can set the coefficient in front of non-causal variables to
zero regardless of their amount in the training data. To this
end, we propose CASAM for infusing learning models with
causal information and knowledge.
Causality-Invariant Attacks for Evaluation. We complete
the testing data by proposing legal-specific attacks to bring
distributional shifts into the data. According to the sugges-
tions provided by experts in the legal domain, we consider
several types of attacks for thorough robustness evaluation.
In each type of the following attacks written in bold, we
make a distinct perturbation in the given fact description
that will not change the judgment from the perspective of
the experts. For those attacks written in italics, the pertur-
bation will not change the judgment in most circumstances
according to the experts. We provide descriptions of all types
of attacks: (1) functional word attacks. We adopt the token
‘[mask]’ as a substitute for a functional word; (2) word-level
attacks, which mask a single word; (3) sequence number
attacks, which remove the sequence number in front of the
given description; (4) dot attacks after sequence number.

We remove the dot after a sequence number; (5) punctu-
ation mark attacks, which mask a punctuation mark; (6)
auxiliary verb attacks, which mask an auxiliary verb; (7)
article attacks, which mask an article before a noun; (8)
preposition attacks. We attack prepositions except for the
preposition ‘of’ (which may indicate the ownership relation-
ship), the preposition ‘for’ (which may represent whether
someone does something on purpose), and those preposi-
tions that locate between numbers.

4 Methodology
Our overall framework is shown in Figure 3 and can be di-
vided into two steps. In the first step, we adopt the OIE and
open-source coreference methods to refine the dataset and
mitigate the data imbalance in legal texts. We first perform
open information extraction (OIE) on input legal texts to
discard the context that contains a high proportion of non-
causal information. Then, we graphically structure the ex-
tracted pieces of information. In the extracted information
(knowledge) graph, the nodes denote the subjects, objects,
and predicates while the edges are dependencies. The nodes
possessing the same semantic meaning will be merged into
one by the open-source coreference model. During the pro-
cess of constructing graphs, redundant non-causal informa-
tion is further reduced by merging. Meanwhile, documents
are substantially compressed to focus on core information.
The above data processing reduces the information entropy
of distinguishing N and C. In the second step, we apply the
knowledge to intervene in the learning process. In the rest of
this section, we provide the detail of our methods.

4.1 Graph Construction by OIE
We adopt OIE aiming to discard and merge redundant
non-causal information. First, we apply coreference resolu-
tion (Clark and Manning 2016) and open information extrac-
tion (Stanovsky et al. 2018) tools to identify the correspond-
ing mentions or pronouns of each entity, and then extract
relational triplets from sentences. In our constructed graph,
we represent subjects and objects as nodes, which are con-
nected by predicates as directed edges. Second, the nodes
will be merged to reduce redundant non-causal information
if they have similar names or meanings, which is identified
by TF-IDF overlap and coreference resolution tools, respec-
tively. Finally, as to the subsequent newly extracted triplets,
we also calculate the TF-IDF overlap between the existing
triplets and the new one. If the value is higher than our pre-
defined threshold, we rule out the new triplet to reduce in-
formation replication.

4.2 CASAM
We introduce our proposed CASAM in this section.
CASAM partly inherits the architecture of the trans-
former (Vaswani et al. 2017) or Legal-BERT (Chalkidis
et al. 2020) encoder which consists of L stacking blocks.
Each block comprises a feed-forward network, residual con-
nection, layer normalization, and a causal attention module.
Given a fact description D, we obtain its embedding matrix

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20960



Causal Attention 
Module

Add & Norm

Feed forward

Add & Norm

Input
Embedding Matrix

O
utput

However, it noted that as of May 2008 the first applicant had received the 
above-mentioned supplement for the other child in her care. She had been 
entitled to the reimbursement of fees for her psychological examination, as the 
Călăraşi DGASPC had refused to reimburse her. In addition, she was entitled 
to the special allowances provided for by Article 3 of the collective agreement 
for the period 2007-2009. 

she

reimbursement

She

the first applicant

supplement

special allowances
was entitled to

had received

had been entitled to

OIE

V Q K

MatMul

Causal Intervention

Adjacency Matrix (Local)

MatMul

0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 1 1 0

0 1 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 1 1 0

0 1 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0

C
lassifier

Judgem
ent 

Predictions

non-causal information

coreference edge
dependency edge

causal information

Figure 3: Overview of our framework.

X ∈ RN×d according to the embedding layer of a trans-
former encoder, where N and d denote the sequence length
and the dimension of hidden layers, respectively. Following
the transformer encoder, CASAM maps X to query, key,
and value matrices in each block by Q = XWq,K =
XWk,V = XWv, where Wq,Wk,Wv ∈ Rd×k are
model parameters the in l-th block, l is omitted in the equa-
tion for brevity.

