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Abstract

Despite the great success of large language models (LLMs)
in various tasks, they suffer from generating hallucinations.
We introduce Truth Forest, a method that enhances truthful-
ness in LLMs by uncovering hidden truth representations us-
ing multi-dimensional orthogonal probes. Specifically, it cre-
ates multiple orthogonal bases for modeling truth by incor-
porating orthogonal constraints into the probes. Moreover,
we introduce Random Peek, a systematic technique consid-
ering an extended range of positions within the sequence, re-
ducing the gap between discerning and generating truth fea-
tures in LLMs. By employing this approach, we improved the
truthfulness of Llama-2-7B from 40.8% to 74.5% on Truth-
fulQA. Likewise, significant improvements are observed in
fine-tuned models. We conducted a thorough analysis of truth
features using probes. Our visualization results show that
orthogonal probes capture complementary truth-related fea-
tures, forming well-defined clusters that reveal the inherent
structure of the dataset.

1 Introduction
Large language models are known to generate complex and
unverifiable answers, often referred to as hallucinations.
Studies show that advanced LLMs, like GPT-4, produce con-
fusing statements without verification (Li et al. 2023a).

Incorporating external knowledge can partially address
hallucination issues (Li et al. 2023a), but methods like
prompting or self-checking without additional knowledge
also yield improvements (Manakul, Liusie, and Gales 2023;
Saunders et al. 2022). Research on extracting knowledge
networks from LLMs (Wang, Liu, and Song 2020) reveals
that these models possess more knowledge than initially as-
sumed.

LLMs sometimes generate incorrect answers due to
misalignment between internal states and outputs, a phe-
nomenon known as the Generating and Discerning Gap (G-
D Gap) (Saunders et al. 2022). Studies indicate that super-
vising internal states, rather than generating answers, en-
hances recognition accuracy in classification tasks (Azaria
and Mitchell 2023). Additional research on downstream

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

*Corresponding authors.

tasks supports the G-D Gap’s impact on LLM performance
(McKenna et al. 2023; Agrawal, Mackey, and Kalai 2023).

These studies suggest that hallucinations may partly stem
from knowledge deficiency and misalignment between the
model’s output and the desired truthful response, resulting
from the model’s inability to properly access or utilize in-
ternal knowledge. Although generating factual statements
aligns with human preferences, this characteristic is not in-
herently present in LLMs pre-trained on extensive, noisy
data. Reinforcement learning (RLHF) (Ziegler et al. 2020),
a method for introducing alignments, cannot fully address
the problem, as reward models may erroneously reward un-
verifiable answers or prioritize versatility over truthfulness,
potentially exacerbating the G-D Gap and hallucination is-
sues.

A more promising approach might involve focusing on
the concept of ’truth’ within LLMs, as recent studies have
shown that LLMs can internally model truthfulness (Azaria
and Mitchell 2023). By systematically analyzing the internal
states of LLMs and evaluating their propensity to generate
accurate or inaccurate statements, insights have been gained
from interventions designed to guide the model toward pro-
ducing more truthful outputs.

Inspired by existing work, we propose Truth Forest
(TrFr), a method for exploring multi-dimensional truth fea-
tures within LLMs. TrFr models complex truth features by
employing multiple orthogonal probes, effectively captur-
ing the intricate internal activities within LLMs. Truth For-
est introduces a simple iterative algorithm with orthogonal
constraints to generate a series of orthogonal probes, which
are merely direction vectors pointing towards some truth.
These direction vectors are weighted during the intervention
to impose a preference for truthfulness. To mitigate the G-D
Gap, we incorporate Random Peek, a diversified sampling
method that captures truth-related features from various po-
sitions within the sequence, enhancing the model’s ability to
access and utilize its internal knowledge.

