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Abstract

Despite remarkable achievements in artificial intelligence, the
deployability of learning-enabled systems in high-stakes real-
world environments still faces persistent challenges. For ex-
ample, in safety-critical domains like autonomous driving,
robotic manipulation, and healthcare, it is crucial not only
to achieve high performance but also to comply with given
constraints. Furthermore, adaptability becomes paramount in
non-stationary domains, where environmental parameters are
subject to change. While safety and adaptability are recog-
nized as key qualities for the new generation of AI, current
approaches have not demonstrated effective adaptable per-
formance in constrained settings. Hence, this paper breaks
new ground by studying the unique challenges of ensuring
safety in non-stationary environments by solving constrained
problems through the lens of the meta-learning approach
(learning-to-learn). While unconstrained meta-learning al-
ready encounters complexities in end-to-end differentiation
of the loss due to the bi-level nature, its constrained coun-
terpart introduces an additional layer of difficulty, since the
constraints imposed on task-level updates complicate the dif-
ferentiation process. To address the issue, we first employ
successive convex-constrained policy updates across multi-
ple tasks with differentiable convex programming, which al-
lows meta-learning in constrained scenarios by enabling end-
to-end differentiation. This approach empowers the agent
to rapidly adapt to new tasks under non-stationarity while
ensuring compliance with safety constraints. We also pro-
vide a theoretical analysis demonstrating guaranteed mono-
tonic improvement of our approach, justifying our algorith-
mic designs. Extensive simulations across diverse environ-
ments provide empirical validation with significant improve-
ment over established benchmarks.

Introduction
Artificial intelligence (AI) has made significant progress in
the past few decades, ranging from mastering board games
(AlphaGo (Silver et al. 2016)), and predicting protein struc-
ture (AlphaFold2 (Jumper et al. 2021)) to generating human-
like texts (GPT-4 (Brown et al. 2020)). Though it has the
potential to revolutionize human society like electricity did
about one hundred years ago, currently its real-world impact
in high-stakes scenarios is still yet proven beyond games. It
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is observed that, despite those significant successes, deploy-
able Learning-Enabled Systems (LES, (Marcus and Davis
2019)) are far less pervasive. One of the most critical con-
cerns among others towards deployability is safety. In many
scenarios, the safety of LES is not compromisable, espe-
cially those with humans in the loop. For example, au-
tonomous driving vehicles should guarantee the safety of the
drivers and other entities by following the driving rules and
operating under various internal and external disturbances,
such as partial sensor dysfunction and weather conditions.
In healthcare and medicine, the treatment should guarantee
that the side effects should not exceed the prescribed thresh-
old. Therefore, learning-enable components should rigor-
ously guarantee safety, and failing to do so can result in un-
desirable or even disastrous outcomes.

In this paper, we focus on the safety issues of re-
inforcement learning (RL), a popular framework for se-
quential decision-making. A significant amount of effort
has been made to advance safe RL. For example, con-
strained reinforcement learning (Chow et al. 2017; Achiam
et al. 2017) offers a compelling solution for training pol-
icy safely and responsibly by complying with safety con-
straints. However, there are still major gaps toward deploy-
ability in more restrictive environmental assumptions. Con-
sider a non-stationary environment with dynamically chang-
ing specifications, including the safety criterion. In this case,
safety-aware RL policies trained point-wisely with fixed
tasks are likely to violate safety constraints in different task
settings. In other words, for AI to truly mirror human intel-
ligence, it must possess the ability to adapt quickly to new
tasks under constraints. Therefore, it is crucial to develop
learning algorithms that enable LES to rapidly adapt while
adhering to safety specifications. As it is still challenging for
existing safe learning approaches, our goal here is to bridge
such a gap by achieving a fast adaptation regarding both per-
formance and safety guarantees in non-stationary environ-
ments.