Different from the widely adopted self-attention mecha-
nism which considers all words to correlate with each other,
our proposed causal attention module performs causal in-
tervention between each word pair. The former provides
abundant correlations represented by unsupervised attention
weights for models to explore, neglecting the fact that learn-
ing methods will greedily absorb all correlations (including
spurious correlations) found in data to minimize their train-
ing error, which leads to spurious correlation error. The latter
tries to discern the potential causal relationships and block
non-causal information to prevent learning spurious corre-
lations. Specifically, our proposed CASAM first derives an
adjacency matrix A according to a certain graph G con-
structed by the aforementioned open information extraction
(OIE) tool. The entries Aij tabulate the binary variable iden-
tifying whether the combination of i-th word and j-th word
will causally affect the final judgment. Then, based on the
original attention weights calculated by S = QKT

√
d

, the new
attention weights are derived by,

S′ = αS+ (1− α)S⊙A, (1)
where ⊙ denotes the element-wise multiplication between

matrices and α is a hyperparameter ranging from 0 to 1,
which is adjusted according to the accuracy of an OIE tool:
the more accurate the OIE tool, the higher the α. The output
Y of each causal attention module is derived by,

Y = softmax(S′)V. (2)

We input Y, the output of the final causal attention layer
considered as the representation of a fact description D, into
a linear layer followed by a sigmoid function to obtain the
final predictions.

4.3 Model Selection
Traditionally, training data and validation data are i.i.d.,
and validation data are adopted to monitor the training pro-
cess for selecting the best-performed version of a learning
model. According to our analysis in Section 3, the selection
can be biased as the evaluation of the generalization abil-
ity of models is incomplete: lacking the evaluation of out-
of-distribution (OOD) performance. To solve the issue, we
complete the validation data by our proposed legal-specific
attacks to evaluate both the robustness and generalization
ability of models. Different from previous methods, we aim
to select the most robust and generalizable version of a learn-
ing model during the training process.

5 Experiments
5.1 Datasets
ECtHR Task A & B. The European Court of Human Rights
(ECtHR) dataset (Chalkidis, Androutsopoulos, and Aletras
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2019) is the only publicly available human-annotated LJP
dataset in English, consisting of approximately 11,000 cases
from the ECtHR database. In each case, allegations are writ-
ten as fact descriptions, the judgment results — about which
of human rights provisions legislated by European Conven-
tion of Human Rights (ECHR) does the current state breach
— are recorded as the label. All cases are chronologically
categorized as training set (9k, 2001-2016), development set
(1k, 2016-2017), and test set (1k, 2017-2019). Each case can
either violate single, multiple, or none of the given legal arti-
cles. For each model, the input is fact descriptions of a case,
and the output is the judgment, represented by a set of vio-
lated articles. In Task A, the violated articles are considered
by the court. In Task B, the violated articles are put forward
by the applicants.
LEDGAR. LEDGAR (Labeled EDGAR) (Tuggener et al.
2020) is a dataset for contract provision classification. Con-
sidering the underlying common legal text classification
techniques, we conduct experiments on the dataset not only
for a more comprehensive evaluation, but also to test the
generalization ability of models. In LEDGAR, the con-
tract provisions are crawled from the U.S. Securities and
Exchange Commission (SEC) website and are available
from an Electronic Data Gathering, Analysis, and Retrieval
(EDGAR) system on the website. Nearly 850k contract pro-
visions from 12.5k categories are included in the originally
proposed LEDGAR. Following the legal language under-
standing benchmark LexGLUE (Chalkidis et al. 2022a), we
use 80k contract provisions labeled with 100 most frequent
categories from the original dataset. The dataset is chrono-
logically split into a training set (60k, 2016-2017), a devel-
opment set (10k, 2018), and a test set (10k, 2019).

5.2 Baselines
Following the previous methods in legal text predic-
tion (Chalkidis et al. 2022a), we compare our proposed
CASAM with the eight baseline models: TFIDF+SVM,
BERT (Devlin et al. 2019), RoBERTa (Liu et al. 2019),
DeBERTa (He et al. 2021), Longformer (Beltagy, Peters,
and Cohan 2020), BigBird (Zaheer et al. 2020), CaseLaw-
BERT (Zheng et al. 2021), and Legal-BERT (Chalkidis et al.
2020).

The backbone of our proposed model is based on Legal-
BERT in this paper, our model can be easily extended to
other backbones in future work.