We conducted a systematic study of TrFr’s components.
For orthogonal directions, we explored various intervention
intensities and data amounts, confirming the advantages of
employing multiple directions. A study on samples unveiled
the underlying logic of our approach. Through random peek,
we analyzed differences in intervention locations between
our method and ITI. Our study reveals the first proof of the
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Figure 1: Framework of TrFr. TrFr involves three steps:(1) Feature Extraction. Extract key features from QA dataset using the
’Random Peek’ technique.(2) Probe Training. Train orthogonal probing groups on these features, and then select the Top-K
effective groups based on their identifying performance on a validation set. Then weight the directions within each group to
determine the final truthful axis.(3) Intervention. For all effective groups’ regions, an adjustment based on the axis is performed
to shift the LLM towards a truthful state.

G-D Gap within the model, highlighting the importance of
tackling this issue to improve the model’s performance.

Our method, orthogonal to RLHF and Few-shot prompt-
ing(FSP), demonstrates consistent improvements in various
LLMs. We conducted a detailed examination of Truth For-
est on the TruthfulQA benchmark (Lin, Hilton, and Evans
2022), raising the true rate of LLaMA-7B (Touvron et al.
2023a) from 30.6% to 77.2% and the True*Info from 29.6%
to 63.2%.

Our contributions can be summarized as follows.
• introducing a method that employs multiple orthogonal

probes to construct complex truth features within LLMs.
• We introduce Random Peek, a technique that bridges the

gap between generating and discerning truth features,
leading to more responsible statement generation.

• Our extensive analysis of multi-dimensional truth fea-
tures demonstrated the effectiveness of TrFr.

2 Related Work
The highly parameterized nature of LLMs often leads
to black-box operations that are difficult to comprehend
(Hu et al. 2021; Houlsby et al. 2019), resulting in lim-
ited intervention effects. While Contrast-Consistent Search
(CCS) (Burns et al. 2022) has made progress in model-
ing truth within LLMs, it faces challenges due to its re-
liance on a binary logic constraint for unsupervised truth-
ful directions. Similarly, Inference-Time Intervention (ITI)
(Li et al. 2023b) has revealed the multi-dimensional truth-
fulness within LLMs using supervised samples, but it suf-

fers from high variance. These works employ the last token
of a QA sequence to extract features for finding directions,
which may lead to inconsistencies between generating and
discerning truth for two reasons: (1) Using a fixed position
for feature extraction without special training can result in
suboptimal performance (Liu et al. 2019). (2) Since the an-
swer is already given, the focus shifts from the question to
discerning specific responses, which may limit the scope of
addressing hallucinations.

Probe-based Intervention. Recent work on modeling
truth within LLMs can be traced back to the Plug and Play
Language Model (PPLM) series, which introduces a classi-
fier P (a|x) and uses Markov Chain Monte Carlo (MCMC)
sampling to obtain the posterior distribution P (x|a) ∝
P (a|x)P (x). Typically, multiple backward and forward
passes are required for intervention. These methods, consid-
ered activations editing, have been widely applied in style
transfer domains (Liu et al. 2022; Dhariwal and Nichol
2021). Inspired by (Li et al. 2023b), TrFr simplifies the
multi-step intervention process and establishes a connection
with PPLM, serving as a low-order approximation of PPLM.

We follow ITI and further explore the multi-dimensional
truth property. We describe TrFr in the following sections.

3 Truth Forest: Intervening from Multiple
Directions for Enhanced Truthfulness

3.1 Overview
In Figure 1, we illustrate the Training-Intervention Frame-
work for TrFr. TrFr is based on the idea that specific patterns
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in LLM’s attention mechanisms can indicate whether it is
providing false or true information (Li et al. 2023b; Burns
et al. 2022). These patterns are identifiable as points along a
axis that separates truth from deception.

3.2 Mitigating the G-D Gap With Random Peek
A question-answer dataset with true and false responses(or
positive & negative) is used to train probes to differentiate
truth from deception in an LLM. The Random Peek method
is implemented through Algorithm 1.