Specifically, we investigate fast-adapting safe RL through
the lens of meta-learning, which admits a bi-level struc-
ture. Constrained Policy Optimization (CPO, (Achiam et al.
2017)) is employed as the base module for the updates of
task-specific parameters and meta parameters at the inner
and outer levels, respectively. However, it is well-known that
unconstrained meta-learning already admits complex differ-
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entiation of the loss function with respect to the meta param-
eter. This issue is even worse in constrained meta-learning
since the inner-level updates under constraints complicate
the differentiation process even further. To tackle this chal-
lenge, we use CPO which convexifies the constrained policy
learning within a trust region for policy updates. Addition-
ally, to facilitate efficient end-to-end differentiation for ef-
fective meta-training, we employed Differentiable Convex
Optimization (DCO, (Agrawal et al. 2019)) to bridge the
inner-level and outer-level updates. As convexity enhances
the efficiency of both forward pass and backpropagation,
this framework will support adaptable safety guarantees at
scale under non-stationarity. This will be further explored in
Section , where we delve into solving a constrained meta-
learning problem for unprecedented testing tasks in non-
stationary environments. To the best of our knowledge, this
is the first attempt to build such a framework, providing a
promising solution for fast adaptation with safety specifica-
tions.

Our main contributions are listed as follows.
• Building a novel architecture by integrating constrained

RL into the meta-learning framework, enhancing the
ability to provide adaptable safety guarantees.

• Developing a practical method to solve constrained
metal-RL via successive convexification and DCO for
end-to-end trainability.

• Conducting a thorough evaluation of the Meta-CPO al-
gorithm, which outperforms the benchmarks regarding
performance and safety satisfaction.

Preliminaries
Constrained Reinforcement Learning
A Markov Decision Process (MDP) serves as a mathemat-
ical framework for modeling sequential decision-making
problems. It is composed of several key components repre-
sented as a tuple: (S,A,R, P, µ). Here, S denotes the set of
states, A represents the set of actions, R : S × A× S → R
signifies the reward function, P : S × A × S → [0, 1]
represents the transition probability function. Specifically,
P (s′|s, a) indicates the probability of transitioning to state
s′ given the action a the agent took in previous state s. Ad-
ditionally, µ : S → [0, 1] denotes the starting state distri-
bution. Within an MDP, a policy π : S → P (A) refers to
a mapping from states to probability distributions over ac-
tions. The notation π(s|a) implies the probability of select-
ing action a in state s.

While RL only aims to maximize a cumulative discounted
reward JR(π) = Eτ∼π [

∑∞
t=0 γ

tR(st, at)], constrained RL
will additionally enforce a cumulative discounted cost con-
straint as JC(π) = Eτ∼π [

∑∞
t=0 γ

tC(st, at)] ≤ h, where
h is the safety threshold, C(st, at) is the cost function, γ
the discount factor, τ is the trajectory τ = (s0, a0, s1, . . . ),
and τ ∼ π means that the trajectory distribution depends
on π in the following way: s0 ∼ µ, at ∼ π(at|st), st+1 ∼
P (st+1|st, at).

To guide effective policy learning, one can use ei-
ther an action-value function, Qπ

R(s, a), or a state-
value function, V π

R (s). These functions estimate the

expected future return based on the current state and
chosen action (action-value) or just the state itself
(state-value). Their formal definitions are Qπ

R(s, a) =
Eτ∼π [

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a] for action-value
function and V π

R (s) = Eτ∼π [
∑∞

t=0 γ
tR(st, at)|s0 = s]

for state-value function. In analogy, the action and
state value functions for the cost, Qπ

C(s, a) =
Eτ∼π [

∑∞
t=0 γ

tC(st, at)|s0 = s, a0 = a] and V π
C (s) =

Eτ∼π [
∑∞

t=0 γ
tC(st, at)|s0 = s], are defined similarly.

Kakade and Langford (Kakade and Langford 2002) give
an identity to express the performance measure of policy π′

in terms of the advantage function over another policy π :

JR(π
′)− JR(π) =

1

1− γ
Es∼dπ′

a∼π′
[Aπ

R(s, a)] (1)

where dπ
′

is the discounted future state distribution of pol-
icy π′, and (1) still depends on expectation of π′. More-
over, Aπ

R(s, a) is the reward advantage function defined as
Aπ

R(s, a) := Qπ
R(s, a)− V π

R (s). Similarly, we have the cost
advantage function as Aπ

C(s, a) = Qπ
C(s, a)− V π

C (s).
Extending upon (1), subsequent research (Schulman et al.

