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Abstract

Tree ensembles are one of the most widely used model
classes. However, these models are susceptible to adversarial
examples, which are slightly perturbed examples that elicit
a misprediction. There has been significant research on de-
signing approaches to verify the robustness of tree ensembles
to such attacks. However, existing verification algorithms for
tree ensembles are only able to analyze binary classifiers and
hence address multiclass problems by reducing them to bi-
nary ones using a one-versus-other strategy. In this paper, we
show that naively applying this strategy can yield incorrect
results in certain situations. We address this shortcoming by
proposing a novel approximate heuristic approach to verifica-
tion for multiclass tree ensembles. Our approach is based on
a novel generalization of the verification task, which we show
emits other relevant verification queries.

Introduction
Tree ensembles such as gradient boosted trees and random
forests are a powerful model class. They are frequently used
in practice because they can tackle a variety of important
real-world problems in diverse areas such as medicine (Ghi-
asi and Zendehboudi 2021), finance (Davis et al. 2020) and
sports analytics (Decroos et al. 2019). Moreover, there are
many easy to use and performant public implementations
such as XGBoost (Chen and Guestrin 2016), LightGBM (Ke
et al. 2017), CatBoost (Prokhorenkova et al. 2018) and Bit-
Boost (Devos, Meert, and Davis 2020).

Unfortunately, like most flexible and expressive model
classes, tree ensembles suffer from robustness issues.
Namely, they are susceptible to evasion attacks (Kantche-
lian, Tygar, and Joseph 2016) where an adversary carefully
crafts an example to elicit a misprediction from the model.
This has spurred interest in developing approaches that are
able to reason about learned ensembles to verify their ro-
bustness. A wide variety of approaches have been proposed
for this task (Kantchelian, Tygar, and Joseph 2016; Devos,
Meert, and Davis 2021b; Zhang, Zhang, and Hsieh 2020;
Chen et al. 2019b).

Current algorithms are designed for binary classification
problems. They only operate in multiclass settings by first

*These authors contributed equally.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

reducing multiclass problems to a series binary ones. Specif-
ically, they employ a one-versus-other strategy that con-
trasts the class of interest to one other class. This is then
repeated for each possible other class. However, multiclass
problems are an inherently richer and more complex set-
ting. We show that the one-versus-other reduction has two
substantial shortcomings. First, it does not return correct re-
sults. Essentially, the one-versus-other strategy reasons on
the level of pairs of classes and cannot simultaneously rea-
son about all classes. Second, there are additional possible
attacks that existing algorithms cannot handle. For example,
instead of just trying to elicit a misprediction, it is possible
to attack the model in a targeted way where the constructed
example will be predicted to belong to a specific class cho-
sen by the adversary.

This paper addresses this gap by proposing a novel ap-
proach to verification in tree ensembles that directly oper-
ates in a multiclass setting. We take the approach of viewing
robustness verification as a constrained optimization prob-
lem (Devos, Meert, and Davis 2021b) which can then be
solved using a heuristic, anytime search. We generalize the
optimization task to a multiclass setting and show that this
yields four different classes of problems that are relevant.
We propose a novel heuristic for solving the corresponding
search problems and prove its consistency. Empirically, we
demonstrate the efficacy of our approach on tree ensembles
learned using both XGBoost and random forests. On bench-
mark datasets, we find that the current paradigm for per-
forming robustness checking in multiclass tree ensembles
returns incorrect results between 7% to 30% of the time.

In summary, we make the following five contributions: (1)
we prove that the current approach to handling multiclass
verification in tree ensemble can return incorrect results, (2)
we propose a novel formulation of verification for multi-
class tree ensembles, (3) we propose a new search heuris-
tic for solving this framing and prove its consistency, (4)
we empirically confirm our results, and (5) we provide an
open-source implementation of our framework available on
https://github.com/laudv/veritas.