Algorithm 1: Random Peek Method for Extracting Features
Input: Question-answer Dataset D, LM, distribution Φ, LM’s lay-
ers L, LM’s Attention heads H
Output: MHA features F
1: Initialize an L×H 2D-list F for storing features
2: for each tuple (Qi, Ai, yi ∈ {0, 1}) in D, where yi indicates

correctness of Ai do
3: Sample cutoff index z ∼ Φ, ensuring 1 ≤ z ≤ |Ai|
4: Si ← Concat(Qi,Ai[ :z ])
5: Compute hidden states X ← LM(Si)
6: for each layer l = 1 to L do
7: for each head h = 1 to H do
8: Extract last token’s features for head h at layer l: xl

h

9: Append (xl
h, yi) to F [l][h]

10: end for
11: end for
12: end for
13: return F

The Random Peek solely truncates each answer at a po-
sitional level. This approach is grounded in the assumption
that features sampled from different points in the answer se-
quence can be more informative. In Section 5.2, we explore
the influence of Random Peek.

3.3 Orthogonal Probes for Truthfulness
Representation

A single-layer sigmoid classifier pθ(x) = σ(⟨θ, x⟩) effective
for identifying truthful axis due to its interpretable parame-
ters. With the convention that 1 signifies truth, a smaller co-
sine distance between attention state from positive inputs xP

and the learnt parameter θ(normalized to unit length, seen
as an axis) suggests a greater probability of the LLM being
truthful. Conversely, a closer angle with negative inputs xN

suggests a higher likelihood of being in a deceptive state.
Inspired by (Li et al. 2023b) we further explore the

multi-dimensionality of truthfulness. We introduce multiple
probes, i.e pθ(x), in each head for capturing multiple axis:

Θ = {θ1, θ2, ..., θk}, θi ⊥ θj , i ̸= j

Probes in each orthogonal group are trained on the same
feature set F l

h to predict Si is positive or negative inputs
from Algorithm 1 using a binary cross-entropy loss Lce.

Lce = − 1

N

N∑
i=1

[yi · log(pθ(xl
h))+(1−yi) · log(1−pθ(x

l
h))

After training, the parameter θ aligns with the axis pointing
towards the majority of positive inputs, while its opposite

angle gathers the majority of negative inputs. Intuitively, an
additive adjustment to attention states can be made to move
closer to that direction.

To avert model collapse, we enforce soft orthogonality
constraints, denoted as Lorth. To efficiently tackle the es-
calating optimization complexity for probes generated later,
the Limited-memory BFGS (L-BFGS) algorithm (Liu and
Nocedal 1989) is employed, owing to its proficiency in han-
dling complex optimization challenges and ensuring stabil-
ity under augmented constraints.

Lorth =
k∑

i=1

i−1∑
j=1

∥⟨θi, θj⟩∥1

By minimizing Lorth, we encourage the probes to remain
orthogonal to each other, thus capturing different aspects of
the model’s internal representations of truthfulness.

To prevent overfiting, a weight decay regularization L2 is
applied to θ. The total loss for a probe incorporates three
components:

Ltotal = Lce + λLorth + µL2

We can control the trade-off between accuracy and orthogo-
nality of probes by adjusting λ and µ.

3.4 Implementing Truth Forest and Intervention
Process

After training, we obtain multiple axis Θ pointing towards
truthfulness in each head. Note that during the training of
the probes, the K probes in each group are generated and
trained in sequence, which leads to decreased performance.
In each head, we perform weighting to balance disequilib-
rium probes and obtain the final unit axis Θl,h.

We compute the final axis Θl,h using exponential decay
weighting W :

Θl,h =
K∑

k=1

wkθl,h,k, wk = e−k

where wk is the weighting factor, and θl,h,k is the k-th axis
at position (l, h).

We rank all the groups by each 1st probe and obtain the
effective axis Θ∗

l,h. To intervene in the MHA layer, we mod-
ify it as a constant:

xl+1 = xl +
H∑

h=1

Qh
l

(
Atthl

(
Ph
l xl

)
+ ασh

l Θ
∗
l,h

)
where xl and xl+1 represent layer l input and output, Qh

l ,
Atthl , and Ph

l are MHA components, H is the number of
heads, α is the intervention strength, Θ∗

l,h is the unit axis,
σh
l is the standard deviation ensuring the effectiveness of

the intervention. We provide a theory perspective of TrFr in
Appendix A.

