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Abstract

Decision trees are widely used for addressing learning tasks
involving tabular data. Yet, they are susceptible to adversar-
ial attacks. In this paper, we present Tree Test Time Simu-
lation (TTTS), a novel inference-time methodology that in-
corporates Monte Carlo simulations into decision trees to en-
hance their robustness. TTTS introduces a probabilistic mod-
ification to the decision path, without altering the underlying
tree structure. Our comprehensive empirical analysis of 50
datasets yields promising results. Without the presence of any
attacks, TTTS has successfully improved model performance
from an AUC of 0.714 to 0.773. Under the challenging condi-
tions of white-box attacks, TTTS demonstrated its robustness
by boosting performance from an AUC of 0.337 to 0.680.
Even when subjected to black-box attacks, TTTS maintains
high accuracy and enhances the model’s performance from an
AUC of 0.628 to 0.719. Compared to defenses such as Fea-
ture Squeezing, TTTS proves to be much more effective. We
also found that TTTS exhibits similar robustness in decision
forest settings across different attacks.

Introduction
Decision Tree (DT) models play a crucial role in various
fields due to their transparency, interpretability, and ability
to handle complex decision-making processes (Costa and
Pedreira 2022). They provide intuitive insights into how
a model arrives at its conclusions, making them valuable
for both analysis and application. However, DT models are
susceptible to adversarial examples (Vos and Verwer 2021;
Chen et al. 2019), where small, carefully crafted perturba-
tions can lead to significant misclassifications. Moreover,
DT models can be exploited in both white-box and black-
box settings where the attacker either has full knowledge or
no knowledge of the models parameters (Chen et al. 2019).
These attacks compromise the performance and reliability of
the models, posing substantial risks (Karchmer 2023), un-
derscoring the need for enhanced robustness techniques to
ensure their reliable performance in real-world scenarios.

Although many works have suggested ways for making
DT models robust against adversarial attacks (Vos and Ver-
wer 2022b; Ranzato and Zanella 2021; Calzavara et al. 2020;
Yang et al. 2020; Guo et al. 2022; Vos and Verwer 2022a)

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

all of these solutions modify the model or the training pro-
cess. This is a disadvantage for several reasons: (1) chang-
ing model parameters or the values of the node’s threshold
in case of DT, often harm a model’s performance on clean
data (Andriushchenko and Hein 2019; Chen et al. 2019; Vos
and Verwer 2021), (2) these defences cannot be applied to
deployed models, and (3) some of these methods cannot be
applied to every kind of DT which limits a developer’s op-
tions. This holds particular significance for mission-critical
systems. For example, during the Covid-19 pandemic, a DT-
based model called pangoLEARN (Turakhia et al. 2021),
was used by healthcare professionals and policymakers for
timely and accurate lineage assignment of SARS-CoV-2
genomes. A decision tree was chosen due to its competitive
predictive performance and hierarchical structure, closely
resembling a phylogenetic tree. Nonetheless, employing a
DT-based model introduces a plausible cyber-bioterrorism
vulnerability (Muthuppalaniappan and Stevenson 2021). In
this scenario, we would like to make the model robust to po-
tential cyber-bioterrorism attacks while preserving its struc-
ture and parameters. The latter ensures the model maintains
its competitive predictive performance and explainability.
Existing methods that revise the model can lead to inac-
curate lineage assignment of SARS-CoV-2 genomes, which
may have severe consequences for healthcare professionals
and policymakers.

In this work, we introduce a novel method, termed Tree
Test Time Simulation (TTTS), targeted at enhancing the ro-
bustness of trained models without necessitating any alter-
ations to the input data or the values of the node’s threshold
in the tree. TTTS exhibits the capacity to augment both the
robustness and performance of DT on adversarial examples
as well as on clean data, all the while preserving the model’s
inherent structure and training.

TTTS fundamentally integrates Monte Carlo Simulations
into DT to effectively enhance test data, thereby improving
the accuracy of predictions. For each test instance, the algo-
rithm predominantly adheres to the correct branch, but in-
termittently deviates to an alternate branch based on a prob-
abilistic measure. This probabilistic measure is determined
by one of five unique strategies we propose, each catering to
specific challenges intrinsic to DT predictions. By embed-
ding simple statistical measures, TTTS ensures a minimal
degree of plausibility between the decision at each level of
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the tree and the final classification outcome. A notable merit
of this approach is its non-interference with the generation
of the DT, ensuring compatibility with DT generated by a
variety of algorithms, not limited to those from Scikit (Pe-
dregosa et al. 2011).