Preliminaries
We asssume an input space X ⊆ Rd and an output space
Y = {0, 1, . . . , C − 1}, with C the number of classes in the
multiclass classification problem.
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Multiclass Decision Tree Ensembles
We will focus on multiclass verification of decision tree
ensembles which includes popular machine learning algo-
rithms such as gradient boosted decision trees (GBDTs)
(Friedman 2001) and random forests (RFs) (Breiman 2001).

A decision tree consists of terminal leaf nodes storing a
leaf value (scalar or vector) and internal nodes storing ref-
erences to a left and right subtree and a less-than compar-
ison Xf < τ on some attribute f and threshold τ . A tree
is evaluated on an example x by recursively evaluating the
less-than comparisons for x, starting from the root node, un-
til a leaf node is reached whose value is the result of the
evaluation. The evaluation moves left if the comparison is
true, and right otherwise. The conjunction of the satisfied
comparisons in the internal nodes along the root-to-leaf path
denote a hypercube in the input space. We call this the leaf’s
box. For a leaf l, all examples x ∈ box(l) evaluate to l. For
example, the box of the leaf with value -14 in Figure 2 is
(HEIGHT ≥ 200 ∧ AGE < 50). In general, a box has the
form

∧
f (lf ≤ Xf < uf ), with lf the lower and uf the

upper bound on the feature Xf (possibly ±∞).
An ensemble of M decision trees T combines the pre-

dictions of individual trees. We distinguish three output
forms of the ensemble: the raw scores T raw(x) = ν0 +∑M

m=1 Tm(x) which are simply the sum of the predic-
tions of the trees plus a constant base score ν0, the derived
class probabilities T prob(x), and the hard labels T label(x) =

argmaxc T
prob
c (x), with T prob

c (x) the probability of class c
for example x, c = 0, . . . , C − 1. How T prob(x) is derived
from the raw scores depends on ensemble type.

The leaf values in a RF are vectors of size C storing the
probabilities of each class as illustrated in Figure 1 for a
multiclass problem with three classes. A probability vec-
tor over the full ensemble is obtained by taking the aver-
age of the trees’ predicted probability vectors: T prob(x) =
T raw(x)/M .

A multiclass GBDT ensemble T consists of C one-
versus-rest ensembles Tc(x) with T raw

c (x) =
∑

m Tc,m(x).
The one-versus-rest classifier for class c Tc(x) considers
class c as the positive class and all remaining classes as
one combined negative class. The raw scores T raw(x) for
the multiclass ensemble are obtained by separately summing
up the trees of the class-specific ensembles and combin-
ing them into a vector: T raw(x) = [T raw

0 (x), . . . ,T raw
C−1(x)].

The probability vector is derived from the raw scores by
applying the softmax: T prob(x) = softmax(T raw(x)). For
binary classification (C = 2), building both T0 and T1

would be redundant, so GBDT systems drop T0 and only
construct T1 for the positive class. The probabilities are then
T prob
1 (x) = sigmoid(T raw

1 (x)) and T prob
0 (x) = 1−T prob

1 (x).

Robustness Verification of Binary Classification
Ensembles
A major weakness of many machine learning algorithms is
their susceptibility to evasion attacks. In an evasion attack,
an adversary slightly perturbs a valid base example xb into
an example x in order to elicit a misprediction. More for-
mally, we call x a valid adversarial example for xb and bi-
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Figure 1: An example multiclass RF ensemble with C = 3.
For ease of readability of the example, the leaf values are
absolute counts for the classes. Note that the counts in the
leaves do not have to be consistent between the trees because
RFs use bootstrapping and each tree is trained on a different
subset of the data.
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Figure 2: The 0-versus-1 ensemble derived from Figure 1

nary classifier T when (1) T label(xb) is the correct label, (2)
T label(x) ̸= T label(xb), and (3) ∥x− xb∥∞ < δ, i.e., the two
are sufficiently close using the ∞-norm with δ a predefined
maximum allowed distance.