Since the additional term in each step is a constant, the
time complexity of TrFr when inference is O(1).
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True*Info (%) True (%) MC acc. (%) CE KL

Few-shot Setting

Baseline 32.4 33.3 25.8 2.17 -
Supervised Finetuning † 36.1 47.1 24.2 2.10 0.01
Few-shot Prompting 45.9 47.5 33.3 2.17 -
ITI 40.2 45.0 26.7 2.40 0.24
Few-shot Prompting + ITI 48.2 54.2 36.7 2.40 0.24

TrFr 41.5 45.8 27.5 2.26 0.10
Few-shot Prompting + TrFr 57.5 62.5 36.7 2.26 0.10

Full Data

Baseline 29.6 30.6 25.6 2.15 -
Random direction 30.5 31.6 25.5 2.21 0.02
CCS † 33.4 34.7 26.2 2.21 0.06
ITI: Probe weight direction 34.1 35.4 26.8 2.20 0.06
ITI: Mass mean shift 42.1 45.4 29.0 2.41 0.28

TrFr: Orthogonal directions 50.2 55.0 28.8 2.18 0.05
TrFr: Single Mass 63.2 77.2 31.3 2.48 0.36

Table 1: Comparison of model performance in few-shot and full data settings. We report the results for two variants of TrFr;
The Single Mass variant corresponds to using Random peek and directions directly obtained from the training samples, similar
to ITI: Mass mean shift. Results are averaged over four runs. α and standard deviations are reported in Appendix B. † denotes
results reproduced from other authors.

4 Experiments
We evaluate TrFr on the TruthfulQA (Lin, Hilton, and
Evans 2022), a benchmark specifically designed to entice the
model to produce hallucinatory answers. It comprises a di-
verse set of questions targeting human misconceptions and
related responses. We do not claim that TruthfulQA fully
assesses the level of truthfulness of the model, as no dataset
can achieve this. The evaluation process involves two tracks:
multiple-choice and generation.

4.1 Experimental Setup
This section provides an overview of the experimental setup,
organized into four parts: Metrics, Models, Measuring, and
Hyperparameters.

Metrics. For the multiple-choice track, the primary metric
is MC1, based on the correct ranking of truthful answers. In
the generation track, the main metric is True*Informative
rate, accounting for truthfulness and informativeness using
GPT-judge. See Appendix F.1 for more details.

Models. We assess a variety of open-source 7B models,
including LLaMA, Llama 2(Touvron et al. 2023b), Alpaca
(Taori et al. 2023), and Vicuna(Zheng et al. 2023). Our pri-
mary focus is on utilizing LLaMA-7B for our experiments.

Measuring Intervention. Following (Li et al. 2023b), we
calibrate intervention strength using Cross Entropy (CE)
and Kullback–Leibler divergence (KL) to measure devia-
tion from the original generation distribution. Lower val-
ues indicate less change. We use a subset of Open Web
Text(Radford, Jozefowicz, and Sutskever 2017) for calcu-
lations.

Hyperparameters. Details and used prompts are reported
in Appendix E.

4.2 Baseline Approaches
We compare several baseline approaches*:

Supervised Fine-tuning (SFT): Alternates between su-
pervised training and pretraining for truthful answers.

Few-shot Prompting (FSP): Improves truthfulness using
in-distribution examples as prompts during inference.

Instruction Fine-tuning (IFT): Enhances truthfulness by
fine-tuning language models with task-specific instructions.

Following (Li et al. 2023b), we evaluate SFT, FSP, and
ITI in few-shot scenarios with constraints on window size
and compare CCS and ITI using 2-fold validation on the full
TruthfulQA. See details of scenarios in Appendix F.

4.3 Experimental Results
In Table 1, we compare TrFr with baseline in two different
scenarios. In a few-shot setting, TrFr achieves better results
due to its compatibility with FSP. The CE and KL results
indicate that we perform better with minimal intervention
while maintaining informativeness.