2015) defined a surrogate function, M(π), of (1) to bound
the policy improvement, replacing dependencies on π′ to π:

JR(π
′)− JR(π) ≥M(π′)−M(π)

= Lπ(π
′)− CDmax

KL (π, π′)
(2)

where Lπ(π
′) = 1

1−γEs∼dπ
a∼π

[Aπ
R(s, a)] and CDmax

KL (π, π′)

represents the error bound. It’s worth noting that by de-
creasing the step size, Dmax

KL , we can minimize the error
on a smaller scale, ensuring trust region updates that en-
force the right-hand side (RHS) to always be positive. Con-
strained Policy Optimization (CPO, (Achiam et al. 2017))
further extends this framework by introducing extra inequal-
ity constraints. This ensures the preservation of the guaran-
tee of monotonic improvement while accommodating the
additional constraint. Consequently, the resultant policies
not only aim for optimal performance but also align with
specified safety requirements. Building upon (2), we present
a theoretical analysis that extends this methodology to a
meta-learning setting.

Constrained Policy Optimization (CPO)
Constrained RL methods (e.g., CPO) aim to balance the
trade-off between achieving goals and ensuring safety in
critical RL tasks, like industrial robot operation and au-
tonomous driving. Leveraging the trust region for guaran-
teed monotonic improvement, CPO offers intuitive analyti-
cal solutions that excel at optimizing policies for a balance
of rewards and safety constraints by solving a constrained
optimization problem. For CPO, its update procedure is de-
picted in Figure 1 and the detailed update rule is formulated
as follows

θk+1 = argmax
θ

gTθ (θ − θk)

s.t.
1

2
(θ − θk)TH(θ − θk) ≤ δ

bi + aTθ (θ − θk) ≤ 0

(3)
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Figure 1: Update procedures for CPO (Achiam et al. 2017).
CPO computes the update by simultaneously considering
the trust region (light green) and the constraint set (light or-
ange). Figure adopted from (Yang et al. 2020)

with definitions: gθ = ∇θEs∼dπ [Aπ
R(s, a)] is the gradient of

the reward advantage function, aθ = ∇θEs∼dπ [Aπ
C(s, a)] is

the gradient of the cost advantage function, H is Hessian
matrix of KL-divergence ∂2D̄KL

∂θ2 , and bi = JC
i (π)− h.

In case (3) is infeasible, CPO instead solves

θk+1 = argmin
θ

aTθ (θ − θk)

s.t.
1

2
(θ − θk)TH(θ − θk) ≤ δ

(4)

by solely decreasing the constraint value within the trust re-
gion. We will also use the following notation ∥θ − θk∥2H :=
(θ − θk)TH(θ − θk) for simplicity.

In our approach, CPO serves as the primary update rule
for the agents, both meta- and local ones. Because the objec-
tive of CPO is to optimize the policy while ensuring safety
satisfaction, it is a good fit to be the base learner towards
constrained meta-policy learning under non-stationary.

Differentiable Convex Optimization
Differentiable Convex Optimization (DCO, (Agrawal et al.
2019)) is a framework that aims to facilitate the differen-
tiation of convex optimization problems. The DCO layers
provide a framework for expressing and solving convex op-
timization problems in a way that allows for efficient gradi-
ent computations and integration with deep learning models.
These layers offer a differentiable representation of convex
optimization problems, enabling the computation of gradi-
ents with respect to the optimization variables. By utiliz-
ing affine-solver-affine (ASA) composition and employing
canonicalization techniques, DCO layers ensure straightfor-
ward computation of gradients through the backward pass.
This advancement allows for the integration of convex opti-
mization with deep learning models, enabling meta-learning
with nested convex optimization modules with learnable pa-
rameters. Specifically, the ASA consists of taking the opti-
mization problem’s objective and constraints and mapping
them to a cone program. For the following general quadratic
programming (QP)

min
x

1

2
xTQx+ qTx s.t. Ax = b,Gx ≤ h, (5)

we can write the Lagrangian function of the problem as:

L(z, ν, λ) =
1

2
zTQz+qT z+νT (Az−b)+λT (Gz−h) (6)

where ν are the dual variables on the equality constraints
and λ ≥ 0 are the dual variables on the inequality constraint.
Using the KKT conditions for stationarity, primal feasibility,
and complementary slackness.

Qz⋆ + q +AT ν⋆ +GTλ⋆ = 0

Az⋆ − b = 0

D (λ⋆) (Gz⋆ − h) = 0

(7)

By differentiating these conditions, we can shape the Jaco-
bian of the problem as follows.[

dz
dλ
dν

]
=

 Q GTD (λ⋆) AT

G D (Gz⋆ − h) 0
A 0 0

−1  (
∂ℓ
∂z⋆

)T
0
0


Furthermore, via chain rule, we can get the derivatives of
any loss function of interest regarding any of the parameters
in the QP.