Our method, integrated with the Adversarial Robustness
Toolbox, was subjected to rigorous testing against white-box
(DecisionTreeAttack) (Papernot et al. 2016) and black-box
(ZooAttack) (Chen et al. 2017) attacks across a diverse col-
lection of 50 datasets. The encouraging results highlight the
potential of TTTS as a comprehensive defense mechanism,
reinforcing the robustness of DT against adversarial attacks
while enhancing prediction accuracy. Hence, our contribu-
tion is a significant step forward in safeguarding DT models,
particularly in the context of tabular data, against adversarial
threats.

Related Work
Various methods have been proposed to improve the robust-
ness of machine learning models against adversarial exam-
ples, noise, and other perturbations. In this section, we dis-
cuss some of these methods and their characteristics.

1. Provably Robust Boosted Decision Stumps and Trees
against Adversarial Attacks This method focuses on
training provably robust boosted decision stumps and
trees against adversarial attacks (Andriushchenko and
Hein 2019). The approach involves formulating the prob-
lem as a convex optimization problem and solving it us-
ing a boosting algorithm. This method has been shown
to provide robustness guarantees for decision stumps and
trees.

2. Efficient Training of Robust Decision Trees Against
Adversarial Examples This method aims to train ro-
bust DTs against adversarial examples efficiently (Vos
and Verwer 2021). The approach involves using a novel
splitting criterion that considers the worst-case adversar-
ial perturbation of the input data. This method has been
shown to improve the robustness of DTs against adver-
sarial examples.

3. Robust Optimal Classification Trees Against Adver-
sarial Examples This approach proposes robust opti-
mal classification trees against adversarial examples (Vos
and Verwer 2022b). The method involves formulating the
problem as a mixed-integer linear program and solving it
using a branch-and-bound algorithm. This approach has
been shown to improve the robustness of classification
trees against adversarial examples.

4. Adversarially Robust Decision Tree Relabeling This
method focuses on adversarially robust DT relabeling
(Vos and Verwer 2022a). The approach involves relabel-
ing the leaves of a DT to minimize the worst-case adver-
sarial loss. This method has been shown to improve the
robustness of DTs against adversarial examples.

5. Genetic Adversarial Training of Decision Trees This
approach proposes genetic adversarial training of deci-
sion trees (Ranzato and Zanella 2021). The method in-
volves using a genetic algorithm to generate adversarial

examples and training the DT on the augmented dataset.
This approach has been shown to improve the robustness
of DTs against adversarial attacks.

6. TREANT: Training Evasion-Aware Decision Trees
TREANT is a method for training evasion-aware DTs
(Calzavara et al. 2020). The approach involves incorpo-
rating an evasion-aware splitting criterion into the DT
training process. This method has been shown to improve
the robustness of DTs against evasion attacks.

7. Fast Provably Robust Decision Trees and Boosting
This method focuses on fast provably robust DTs and
boosting (Guo et al. 2022). The approach involves using
a novel algorithm for training DTs that provides robust-
ness guarantees against adversarial attacks. This method
has been shown to improve the robustness of DTs and
boosting algorithms against adversarial examples.

8. Hardening Hardware Accelerartor Based CNN In-
ference Phase Against Adversarial Noises Layer-wise
prediction inconsistency involves obtaining model pre-
dictions at different layers of a CNN and detecting ad-
versarial inputs based on prediction inconsistency across
these layers (Odetola, Adeyemo, and Hasan 2022). This
method can help improve the robustness of the model
during the inference phase.

9. Feature Squeezing: Detecting Adversarial Examples
in Deep Neural Networks Feature Squeezing (Xu,
Evans, and Qi 2017) is a method for detecting adversar-
ial examples in deep neural networks, particularly in the
context of image data, but support also tabular data and
DTs. The technique works by applying transformations
to the input data, such as reducing the color bit depth
of each pixel or applying spatial smoothing. The differ-
ences in the model’s outputs between the original and
transformed inputs are then used for detecting adversar-
ial examples.