Table 2 compares the results of IFT and pre-trained mod-
els using TrFr. We find that IFT effectively reduces halluci-
nation issues. Results show that TrFr interventions are min-
imal while significantly improving the True*Info % at any
stage of the models. This also proves that TrFr is orthogo-
nal to IFT and can enhance performance in conjunction with
them.

In Figure 2, we compare the performance of the Llama 2
series across 38 categories of TruthfulQA. We observe that

*RLHF underperforms 50-shot in-distribution prompting for
TruthfulQA as reported in (Bai et al. 2022). In both (Bai et al.
2022; Menick et al. 2022), RLHF shows minimal improvement.
Task-specific RLHF with 5% samples remains uncertain.
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True*Info (%) True (%) MC acc. (%) CE KL

Pre-trained

LLaMA 29.6 30.6 25.6 2.15 -
LLaMA + TrFr 50.2 55.0 28.8 2.18 0.05

Llama 2 37.5 40.8 28.5 2.07 -
Llama 2 + TrFr 56.0 74.5 33.8 2.19 0.08

Fine-tuned

Alpaca 40.7 40.8 26.2 2.51 -
Alpaca + TrFr 70.5 77.6 30.8 2.74 0.50

Vicuna 55.4 59.1 33.3 2.59 -
Vicuna + TrFr 78.8 88.8 38.8 2.76 0.54

Llama 2-Chat 58.6 63.0 33.7 2.46 -
Llama 2-Chat + TrFr 76.7 84.9 39.3 2.59 0.22

Table 2: Comparison of mainstream LLMs using 2-fold cross-validation. All models are 7B versions, and the results are aver-
aged over four independent runs.

Figure 2: Category-wise performance of the Llama 2-7B series on the TruthfulQA dataset. Results for TrFr are combined from
the test sets of two folds with a random seed.

TrFr improves Llama 2-Chat 7B in almost all categories.
Complete intervention results are provided in Appendix G.

5 Analysis
5.1 Ablation Study of TrFr Components
In Table 3, we perform an ablation study on the compo-
nents of TrFr. We find that both parts significantly improve
LLaMA-7B, with Random Peek yielding the most consider-
able improvement.

Method True*Info (%) True (%) MC

Baseline 29.6 30.6 25.6
+ Orthogonal directions 36.7 38.4 27.3
+ Random peek 49.7 54.2 28.7
TrFr 50.2 55.0 28.8

Table 3: Ablation of TrFr Components. These experiments
evaluate the individual components of TrFr, with the base-
line being the unmodified LLaMA-7B.

5.2 Analysis of Random Peek
In Table 4, we compare the last token and Random Peek
by examining the overlap between the effective heads (i.e.,
high-accuracy heads) generated by each method.

We find significant differences between the heads selected
by R.P and EOS in both Top-48 and Top-96 scenarios. These
different heads significantly contribute to the differences in
interventions, reflecting the gap between generating and dis-
cerning truth. Furthermore, the bottom table compares the
overlap between directions within the method, showing that
R.P. has better diversity.

The G-D gap emerges due to misalignments between
generated answers and the model’s internal states. Super-
vised learning aids in reconciling these misalignments by
utilizing aligned data, while R.P.’s diversity ensures that the
alignment can be effectively generalized to various positions
within the sequence.

5.3 Analysis of Number of Orthogonal Directions
We examine the orthogonal direction components from two
perspectives: the amount of data and intervention strength.
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Figure 3: Impact of the Number of Directions as Data Increases. In this study, we investigate the changes in fidelity preference
as the volume of training data for probes increases (left) and the average results (right). On average, moderately increasing the
number of directions helps improve performance.

Top-48 acc. heads Top-96 acc. heads

Heads Overlap between EOS and R.P.