5.3 Experimental Settings
Implementation Details. Our experiment is based on Py-
Torch and Hugging Face Transformer (Wolf et al. 2020). At
the graph construction stage, co-reference resolution predic-
tor (Clark and Manning 2016) and OIE predictor (Stanovsky
et al. 2018) are used to extract graph relationships and con-
struct the graph. Later, we use breadth-first search to get the
linearized graph text. We apply the pre-trained Legal BERT
transformer from Hugging face to be our encoder. With the
original fact descriptions and the corresponding graph text,
we use two Legal BERT encoders to get the embeddings.
The learning rate is 1e− 4 and the optimizer is AdamW.

Method ECtHR(A) ECtHR(B) LEDGAR
µ-F1 m-F1 µ-F1 m-F1 µ-F1 m-F1

TFIDF+SVM* 64.5 51.7 74.6 65.1 87.2 82.4
BERT 71.1 61.2 79.2 72.1 88.0 82.1
RoBERTa 72.0 65.6 77.6 70.9 87.6 81.3
DeBERTa 71.5 66.7 80.2 73.1 88.1 82.9
Longformer 71.0 62.1 79.7 71.9 87.7 81.3
BigBird 69.8 59.7 78.1 68.5 87.1 80.8
Legal-BERT 72.3 66.0 80.6 75.2 88.2 81.9
CaseLaw-BERT 71.6 65.5 78.6 71.9 88.0 81.8
CASAM 73.8 68.5 81.4 76.0 88.7 83.5
w/o causal attention 72.3 66.0 80.6 75.2 88.2 81.9

Table 1: Overall experimental results. The signal ‘*’ denotes
that the results of the corresponding models are quoted from
LexGLUE (Chalkidis et al. 2022a).

Evaluation Metrics. To evaluate the robustness of mod-
els, we adopt certified ratio (Gürel et al. 2022), namely
CR, to measure the percentage of consistent predictions (un-
changed predictions) under a perturbation (wrong predic-
tions are also included). Following previous work (Chalkidis
et al. 2022a), we evaluate the performance (e.g., generaliza-
tion ability) of models by µ-F1 and m-F1 scores.
Attribution Method. Current feature attribution methods
can be roughly divided into three categories: gradient-based
methods which calculate a score for each input feature by
gradients (Springenberg et al. 2015; Li et al. 2016; Si-
monyan, Vedaldi, and Zisserman 2014), reference-based
methods which consider the difference between a prede-
fined “reference” and the output of a model as the attri-
bution score (Ribeiro, Singh, and Guestrin 2016; Shriku-
mar, Greenside, and Kundaje 2017; Sundararajan, Taly, and
Yan 2017), and erasure-based methods which measure the
change of model prediction as the attribution score after re-
moving the target feature (Zeiler and Fergus 2014; Li et al.
2016; Feng et al. 2018; Chen, Zheng, and Ji 2020). We
adopt an erasure-based method (Li et al. 2020) due to its
simplicity and faithfulness. Specifically, if a fact descrip-
tion D = [d1, . . . , di−1, di, di+1, . . . ] is input into a certain
model, and the corresponding output prediction score on the
ground truth label y is oy(D), then the attribution value on
di is written by,

Fy(di) = oy(D)− oy(D
′), (3)

where D′ = [d1, . . . , di−1, [MASK], di+1, . . . ]. Erasure-
based methods directly satisfy the way of evaluating an AI
judger by the rule of law: Will the judgment change if the
causal elements get erased or changed from the fact descrip-
tions? Will the AI judger consistently stick to the rule of
law in any circumstances (e.g., changes in irrelevant infor-
mation)?

5.4 Main Results and Ablation Study
The generalization ability (performance) evaluation results
of baselines and our model are shown in Table 1. We
can observe that the performance of our CASAM signifi-
cantly outperforms the SOTA baseline methods, achieving
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Method Attack 1 Attack 2 Attack 3 Attack 4 Attack 5 Attack 6 Attack 7 Attack 8