Methodology
TTTS integrates the concept of Monte Carlo Simulation into
the DT architecture. For each test instance, TTTS mainly
follows the correct branch during traversal but may sporadi-
cally deviate to an alternative branch, based on a predefined
probability.The underlying intuition of TTTS resides in the
chance to explore multiple paths within the tree, an oppor-
tunity that becomes amplified in scenarios involving heuris-
tics, such as uncertainty.

Let T denote a DT model, I a test instance for prediction,
PT (I) the prediction function of T for I , and TTTSP,S(T )
the TTTS-enhanced prediction function of T with a proba-
bility method P and S simulations. Let ∆adv(I) represent
the adversarial perturbation function that generates adver-
sarial instances, and R(PT (I),∆adv(I)) be the robustness
measure of the prediction function PT (I) against adversarial
perturbation ∆adv(I), where a higher value indicates higher
robustness. In this context, for any DT model T , any test in-
stance I , any of the five proposed probability methods P ,
and any number of simulations S, the application of Tree
Test Time Simulation (TTTS) during the inference phase
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Method Tabular
support

Only on
test time

Improving
on clean data

DT

1 ✓ × × ✓
2 ✓ × × ✓
3 ✓ × × ✓
4 ✓ × × ✓
5 ✓ × × ✓
6 ✓ × × ✓
7 ✓ × × ✓
8 × ✓ ✓ ×
9 ✓ ✓ × ✓
10 (Our) ✓ ✓ ✓ ✓

Table 1: Comparison of TTTS with existing methods aimed
at enhancing the robustness of machine learning models
against adversarial example classification. The methods are
evaluated based on their compatibility with tabular data,
ability to implement without modifying the model (only on
test time), the potential to improve performance on clean
data (not just with adversarial examples), and support for
DTs. Among all the examined techniques, only TTTS meets
all the specified requirements.

enhances the robustness of the model’s predictions against
adversarial attacks as:

R(TTTSP,S(T ),∆adv(I)) > R(PT (I),∆adv(I)) (1)

Moreover, it’s important to note that TTTSP,S(T ) does
not modify the original structure of T and improves perfor-
mance against both black-box and white-box attacks. This
study proposes five methods for DT node splitting, each ap-
plying a unique probability mechanism to determine the se-
lection of split point candidates. The methods are as follows:
1. Fixed Probability Method: This method serves as a

foundational benchmark for other techniques. At any tree
node, we either follow the original tree’s direction or opt
for the opposite. This choice is random, with a preset
fixed probability for selecting the inverse direction. As
the tree is traversed, there’s a significant likelihood of
selecting the correct branch and a lower probability for
choosing the incorrect one. This embodies the ”Monte
Carlo Simulation” principle in DT analysis.
In this approach, the probability of a flip remains con-
stant, determined beforehand. The formulation is as fol-
lows: Let pflip denote the flip probability, and pfixed be a
predetermined constant. Then, the formula becomes:

pflip = pfixed (2)

2. Depth Probability Method: The depth of a DT, indica-
tive of the longest path from root to leaf, directly influ-
ences its performance and clarity. Its impact is threefold:
Complexity: Deeper trees inherently increase in com-
plexity due to more levels and nodes, complicating their
interpretability, especially for very deep trees. Accuracy:
Enhanced depth can better the model’s accuracy on train-
ing data, allowing decisions at each node to exploit di-
verse data features, thereby unveiling intricate patterns.
Overfitting: Greater depth can lead to overfitting, where