Constrained
Meta-Reinforcement Learning

To leverage previous learning experiences, it is crucial to
train a model that can adapt to multiple tasks rather than
only being optimized for a single task. This is where meta-
learning comes into play. Model-agnostic meta-learning
(MAML) (Finn, Abbeel, and Levine 2017) has emerged as
a powerful technique for training models with generaliza-
tion capabilities over unseen tasks, demonstrating its poten-
tial for few-shot adaptation in both supervised learning and
reinforcement learning domains.

In MAML, there are two key components: the meta-
learner (θ) and the local-learner (ϕ). Meta-learner could be
a distinct model parameter or could be other adaptable pa-
rameters such as learning rate and, in reinforcement learn-
ing, discount factor γ (Hospedales et al. 2022). The goal of
meta-learning is to train the meta-learner in a way that it
can quickly adapt to new tasks with minimal training, while
the local learner represents the updated parameters obtained
through one or more updates on a specific task. By averag-
ing the updates of the local-learner across multiple tasks, the
model can achieve strong generalization over its given train-
ing tasks.

Each task Ti consists of its own initial state distribu-
tion, µi(s0) and loss function LTi

, which leads to the task-
specific advantage function Aπ

i,R. Moreover, Ti is repre-
sented as an MDP with horizon H , and its trajectory roll-
out is used for policy evaluation and updates. With the re-
ward and cost functions associated with Ti and a param-
eterized policy πθ, the corresponding return and cost gra-
dients can be expressed similarly to the CPO formulation:
g(θ, Ti) = Est,at∼πθ,µTi

[
∇θA

π
i,R(s, a|θ)

]
and a(θ, Ti) =

Est,at∼πθ,µTi

[
∇θA

π
i,C(s, a|θ)

]
.

In general, meta-learning trains meta-parameter θ in the
outer level and task-specific parameters ϕi in the inner level
for task Ti. Meta parameters can produce task-specific pa-
rameters (e.g., as an initializer) for fast adaptation for both
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Figure 2: The black curve under meta parameter θ is the
learning trajectory in meta-policy space. Each blue ∇Li =
∇θA

R
ϕk

is the task-specific gradient, performing a tug-of-
war of each task to fulfill generalization/ adaptation over
multiple tasks. The projection finds a better intersection of
the constraint set, preventing safety violations arising from
average gradients.

training and testing in the same fashion, specified as follows

outer-level:

θ := argmax
θ

F (θ), s.t. G(θ) ≤ 0

where F (θ) =
1

M

M∑
i=1

Aπ
i,R(ϕi,Dtr

i ),

inner-level:

ϕi = Alg(θ,Dtr
i ) = CPO(θ,Dtr

i ),

(8)

where G(θ) is defined in the same way as F (θ) with the
defined Aπ

i,C(ϕi,Dtr
i ). Moreover,Dtr andDtest are the col-

lection of training and testing tasks respectively. In the un-
constrained settings, the Alg(•) is often instantiated as gra-
dient descent updates, which is however inapplicable in con-
strained settings. Moreover, in the inner level, Alg(θ,Dtr

i )
can be executed multiple times. Model-based or model-free,
primal methods or primal-dual methods, provide many op-
tions for the instantiation of Alg(•). Here, constrained pol-
icy optimization (CPO, (Achiam et al. 2017)), a model-free
primal method, is chosen as the optimizer.

Our algorithm can be broken down into two parts: lo-
cal updates with nominal CPO steps and meta updates fol-
lowing the differentiation through the meta parameters. As
previously mentioned, CPO serves as a primary update rule
for both parameters. This sequential process ensures that the
policy optimization is enhanced through the local learner’s
update and generalized effectively by the meta-learner, re-
sulting in improved overall performance and adherence to
the specified constraints. We elaborate on our approach in
the subsequent section, and Figure 2 provides a visual repre-
sentation of the MAML concept in constrained settings. In
this context, multiple local learners engage in a tug-of-war
to guide the policy to their respective task’s optimal point.
The projection then identifies the intersection of constraint
sets from each task, helping to mitigate safety violations that
average updates might cause.