E.A E.B L. E.A E.B L. E.A E.B E.A E.B E.A E.B L. E.A E.B L. E.A E.B L. E.A E.B L.
BERT 99.4 99.3 93.8 99.3 99.2 84.0 99.4 99.4 99.6 99.4 99.4 99.4 96.5 99.5 99.2 98.2 99.4 99.3 98.5 99.4 99.3 93.8
RoBERTa 99.3 99.1 95.8 99.2 98.9 79.1 99.7 99.5 99.4 99.3 99.3 99.1 96.0 99.0 99.0 70.0 99.0 98.9 98.4 99.3 99.1 95.6
Longformer 91.5 93.6 96.5 81.9 86.1 78.9 - - - - 91.6 93.6 96.8 99.1 98.2 90.0 96.5 97.5 98.1 91.5 93.6 96.4
Bigbird 96.1 95.8 96.4 96.1 95.8 96.4 - - - - 96.4 96.0 96.7 99.3 99.3 90.0 98.9 99.1 97.4 96.2 95.8 96.4
CaseLaw 99.6 99.6 94.3 99.5 99.5 94.3 99.5 99.5 99.7 99.7 99.6 99.6 97.5 99.6 99.6 99.0 99.6 99.6 98.5 99.5 99.5 94.4
Legal-BERT 99.8 99.7 94.8 99.6 99.5 88.7 99.8 99.6 99.8 99.9 99.8 99.6 96.8 99.8 99.6 96.8 99.7 99.7 98.4 99.7 99.7 94.5
CASAM 99.9 99.9 96.2 99.8 99.8 89.7 99.8 99.9 99.8 99.9 99.8 99.9 98.1 99.9 99.9 98.9 99.9 99.9 99.2 99.9 99.9 96.3

Table 2: Results of robustness evaluation measured by certified ratio (CR) on the test sets of three benchmark datasets. “E.A”,
“E.B”, and “L.” denote dataset ECtHR Task A, ECtHR Task B, and LEDGAR, respectively. Details of each kind of attack are
introduced in Section 3.

a new SOTA performance on all three benchmark datasets.
Note that our framework is based on the Legal-BERT back-
bone. Compared with Legal-BERT, CASAM yields gains of
3.8%/4.5% of µ/m-F1 scores in ECtHR Task A, 1.0%/1.3%
of µ/m-F1 scores in ECtHR Task B, and 0.5%/0.5% of µ/m-
F1 scores in LEDGAR. The experimental results in Table 1
indicate that, with the guidance of our theoretical analy-
sis, CASAM effectively improves the performance of Legal-
BERT: it blocks N to reduce the spurious correlation error,
which leads the model to learn the underlying ground-truth
knowledge and thereby enhancing the generalization ability
of the model.

5.5 Results of Robustness Evaluation
We evaluate the robustness of models against diverse at-
tacks. As shown in Table 2, the robustness of our proposed
CASAM is significantly stronger than its backbone on the
three datasets under all kinds of attacks. Without any mod-
ification, the original Legal-BERT exhibits poor robustness,
especially on LEGDAR. Changes in the irrelevant informa-
tion in fact descriptions will eventually render the Legal-
BERT judger altering at most 11.27% of its predictions,
which terribly hurts its robustness and trust in it. Such kinds
of mistakes caused by the spurious correlation error impede
the deployment of AI judgers in real-world applications. Our
proposed CASAM significantly mitigates the underlying er-
ror and thus enhances the robustness of models. In the three
legal text prediction tasks, our proposed CASAM achieves
the certified ratio over 99%, which indicates that it gets ex-
tremely close to the standard of being trustworthy under di-
verse attacks proposed by experts in the legal domain.

We can observe that CASAM achieves close performance
on judgment prediction tasks. We posit the underlying rea-
son: CASAM satisfies the common theoretical background,
intervening in the architecture of the model and breaking
the correlation between N and C in the training proce-
dure, thereby preventing N from correlating with Y . As we
mentioned in Section 2 that only the correlations generated
by causality are what we expect the models to learn from,
CASAM focuses on removing other kinds of correlations
and only reserving those generated by causality.

Despite the significant robustness improvement under all
kinds of attacks, we explain the reason why the evaluation

results of our proposed methods under word-level attacks are
largely different from other attacks on LEDGAR. Although
legal judgment prediction and legal text classification often
share common techniques, the underlying decision rules of
the two task is different. Different from LJP where a judger
is required to both perform legal reasoning and consider all
of the circumstances in a case for a just judgment, we rely
on fewer words in legal text classification. For example, if
we notice the word ‘vegetables’, ‘fruits’, or ‘agriculture’ in
a legal file, we know it probably belongs to the ‘agriculture’
category. If we mask these words, it will even be difficult for
humans to classify the file. Under word-level attacks, these
words will inevitably be masked, leading to distinct evalua-
tion results.