a model overly tunes to training data noise, reducing its
generalization. Deeper nodes, representing more specific
rules, are more susceptible to this noise. As we ven-
ture further into DT algorithms, we often witness erod-
ing confidence in thresholds due to decreasing sample
sizes, overfitting, escalating complexity, and heightened
variance: Decreased Sample Size: Successive splits in a
tree yield ever-smaller data subsets, meaning deeper de-
cisions rely on fewer examples, potentially destabiliz-
ing threshold reliability. Overfitting: Delving deeper can
make the algorithm overly tailored to training data, risk-
ing overfitting. Such trees might learn noise, which can
undermine confidence in deeper-level decision thresh-
olds. Increased Complexity: A tree’s complexity bur-
geons with depth, producing thresholds that may be less
interpretable and reliable, especially if they hinge on in-
tricate feature interplays. Variance: Deeper trees might
encapsulate substantial data variance, possibly diminish-
ing threshold confidence due to sensitivity to minor data
perturbations. In essence, while deeper trees can discern
intricate data patterns, they might simultaneously erode
confidence in decision thresholds. Consequently, in our
approach, we modulate the probability of branch selec-
tion based on node depth: the deeper the node, the more
likely we opt for an alternative path.
Here, the flip probability is proportional to the depth
of the current node. The mathematical formulation is
as follows: Let d denote the depth of the current node,
pmax depth be the maximum possible flip probability, and
rdepth the depth rate. We calculate the flip probability as:

pflip = min(rdepth · d, pmax depth) (3)

3. Agreement Probability Method: DTs use nodes to de-
pict decision junctures. The class distribution within
these nodes profoundly influences the predictive prowess
of the model. A node heavily skewed towards one class
indicates the model’s heightened assurance in classify-
ing new entries into that dominant class. This assur-
ance arises from the model’s intrinsic ”majority voting”
logic, which leans towards the predominant class. The
clearer this majority, the higher the prediction accuracy,
especially for data akin to the training set. On the con-
trary, a node with a balanced class distribution signals
ambivalence. In such scenarios, the model’s confidence
dips, occasionally resorting to pure conjecture. The very
essence of DT algorithms is to minimize this uncertainty
by preferring tests that result in uneven class distribu-
tions. Nodes with balanced classes can be easily mis-
led compared to their majority-dominated counterparts.
This approach computes probability by analyzing the la-
bel distribution in a node, emphasizing the ratio of the
dominant label to the total samples in the node. Fun-
damentally, a dwindling dominance in label distribution
amplifies the chances of deviating from the primary tree
path. The intricate relationship between node class dis-
tribution and prediction precision remains pivotal in DT
constructs. In this method, the flip probability is deter-
mined based on the proportion of the majority class. Let
cmax be the count of the majority class at the node, n the
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total number of samples at the node, and pmax agreement the
maximum possible flip probability. The flip probability
is given by:

pflip = min
(
1− cmax

n
, pmax agreement

)
(4)

4. Confidence Probability Method: In a DT, a feature is
chosen to split a node based on the range of the feature
values present in that specific node. The variability in
these values plays a crucial role in the tree’s decision-
making process. For instance, suppose we have a node
where the splitting feature selected is ”Age”, aiming to
predict whether someone will purchase a car. In this case,
”Age” is chosen due to its broad array and variability
in the data present at this node. Essentially, ”Age” has
a wide spread of values that supply sufficient informa-
tion for an efficient split. The tree simply assesses a fea-
ture’s ability to divide the data relying on its distribu-
tion. However, during the inference stage, we disregard
the difference between the current split feature value and
the average and standard deviation of the node samples.
We presume that a larger gap between these two implies
reduced confidence in the direction of the forthcoming
branch. Based on this presumption, we propose the fol-
lowing method. We ascertain the probability of flipping
the direction of the next branch by using the standard de-
viation of the splitting feature and the gap between the
current value of this feature during the inference stage
and the average for this specific feature in the node sam-
ples. This technique amplifies the probability of opting
for the opposite direction when the discrepancy between
the current value of the feature and its mean deviates sig-
nificantly from its mean, gauged by the standard devia-
tion of the node samples. In this approach, the flip prob-
ability is a function of the feature value’s distance from
the mean normalized by the standard deviation. Let v de-
note the feature value, µ the mean of feature values at
the node, σ the standard deviation of feature values at the
node, and pmax confidence the maximum possible flip prob-
ability. The flip probability is given by:

pflip = max

(
pmax confidence −

|v − µ|
σ + ϵ

, 0

)
(5)

Here, ϵ is a small constant added to prevent division by
zero.