Figure 3: Diagram of our meta-learning approach with CPO
as the base algorithm. It optimizes for meta-parameter θ that
can quickly adapt to new tasks under constraints.

End-to-End Trainability via DCO
with Adaptable Safety Guarantee

In meta-learning, the main computational complexity comes
from computing gradients of the loss function with regard
to the meta parameter, which has to go through local up-
dates. However, such gradient computations may be in-
tractable due to the complex optimization problem, i.e. CPO.
To enable meta-learning and facilitate differentiation within
the optimization, the Differentiable Convex Optimization
(DCO) is used. This framework allows us to effectively and
efficiently enable end-to-end differentiation within the opti-
mization layers.

Local Update (Inner-level)

When adapting to a certain task Ti, we update the model’s
meta parameters θ to its local copy ϕi with CPO. In our
method, the updated parameter vector ϕi is computed us-
ing multiple CPO updates on task Ti. With ϕ0

i = θ, the local
parameter ϕi is updated successively in the following form

ϕk+1
i = argmax

ϕi

g(ϕk
i ,Dtr

i )T (ϕi − ϕk
i )

s.t.
1

2
∥ϕi − ϕk

i ∥2H ≤ δ

bϕi
+ a(ϕk

i ,Dtr
i )T (ϕi − ϕk

i ) ≤ 0

(9)

where the superscript of ϕk
i represents the iteration index of

local updates.
The parameters are defined in a similar way to those in

(3). To obtain the local-learner ϕK
i after K updates, we im-

plement CPO for each task Ti to perform local updates. Dur-
ing the local-update, individual gradients and final updates
are stored to link each update at the K local step to the meta-
learner using respective gradients that find average updates
capturing shared knowledge across tasks. However, policy
updates may violate cost constraints JC(π) ≤ h and KL-
divergence |π − πk|2H , requiring a backtracking line search
for feasibility (Achiam et al. 2017).”
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Algorithm 1: Meta-CPO for fast adaption under constraints

Require: p(T ): distribution over tasks
Require: δ, h: optimization constraints

1: Initialization Randomly initialize θ
2: while not done do
3: /*local updates*/
4: Sample tasks under p(T )
5: for each sampled Ti do
6: for k = 0, . . . ,K − 1 do
7: Sample multiple trajectoriesD = {τ} using pol-

icy πϕk
i

in Ti with ϕ0
i = θ

8: Estimate parameters in (9)
9: Update ϕk+1

i ← ϕk
i with CPO in (9) and back-

tracking linesearch
10: end for
11: end for
12: /*meta updates*/
13: Estimate F,G and compute the gradients dF/dθ and

dG/dθ with (11) using DCO
14: Update θ with (12) and backtracking line search
15: end while
16: Output: θ for meta-testing (not shown) in new tasks.

Meta Update (Outer-level)

Recall the meta-learning framework in (8) with the follow-
ing meta loss function with regard to meta parameter θ

max
θ

F (θ) =
1

M

M∑
i=1

Aπ
i,R(ϕi,Dtr

i ),

s.t. G(θ) ≤ 0

(10)

To update the meta parameter θ by gradient descent algo-
rithms, the gradient can be estimated by (chain rule) dF

dθ =
1
M

∑M
i=1

dAlgi(θ)
dθ g(ϕi,Dtr

i ). Note that the total derivative
dAlgi(θ)

dθ passes derivatives through Algi(•) such that we
need to differentiate through it. This highlights a major chal-
lenge in meta-learning: even when Alg(•) is in a fairly sim-
ple form of gradient descent in (8), the requirement for
second-order derivative makes it computationally intense.
As a result, (Finn, Abbeel, and Levine 2017) only keeps the
first-order terms, and (Rajeswaran et al. 2019) proposes im-
plicit differentiation. However, for safe learning, the safety
constraint can not be reconciled, such as a soft constrain-
t/penalty instead of a hard one. In this case, the complex
issue of differentiation is made worse by the fact that Alg(•)
solves a constrained learning problem. This can be part of
the reason why constrained meta-learning has not been in-
vestigated as much as its unconstrained counterpart because
the constraints might damage or complicate end-to-end dif-
ferentiability. Here we propose to differentiate through the
constrained policy update, via DCO, to enable end-to-end
meta-training.