5.6 Analysis and Discussion
In this section, we take a step further toward characteriz-
ing both the data imbalance and the decision rules (evidence
words) of models in the context of the legal text prediction
task. We shed some light on the underlying reasons why
our proposed methods achieve stronger generalization abil-
ity and robustness.
Visualization of Selection Bias. To characterize the data
imbalance (selection bias), we investigate the ECtHR Task A
dataset as an example and analysis to what extent the Legal-
BERT is affected by the bias. First, we use a feature attri-
bution method to obtain the top 5% words considered most
crucial by Legal-BERT when making a judgment prediction
in the test set. Second, we count the frequency of each word
in the top 5% words and in the training set of ECtHR Task
A, respectively. As shown on the left of Figure 4, we can
observe three phenomena: (1) there is an obvious word fre-
quency bias in the training set of ECtHR Task A; (2) the
same kind of bias occurs in the top 5% crucial words con-
sidered by Legal-BERT; (3) the two kinds of frequency ex-
hibit a common distribution. The first phenomenon, exhibit-
ing a severe bias in the training set, can lead learning mod-
els to suffer from data imbalance, which is demonstrated
by the causal structural model in Figure 2 and instantiated
by the second phenomenon. The third phenomenon indi-
cates the fact that, without any intervention, learning models
will faithfully learn the bias distribution in the training data,
which is undesirable for all heuristic learning methods. If
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the bias brought by a training set is correlated with gender,
race, or geography, learning models will even trigger severe
social problems.
Effect of Debiasing. To investigate the reason why our
proposed methods possess better generalization ability and
robustness, we visualize their decision rules of predicting
judgment in the test set of ECtHR A and B. We count the fre-
quency of each word occurring in the top 5% words, which
are considered most crucial by Legal-BERT and our pro-
posed CASAM, respectively. The results are shown on the
middle and right of Figure 4. Our observations are three-
fold: (1) Without any adjustments in training data or the
architecture of the model, Legal-BERT significantly corre-
lates non-causal information with the judgments. It predicts
judgments through those words that hardly possess any se-
mantic meanings. The spurious correlations render Legal-
BERT vulnerable to attacks and impede its deployment in
real-world legal scenarios: The changes in non-causal infor-
mation like writing style (frequently or rarely use these func-
tion words) can even affect the predictions of Legal-BERT.
(2) After our intervention in the architecture of Legal-BERT,
it significantly decouples the non-causal information (e.g.,
the punctuation marks and function words) and final predic-
tions, which presents the effectiveness of reducing the pos-
sibility of potential learning results shown in Figure 2. (3)
Our intervention makes Legal-BERT learn new causal in-
formation (e.g., content words that indeed affect the predic-
tions), especially in the middle of Figure 4, which indicates
that our proposed methods succeed in learning causal infor-
mation (the ground-truth estimate) for predicting by reduc-
ing the possibility of other potential estimates. This explains
why our proposed methods achieve both SOTA generaliza-
tion ability and robustness.

Note that CASAM can still be aware of non-causal infor-
mation in some situations shown in the right of Figure 4 due
to the precision of OIE tools: N cannot be precisely distin-
guished from C, which hampers more performance gains of
our proposed methods. We leave the improvement of OIE
tools for future work.

6 Related Work

The rapid development of large-scale pre-trained language
models (PLMs) based on transformers significantly bene-
fits a wide range of downstream tasks such as legal text
processing (Cui et al. 2022). Some of the PLMs including
BERT (Devlin et al. 2018) are further pre-trained on domain-
specific corpora, such as Legal-BERT (Chalkidis et al. 2020)
which exhibits the SOTA performance on legal text pro-
cessing benchmarks (e.g., LexGLUE) (Zheng et al. 2021;
Chalkidis et al. 2022a). However, in the meantime, some se-
vere problems of models are also discovered, including un-
fairness and discrimination (Chalkidis et al. 2022b). Accord-
ingly, researchers propose debiasing methods (Guo, Yang,
and Abbasi 2022; Sevim, Şahinuç, and Koç 2022) to mit-
igate the bias or conduct substantial experiments to inves-
tigate and analyze the decision rules of PLMs (Clark et al.
2019; Chen, Chen, and Zhou 2023). Different from previous
work, we rethink the development of LLMs from the causal
perspective to theoretically analyze the underlying causes of
their problems. After that, we give our solution and finally
demonstrate its effectiveness through extensive experimen-
tal results.

7 Conclusion

In this paper, we investigate the decision rule of the legal-
specific PLM in legal AI. We exhibit the potential problems
of the decision rules caused by spurious correlation error and
propose a structural causal model to theoretically analyze
the underlying mechanism. Under the guidance of our anal-
ysis, we propose a method to simultaneously reduce non-
causal information and retain causal information in the given
fact descriptions. The experimental results indicate that spu-
rious correlations between non-causal information and pre-
dictions largely damage the generalization ability and ro-
bustness of legal AI. We appeal to future work to take the
spurious correlation error into consideration for improving
the overall performance of legal AI.
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