5. Threshold Distance Probability Method: Continuing
from our previous method, we now factor in the thresh-
old of the splitting feature in the current node. This is a
shift in perspective where we consider not only the fea-
ture itself but also its relative position to the threshold
in the current node. We determine the distance between
the current feature value and the threshold, considering
the standard deviation of the samples in the current node.
Based on the distance computed, we then make a choice:
either to flip the direction of the subsequent branch or to
continue traversing as per the original tree. The smaller
the distance, the higher the chance we will opt for the
opposite direction in the next branch, as opposed to the
path suggested by the original DT model. Essentially, this

Algorithm 1: TTTSP,S(T, I)

Parameters: probability method P , S simulations
Input: test instance I , DT model T
Output: final prediction

1: predictions = []
2: for i = 1 to S do
3: pflip = P
4: for each node in T.path do
5: if (I.v < T.t) ̸= (random[0,1] < pflip) then
6: chosen branch = left branch
7: else
8: chosen branch = right branch
9: end if

10: end for
11: predictions += traversed path prediction
12: end for
13: final prediction = average(predictions)
14: return final prediction

strategy presumes that a closer current feature value to
the threshold leads to less certainty in deciding the ap-
propriate direction for the next node or leaf.
In this method, the flip probability is based on the feature
value’s distance from the threshold, normalized by the
standard deviation. Let t denote the threshold value, σ
the standard deviation of feature values at the node, and
pmax threshold the maximum possible flip probability. The
flip probability is given by:

pflip = max

(
pmax threshold −

|v − t|
σ + ϵ

, 0

)
(6)

The TTTS algorithm (Algorithm 1) accepts the parameters
P as the probability method which determines the likelihood
of altering the decision path at each node, S as the number
of simulations to be run, and the inputs: a I representing the
data point to predict, and T as the DT model. The algorithm
begins by initializing an empty list named predictions (line
1) to store the outcomes of each simulation. For each simula-
tion (line 2), the algorithm calculates a probability pflip using
the provided P (line 3). This pflip represents the chance of di-
verting from the standard decision path at any given node in
the T . The algorithm then enters a loop over each node in the
tree’s path for the given test instance (line 4). At each node,
the decision whether to follow the standard decision path or
deviate from it is evaluated (line 5). If the feature value of
the test instance, I.v, is less than T.t, the feature threshold
at the node and a random number between 0 and 1 is less
than pflip, or vice versa, the algorithm chooses the left branch
(line 6). Otherwise, it chooses the right branch (line 8). After
the tree traversal for each simulation, the prediction is made
based on the leaf node reached and appended to the pre-
dictions list (line 11). Upon completion of all simulations,
the algorithm averages the predictions in the predictions list
to produce a final prediction (line 13). This average en-
sures a consensus prediction from all individual simulation
paths, thereby enhancing the robustness of the prediction.
The final prediction is then returned as the output of the
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algorithm (line 14).
The TTTS introduces a powerful technique for handling

uncertainties, capitalizing on the strengths of Monte Carlo
Simulation and probabilistic decision-making in DTs. These
strategies provide promising avenues for handling adversar-
ial attacks, significantly contributing to the robustness of de-
cision tree-based models. In the following subsection, we
will delve into further detail regarding the various strategies
utilized for determining the probability of altering the path
at each node, a critical component of the TTTS algorithm.
Each of these methods presents a unique way of exploring
the DT node splitting process, contributing to our under-
standing of model uncertainty in DT learning algorithms.
Future sections will delve into their empirical validation.

Experiments
This section delineates the experimental settings, encom-
passing the datasets utilized, the experimental setup, and the
evaluation metric. We performed extensive experiments to
assess the robustness of TTTS against two types of model
attacks – a white-box attack and a black-box attack. In addi-
tion, we contrasted our method with the Feature Squeezing
defense strategy. Furthermore, we evaluated TTTS’s efficacy
on Random Forest (Breiman 2001) models, thereby inves-
tigating its capabilities on more robust models than DTs.
The experiments were performed on 50 tabular classifica-
tion datasets, applying TTTS with the probability heuristics
suggested in the method section. These heuristics are as fol-
lows:

• Fixed: Fixed Probability Approach.
• Depth: Depth-Based Approach.
• Agree: Agreement-Based Approach.
• Conf: Confidence-Based Approach.
• Dist: Threshold Probability Approach.

The examined models were denoted as:

• DT: a standard DT model.
• RF: a Random Forest model.

In the context attacks, we considered:

• ZOO: a Zeroth Order Optimization black-box attack.
• DTA: a DT white-box attack.