With DCO, we can obtain the derivative of the meta loss

function with regard to the meta parameters as

dF

dθ
=

1

M

M∑
i=1

K−1∏
k=0

dAlgi(ϕ
(k+1)
i )

dϕ
(k)
i

g(ϕK
i ,Dtr

i ) (11)

where dAlgi(ϕ
k+1
i )

dϕk
i

is enabled by differentiating through the
local CPO update in (9) by DCO, which allows computing
the derivative of the loss function with respect to any pa-
rameters in the quadratic programming (9). As multiple pa-
rameters in (9), appearing in both objective and constraints,
depend on ϕk

i , the total derivative dAlgi(ϕ
k+1
i )/dϕk

i will be
the summation of all of the partial derivatives. In analogy,
dG
dθ can be computed in the same way for the update in (10).

With the derivative of the meta objective and constraint
functions evaluated, the meta updates can be readily per-
formed in a similar way using CPO.

θ′ = argmax
θ′

(
dF

dθ

)T

(θ′ − θ)

s.t.
1

2
∥θ′ − θ∥2H ≤ δθ

bθ +

(
dG

dθ

)T

(θ′ − θ) ≤ 0

(12)

Once (12) is infeasible, a similar strategy to (4) is adopted.
The evaluation of F (θ), G(θ), and their derivatives over
multiple tasks enables the generalization to new tasks, in-
cluding both return improvement and the satisfaction of the
safety constraints. The whole architecture of meta-learning
with CPO (Meta-CPO) is depicted in Figure 3. The pseudo-
code is provided in Algorithm 1, while the complete source
code is available on GitHub1.

Theoretical Analysis

In our approach, the rollout [θn · · ·
{
ϕk
i

}M

i=1
· · · θn+1] is

made to optimize meta-learner θn with differentiation
through local-learners ϕk

i , where k is the number of lo-
cal iterations and i is index of local-learners. For bi-
level meta-updates, we reformulate the work of TRPO/CPO
for the theoretical analysis of meta-learner θ. We begin
with defining the average performance of local-learner:
∆J̄k+1 := J̄(ϕk+1) − J̄(ϕk) ≥ 1

M

∑M
i=1

[
Lϕk+1

i
(ϕk

i ) −
Ck

i D
max
KL (ϕk

i , ϕ
k+1
i )

]
, where J̄(ϕk+1) is a mean performance

of ϕi at local step k + 1 (i.e., 1
M

∑M
i=1 J(ϕ

k+1
i )), and RHS

is a mean surrogate of performance difference of ϕk
i and

its next update ϕk+1
i . Since all local learners demonstrate

improvement over their previous iterations within the trust
region, carefully chosen step sizes ensure that the meta-
learner’s performance J(θn+1) is non-decreasing compared
to the previous meta-learner’s performance J(θn). This
property implies that as long as the local updates stay within
the meta-learner’s trust region, the meta-learner update is
guaranteed to be superior or at least the same as a local

1https://github.com/Mgineer117/Meta-CPO
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(a) Car-Circle-Hazard (b) Point-Button

Figure 4: Car-Circle-Hazard and Point-button environments.
In Car-circle-Hazard environment, the agent avoids the walls
and hazards, while the agent strives to only touch activated
button by avoiding other dead buttons and hazards in Point-
Button environment.

learner, J(θn+1) ≥ J̄(ϕk+1
i ). Hence, this can yield the per-

formance guarantees of meta parameters θ:

J(θn+1)− J(θn) ≥ ∆J̄k+1 ≥ L̄ϕk
i
(ϕk+1

i )− C̄k
i D̄

max
KL

All above analysis upon the return maximization, J(θ),
applies for cost satisfaction, JC(θ), as CPO does. This
also aligns with empirical experiments of Meta-CPO with
a steady learning curve. Consequently, our approach can
achieve adaptable safety guarantees while maintaining
monotonic performance improvement.

Limitations
However, current DCO layers (cvxpylayers2) have limited
ability to handle a large number of parameters in com-
putations. This restricts our approach to a smaller pa-
rameter scale resulting in unstable performance for high-
dimensional tasks and external disturbances. Additionally,
the use of cvxpylayers prevents us from employing cer-
tain mathematical tricks for effective and memory-efficient
matrix-vector product computations for solving CPO. Ac-
cordingly, we changed the KL-divergence metric to the Eu-
clidean metric as ∥θ − θk∥2H −→ ||θ − θk||22. Understand-
ing that such conversion results in model-variant updates can
compromise the guaranteed monotonic improvement within
the trust region, we implement multiple local steps to alle-
viate this issue. This approach ensures that the local learner
propagated from the meta-learner, is a better policy (under
the mild assumption), aligning with the theoretical frame-
work we propose.