1st Dir. 39.58% 54.17%
2nd Dir. 27.08% 34.38%
3rd Dir. 22.92% 42.71%

Heads Overlap between Directions

R.P. 52.08% 58.33%
EOS 59.57% 72.63%

Table 4: Overlap comparison for various methods and di-
rections. We denote EOS as the last token and R.P. as Ran-
dom peek. The above table shows the overlap between EOS
and R.P. for Top-K acc. heads. The bottom section compares
the overlap between the 1st and 2nd directions within the
method.

In Figure 3, we assessed the impact of varying the number
of orthogonal directions on True*Info % while training with
different feature data amounts. Our results indicate that us-
ing multiple directions improves the model’s performance,
with more probes enabling faster convergence, especially
when data is limited.

Furthermore, as shown in Table 5, our experiments reveal
that the optimal number of directions depends on the spe-
cific intervention setting, with a moderate increase generally
yielding better performance.

5.4 Visualizing Orthogonal Directions
To explore the underlying principles of how Orthogonal Di-
rections operate, we analyze the projections of True Positive
(TP) samples in TruthfulQA onto different directions.

In Figure 4, we present the t-SNE results of sample
projections for each probe. Interestingly, we observe well-
defined clusters formed by the samples based on the clas-
sifiers, suggesting that Orthogonal Directions may capture
truth-related features independently and combine them in a
complementary manner.

In Figure 5, we investigate the relationship between the

Dir. Tr*In (%) True (%) MC (%) CE KL

1 37.20 43.11 20.72 2.19 0.12
2 38.38 51.28 22.00 2.37 0.31
3 41.06 52.72 23.17 2.42 0.35
4 38.63 51.17 23.72 2.45 0.39
6 37.53 51.31 24.19 2.50 0.44

Table 5: Impact of the Number of Directions in Different in-
tervening Strengths. We experiment with scaling directions
on different intervened heads and strengths(α) to investigate
their impact on the model’s fidelity.

Figure 4: t-SNE visualization of samples projected onto or-
thogonal probes, revealing complementary relationships and
clustered patterns among the probes. Samples uniquely iden-
tified by a single probe, while undetected by others, are
marked with distinct colors.

overlap of TP data and orthogonal loss among different
Probes. Classifiers with lower orthogonal loss generally
have a lower TP overlap rate.

5.5 Generalization of TrFr
Table 6 presents the generalization results for the Natu-
ral Questions dataset(Kwiatkowski et al. 2019), an out-of-
distribution test. We follow (Li et al. 2023b), using the con-
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Figure 5: A Case Study on Highly Orthogonal Directions About Truth. We examine five orthogonal probes trained on the
22nd layer’s 4th head and calculate their average Lorth (left), as well as the Jaccard similarity between their TP samples in
TruthfulQA (right).

fusing option generated by GPT-4. TrFr slightly improves
over the baseline, demonstrating its potential to generalize
to other datasets.

Natural Questions

Baseline 43.9
TrFr 44.3

Table 6: Generalization results on out-of-distribution
datasets. MC1 is reported.

5.6 Balancing Veracity and Informativeness

This section investigates the optimal balance between inter-
vention strength (α) and the number of intervened heads for
achieving high Info %. Figure 6 shows the impact of inter-
vention strength on LLaMA’s veracity. In contrast, Figure 7,
which selects runs with an informative rate > 90%, empha-
sizes the importance of balancing the number of intervened
heads and intervention strength to ensure informative out-
puts. We use the intervention settings sets from Section 5.3.

6 Conclusions and Future Work

In this paper, we introduced Truth Forest, an innovative
method that employs multiple orthogonal directions to en-
hance the truthfulness of LLMs at inference time without
additional fine-tuning. Future research directions include ex-
ploring the applicability of TrFr to other tasks and domains
and addressing other LLMs challenges, such as bias reduc-
tion and controllability.

Figure 6: Effect of Intervention Strength. Intervention in-
tensity influences LLaMA’s veracity when limiting the
number of intervened heads.

Figure 7: Balancing Veracity and Informativeness. Achiev-
ing an optimal balance between the number of intervened
heads and intervention strength is crucial for maintaining
informativeness.
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