As for the baseline, we included:

• FS: Feature Squeezing.

The scenario without our method was denoted as:

• w/o: without our method.

Datasets
Our experiments encompass a collection of 50 diverse
datasets, each reflecting different real-world scenarios. The
datasets contain a wide range of features, with a binary tar-
get variable always situated as the last column. The diver-
sity in these datasets provides a robust environment for test-
ing our model’s scalability and versatility. To offer a visual
overview of the datasets, we have plotted a scatter plot (Fig-
ure 1) where each point represents a dataset. The position

Figure 1: Scatter plot showing the number of rows VS the
number of features for each evaluated dataset. Each point
represents a dataset.

of the point on the x-axis indicates the number of instances
(rows), while the position on the y-axis indicates the num-
ber of features (columns). Both axes are in logarithmic scale
to balance the view of datasets with different scales. Figure
1 reveals that our datasets vary significantly in both scale
(from 107 to 17442 instances) and complexity (from 7 to 309
features). This diversity enables a comprehensive evaluation
of our proposed method’s performance across different do-
mains. Each dataset was subjected to necessary preprocess-
ing steps like handling missing values, normalization, and
categorical encoding as per its specific requirements. Fur-
ther details about the exact preprocessing steps undertaken
for each dataset can be found in the supplementary mate-
rials. Our objective across these diverse datasets is to show-
case the robustness and general applicability of our proposed
machine-learning model, regardless of the data’s domain or
scale.

Experimental Setup

In this study, we primarily focused on the application of our
method to DT models but also expanded our exploration to
random forest models. This extension allowed us to assess
the enhancement of robustness in a model that is inherently
more robust than DTs. We then compared the robustness of
these models, under white-box and black-box attacks that
specifically target tabular data, with that of an adversarial
detection method. Below, we detail the experimental setup,
including the configuration of the training and hyperparam-
eters, model specifications, adversarial attacks, and the pa-
rameters for probability heuristics.

Classifiers We implemented our models using the DTs
and Random Forests algorithms available in Scikit-learn
(Pedregosa et al. 2011). For both algorithms, we trained the
models using the Scikit default parameters with two excep-
tions: the random state parameter, which was modified to
ensure result reproducibility, and the n estimators parame-
ter, which was capped at 10 due to computational time con-
straints.
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Probability Heuristics Parameters Our TTTS method-
ology employs five internal heuristics, each with its unique
parameter settings. For the Fixed and Depth methods, we as-
signed a probability value of 0.05, increasing the latter by an
additional 0.05 for each additional depth level, up to a max-
imum of 0.2. For the Agreement, Confidence, and Distance
methods, we capped the maximum probability at 0.5.

Adversarial Attacks To examine the robustness of TTTS
against adversarial attacks, we utilized the Adversarial Ro-
bustness Toolbox (ART) (IBM 2021). Both attack methods
were deployed with default parameters. For comparison, we
also used ART’s implementation of the Feature Squeezing
defense method with default parameters.

Evaluation Metric In the evaluation of our proposed
methodologies and their comparatives, we focus on two key
performance measures. The first measure is the area under
the receiver operating characteristic curve (AUC). This met-
ric, known for its resilience to arbitrary decisions made dur-
ing the evaluation protocol, provides a compelling measure
of our models’ discrimination ability. The AUC is particu-
larly important for our simulation-driven methodology, as
even minor decision split alterations can significantly in-
fluence an instance’s ranking without necessarily surpass-
ing the accuracy threshold. Hence, the AUC adeptly cap-
tures these subtle modifications, outshining rudimentary ac-
curacy measures. Upon applying dataset-specific threshold-
ing, these nuanced changes can be converted into consid-
erable accuracy improvements. The second measure we re-
port is the inference runtime, measured in seconds. This is
of utmost importance in real-time applications that neces-
sitate quick decision-making. As such, computational effi-
ciency serves as a significant trade-off and a primary lim-
itation of our methods, requiring us to strike a balance
between runtime and model performance. In essence, this
trade-off characterizes the boundary of practical applica-
bility and scalability, making runtime a crucial metric in
our evaluation. All experiments were executed using 5-
fold cross-validation, with both mean and standard devia-
tion reported for each dataset and method. The benchmark
datasets, experiments, and source code are all available at
https://github.com/SeffiCohen/TTTS.