Experiment
In our experiments, we aim to answer the following:
• Does Meta-CPO successfully achieve safety satisfaction

in a fast-adapting manner?
• How much is Meta-CPO improving the test results?
• What major benefits are gained by Meta-CPO?

We designed three environments utilizing the Python
Safety Gym library (Ray, Achiam, and Amodei 2019; Ji

2https://github.com/cvxgrp/cvxpylayers

et al. 2023). Presented below are concise descriptions of
tasks within the environments:

• Point-Circle: The agent is rewarded for running in a cir-
cle, but is constrained to stay within a safe region.

• Car-Circle-Hazard: The agent is rewarded for running
in a circle, while staying within a safe region and avoid-
ing hazards.

• Point-Button: The agent is rewarded for touching a goal
button, but is constrained to touch any no-goal button and
step on hazards.

The specifics of each environment, featuring non-physical
Walls and Hazards, are visually illustrated in Figure 4. Our
experimentation includes three distinct environmental con-
figurations: point-circle (S ⊆ R28, A ⊆ R2), car-circle
(S ⊆ R56, A ⊆ R2), and point-button (S ⊆ R60, A ⊆ R2).
We used a policy network with two hidden layers of (32,
16). Larger networks like (64, 32) are also feasible following
experimental settings demonstrated by the authors of CPO,
albeit with some computational cost trade-off.

At each iteration of meta-learning, five tasks are sam-
pled and five local updates are performed for each task (i.e.,
K = 5). Each task within these environments was generated
with unique parameters, including factors like radius, dis-
tance between walls, number of hazards, and the range for
spawning objects. These parameters were selected randomly
from uniform distributions within predefined ranges. Table
1 provides a comprehensive overview of the specifics. Fol-
lowing meta-training, a meta-testing phase was conducted to
evaluate the rapid learning capabilities of the meta-learner
with unseen tasks.

Meta-CPO Evaluation and Comparative Analysis

The learning curves depicting the progress of meta-training
and meta-testing are presented in Figure 5. To establish
a benchmark, we have included Meta-CPO, Meta-TRPO,
CPO3, and TRPO in our comprehensive analysis.

Our analysis indicates that the Trust Region Policy Op-
timization (TRPO) method consistently converges towards
high returns but exhibits significant constraint violations, as
expected. Conversely, CPO demonstrates notably unstable
behavior during testing phases. The meta-algorithm consis-
tently outperforms non-meta algorithms in both training and
testing phases, showcasing rapid and robust adaptation to
distinct tasks.

Our innovative Meta-CPO algorithm excels in rapidly
learning new tasks while simultaneously satisfying safety
constraints. Not only can it acquire new skills swiftly while
ensuring safety, but it also demonstrates remarkable adapt-
ability to varied cost constraints. As illustrated in Figure 5
(b), an agent trained with a cost limit of h = 10 seamlessly
transfers its knowledge to operate effectively under a tighter
limit of h = 5. This makes Meta-CPO a robust choice in
non-stationary environments where safety is paramount.

3https://github.com/SapanaChaudhary/PyTorch-CPO
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(a) Point-Circle (b) Car-Circle-Hazard (c) Point-Button

Figure 5: Two columns for each task: return (higher is better) and cost (lower is better). The black dashed line is the cost upper
bound (below the line means satisfaction). The first two rows are training for meta and non-meta algorithms, respectively. The
third row is meta-testing for unseen tasks, i.e., deploying meta-trained policies with few-shot adaptation and evaluating them
in return and cost. All methods are trained with 3 random seeds, and the mean (solid curve) and standard error (error bar) are
plotted with training iterations on x-axis. Meta-CPO (ours) works well in testing against baselines. Specifically for Car-Circle-
Hazard, the cost upper bound was changed tighter in testing, i.e., h : 10 → 5; see Figure 5 (b) (second column, black dashed
line). Meta-CPO (ours) can adapt to satisfy the safety constraints (below limit) while all others behave unstably or fail.

Envs. Meta-training
P-Circle 1.0 ≤ rc ≤ 1.5 0.65 ≤ s ≤ 0.75

C-Circle-H 0.7 ≤ rc ≤ 1.0 3 ≤ nh ≤ 7
P-Button 3 ≤ (nb, nh) ≤ 6 1.75 ≤ rs ≤ 2.0

Envs. Meta-testing
P-Circle 2.0 ≤ rc ≤ 2.5 0.55 ≤ s ≤ 0.65

C-Circle-H 1.2 ≤ rc ≤ 1.5 7 ≤ nh ≤ 12
P-Button 6 ≤ (nb, nh) ≤ 10 2.5 ≤ rs ≤ 3.0

Table 1: P, C, and H represent Point, Car, and Hazard, re-
spectively. Tasks are specified with different environmental
and safety settings with the following parameters: rc and rs
denote the circle radius and spawning range of objects, while
s is the wall distance scale. Additionally, we have nb for
the number of buttons and nh for the number of hazards.
For P-Circle and C-Circle-H, s × rc determines the wall
distance, and the same s is applied for both environments.
Task-specific parameters were sampled under a uniform dis-
tribution and no testing tasks were seen during training.

Related Works
There is a large volume of works on safe/robust learning,
including (Zhang et al. 2020a,b), robotic learning (Brunke
et al. 2021; Singh, Kumar, and Singh 2021), and compre-
hensive surveys (Garcıa and Fernández 2015; Moos et al.
2022). Specifically, the uncertainty variable can be treated
as a context variable representing different tasks and can
be subsequently solved as multi-task or meta-learning prob-
lems (Eghbal-zadeh, Henkel, and Widmer 2021; Rakelly
et al. 2019). Moreover, given optimization theories, robust
learning algorithms have also been developed based on inte-
rior point method (Jin, Mou, and Pappas 2021; Liu, Ding,
and Liu 2020), successive convexification (Achiam et al.
2017) and (augmented) Lagrangian methods (Bertsekas and
Tsitsiklis 2015; Geibel and Wysotzki 2005; Chow et al.

2017, 2018; Stooke, Achiam, and Abbeel 2020). In learning-
based control, Lyapunov theory, model predictive control,
and control barrier functions are also employed to develop
robust learning algorithms (Choi et al. 2020; Zheng et al.
2021; Cheng et al. 2019; Ames et al. 2016; Berkenkamp
et al. 2017; Sun, Kim, and How 2021; Chriat and Sun
2023b,c,a; Kanellopoulos et al. 2021). Additionally, with
the worst-case criterion for safety, minimax policy optimiza-
tion (Li et al. 2019; Zhang, Yang, and Basar 2019) or its
generalization Stackelberg games (Yang et al. 2022; Zhou
and Xu 2021; Lauffer et al. 2022; Bai et al. 2021) are often
the frameworks to promote resilience. Other works include
meta-adaptive nonlinear control integrating learning mod-
ules for fast adaptation in unpredictable settings (Shi et al.
2021; O’Connell et al. 2022).

Conclusions and Future Work

We proposed a novel constrained meta-Reinforcement
Learning (RL) framework for adaptable safety guarantees in
non-stationary environments. End-to-end differentiation is
enabled via the differentiable convex programming, and the
theoretical and empirical analysis demonstrated the advan-
tages of our approach over benchmarks. We suggest future
work that concentrates on enhancing the effectiveness and
efficiency of generalizable AI, specifically by incorporating
causality in scenarios with constraints. While meta-learning
aims to leverage memory or training across multiple tasks
for generalization, the incorporation of causality, which cap-
tures cause-and-effect relationships, has the potential to ef-
ficiently transfer knowledge from a particular task to differ-
ent ones by revealing hidden environmental dynamics. Thus,
fusing causality into the existing RL paradigm presents a
promising avenue for more efficient learning and improved
generalizability. Consequently, our future work will explore
this direction to further enhance RL capabilities.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20981



References
Achiam, J.; Held, D.; Tamar, A.; and Abbeel, P. 2017. Con-
strained policy optimization. In International conference on
machine learning, 22–31. PMLR.
Agrawal, A.; Amos, B.; Barratt, S.; Boyd, S.; Diamond, S.;
and Kolter, J. Z. 2019. Differentiable Convex Optimization
Layers. In Wallach, H.; Larochelle, H.; Beygelzimer, A.;
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