Experimental Results
Our study, grounded in an extensive set of experiments con-
ducted on a diverse range of 50 datasets, clearly demon-
strates the potency of the proposed TTTS method. This
method enhances the robustness of DT and random forest
models against adversarial attacks, regardless of whether an
attack was present, and whether these attacks were white-
box (DTA) or black-box (ZOO).

Single DT
Without Attack As depicted in Table 2, the performance
of different TTTS configurations on DT models without any
attack provides valuable insight into the baseline perfor-
mance of each configuration across a diverse collection of
datasets. For each configuration, the AUC scores and their

Method AUC ± STD Runtime
DT w/o 0.714 ± 0.04 0.001
FS w/o 0.598 ± 0.04 0.001
TTTS DT Agree 0.735 ± 0.04 11.538
TTTS DT Conf 0.733 ± 0.06 25.937
TTTS DT Depth 0.773 ± 0.05 2.019
TTTS DT Dist 0.755 ± 0.05 21.493
TTTS DT Fix 0.764 ± 0.05 1.970

Table 2: DT Without Attack

Method AUC ± STD Runtime
DT w/o DTA 0.337 ± 0.05 0.001
FS w/o DTA 0.543 ± 0.06 0.001
TTTS DT Agree DTA 0.450 ± 0.10 7.413
TTTS DT Conf DTA 0.517 ± 0.11 21.230
TTTS DT Depth DTA 0.558 ± 0.09 1.719
TTTS DT Dist DTA 0.680 ± 0.07 19.455
TTTS DT Fix DTA 0.517 ± 0.09 1.600

Table 3: DT Under DTA

corresponding standard deviations were averaged across 50
datasets. Notably, our method displayed the highest average
AUC, demonstrating that the depth probability heuristic sig-
nificantly enhances the robustness of DT models, even in the
absence of adversarial attacks.

DTA Table 3 demonstrates the resilience of the different
TTTS configurations under the white-box DTA. This type of
attack fully exploits the model’s structure and parameters,
creating a particularly challenging scenario. Nevertheless,
TTTS DT Distance maintained high average AUC scores of
0.680. This minimal performance drop when compared to
the non-adversarial condition, demonstrates the robustness
of the TTTS method, particularly when it incorporates the
distance probability heuristic.

ZOO Attack Table 4 displays the performance of the dif-
ferent TTTS configurations under the ZOO black-box at-
tack. This attack type operates under the assumption that the
attacker does not know specifics about the model and can
only observe its inputs and outputs. Despite these challeng-
ing conditions, TTTS DT Distance maintained a resilient
performance with an average AUC of 0.719, thereby indicat-
ing that the proposed TTTS method can effectively defend
against black-box attacks.

Method AUC ± STD Runtime
DT w/o ZOO 0.628 ± 0.05 0.001
FS w/o ZOO 0.592 ± 0.04 0.001
TTTS DT Agree ZOO 0.656 ± 0.05 10.77
TTTS DT Conf ZOO 0.673 ± 0.07 24.242
TTTS DT Depth ZOO 0.718 ± 0.05 1.918
TTTS DT Dist ZOO 0.719 ± 0.06 20.245
TTTS DT Fix ZOO 0.707 ± 0.05 1.912

Table 4: DT Under ZOO Attack
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Method AUC ± STD Runtime
FS w/o 0.797 ± 0.14 0.085
RF w/o 0.797 ± 0.14 0.089
TTTS RF Agree 0.798 ± 0.14 214.290
TTTS RF Conf 0.788 ± 0.14 565.230
TTTS RF Depth 0.804 ± 0.13 43.544
TTTS RF Dist 0.792 ± 0.14 499.187
TTTS RF Fix 0.804 ± 0.14 43.156

Table 5: Random Forest Without Attack

Method AUC ± STD Runtime
FS w/o ZOO 0.659 ± 0.16 0.005
RF w/o ZOO 0.746 ± 0.15 0.005
TTTS RF Agree ZOO 0.770 ± 0.15 214.622
TTTS RF Conf ZOO 0.763 ± 0.15 541.409
TTTS RF Depth ZOO 0.778 ± 0.15 44.352
TTTS RF Dist ZOO 0.773 ± 0.15 496.667
TTTS RF Fix ZOO 0.777 ± 0.15 43.760

Table 6: Random Forest Under ZOO Attack

Random Forest
Without Attack Table 5 displays the performance of dif-
ferent TTTS configurations on random forest models with-
out any attack. Random forests, as ensembles of DTs, pro-
vide a more robust prediction model than their individual
constituents. The results indicates that TTTS RF Depth out-
performed others, achieving the top average AUC of 0.804
and a standard deviation of 0.137. This underscores the effi-
cacy of TTTS in enhancing the robustness of not only DTs
but also more complex models like random forests.

ZOO Attack Table 6 presents the performance of differ-
ent TTTS configurations under the ZOO black-box attack
on random forest models. Despite the inherent complexity
of random forest models and the opaque nature of the ZOO
black-box attack, TTTS RF Depth demonstrated a resilient
performance with an average AUC of 0.778. This perfor-
mance strongly suggests that the proposed TTTS method
can effectively defend against black-box attacks, even for
random forest models.

Discussion
The comprehensive experiments clearly demonstrate the ef-
ficacy of TTTS in enhancing model robustness across vari-
ous conditions. The consistently strong performance of the
Fixed, Depth, and Distance probability methods implies they
are well-suited for improving resilience. A closer exami-
nation of the results reveals insights into TTTS strengths.
Under white-box attacks that exploit model details, Dis-
tance proved most effective, maintaining high accuracy.
Against black-box attacks using only input-output observa-
tions, Depth and Fixed prevailed. This suggests Distance is
particularly adept when attacks have internal model knowl-
edge, while Depth and Fixed provide robustness when at-
tacks are more external. Across all scenarios, TTTS con-
ferred significant gains over standard models and outper-

formed Feature Squeezing, evidencing versatility. The ro-
bustness held for both DTs and random forests, highlights
wide applicability. However, a key limitation is the substan-
tial computational overhead introduced by TTTS simula-
tions. This restricts feasibility for real-time applications and
large datasets. Possible solutions include optimizing simu-
lation parameters, balancing accuracy versus efficiency, and
leveraging parallel computing. Future research could ex-
plore this potential, providing a broader evaluation of its
effectiveness against various forms of attacks. In addition,
there is scope for further exploration and optimization of
TTTS configurations, which could potentially yield even
better performance. There is also potential to combine TTTS
with complementary defenses like adversarial training or in-
put preprocessing. A hybrid strategy could offer comprehen-
sive protection while minimizing individual limitations. Ad-
ditionally, while we focused on a binary classification task,
TTTS may generalize to enhance adversarial robustness for
other tasks. Further research can expand evaluations on re-
gression, multi-class classification, and anomaly detection.
Overall, TTTS makes an important contribution in address-
ing the lack of reliable defenses against rising adversarial
threats. Our findings open up new possibilities for securing
machine learning models against malicious attacks, bringing
robust and trustworthy AI a step closer.

Conclusion

This paper introduced Tree Test Time Simulation (TTTS),
a novel technique to enhance DT robustness against adver-
sarial attacks during inference without altering the model.
Our key contributions are developing TTTS, an adaptable
method that incorporates Monte Carlo simulation to prob-
abilistically modify the decision path and augment data at
test time. We proposed and evaluated five distinct probability
heuristics for regulating path deviations. Through extensive
experiments on 50 datasets, we provided a comprehensive
empirical analysis demonstrating the efficacy of TTTS. Re-
sults showed consistent accuracy gains under adversarial at-
tacks, outperforming existing defenses. Specifically, TTTS
conferred robustness that exploits internal model details.
The robustness held for DT and random forest models, evi-
dencing wide applicability. The robustness held for DT and
random forest models, evidencing wide applicability. In con-
clusion, TTTS represents an important advance in securing
machine learning models against rising adversarial threats. It
addresses a significant gap in reliable defenses, particularly
for DTs on tabular data. While we focused on DTs, TTTS
shows promise for broader applications in adversarial ma-
chine learning. Moving forward, this work lays the founda-
tion for developing adaptable, simulation-based techniques
to achieve more robust and trustworthy AI systems.
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