An ensemble’s robustness against evasion attacks is often
assessed by measuring how easy it is to generate adversar-
ial examples using metrics like adversarial robustness (frac-
tion of correctly classified example for which no adversar-
ial example exists (Vos and Verwer 2021)) and empirical
robustness (average distance to the closest adversarial ex-
ample (Kantchelian, Tygar, and Joseph 2016)). Evaluating
these metrics requires generating a large number of adver-
sarial examples on a test set. Consider a base example xb

with correctly predicted label c. Take c′ = 1−c the opposite
label, then adversarial example generation for binary classi-
fication can be formulated as the following search problem:

find x ∈ X such that T label(x) ̸= T label(xb)

and ∥x− xb∥∞ < δ. (1)

If an x is found so that T label(x) ̸= T label(xb), then x is an
adversarial example of xb. If no such x can be found, then
xb is verified to be δ-robust because no adversarial exam-
ple exists within distance δ from xb. This concept can be
extended to the multiclass case. A multiclass model is δ-
robust for a base example xb when it is impossible to find
an adversarial example x such that ∥x− xb∥∞ < δ and
T label(x) ̸= T label(xb). A multiclass model is δ-robust to
a targeted attack on class c for a base example xb when it
is impossible to find an x such that ∥x− xb∥∞ < δ and
T label(x) = c.

VERITAS: Approximate Search-Based Tree
Ensemble Verification
VERITAS (Devos, Meert, and Davis 2021b) is a state-of-the-
art robustness verification approach. It reformulates the ad-
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versarial search problem in Equation 1 as an optimization
problem constrained by C. Take T to be a binary classifier:

optimize
x∈X

T prob
1 (x) subject to C(x). (2)

VERITAS uses an approximate heuristic search to solve
Equation 2 and constructs an example x which satisfies C(x)
and optimizes (maximize or minimize) the ensemble’s out-
put T prob

1 (x). This can be used to solve Equation 1. Take
negatively classified base example xb, and let C(x) constrain
x to ∥x− xb∥∞ < δ ∧ T prob

1 (x) > 0.5. Then maximize
T prob
1 (x) using VERITAS. If it finds such an x, then x is an

adversarial example for xb. For a positive base example, the
problem is changed to minimize T prob

1 (x) with the constraint
T prob
1 (x) < 0.5.
While C(x) can represent more complex constraints (see

Devos, Meert, and Davis (2021b)), for ease of presentation,
we limit C(x) to box constraints like the ∞-norm, and to
constraints on the ensemble’s output. We call the box con-
straint the prune box PB.

VERITAS uses a search procedure to find such an x.
Search procedures are generally defined over a search space
consisting of search states. The search maintains an open
list of states – initially only containing the initial state – and
repeatedly expands the current best state in the open list ac-
cording to a heuristic scoring function. The search repeats
this procedure until a solution state is found (Hart, Nilsson,
and Raphael 1968). For a max problem, these components
are defined for VERITAS as follows:

1. A search state s has a box(s) which constrains the input
space X . The box restricts which leaves are still reach-
able in the trees of the ensemble (i.e., the leaves’ boxes
are compatible with box(s)). Let Lm(s) denote the set of
reachable leaves in tree Tm given state s: Lm(s) = {lm |
lm is a leaf of tree Tm and box(lm) ∩ box(s) ̸= ∅}. We
then partition the trees of the ensemble into a set of re-
solved trees TR

s and another of unresolved trees TUR
s . A

tree Tm is resolved if all possible x ∈ box(s) lead to
one unique leaf lm, i.e., |Lm(s)| = 1, and equivalently
box(lm) ⊇ box(s). A tree Tm is unresolved if multiple
leaves are still reachable, i.e., |Lm(s)| > 1. For example,
assume a state with box (AGE < 40 ∧ HEIGHT < 200).
Then, the first two trees in Figure 1 are resolved. The
third tree is unresolved because there are two reachable
leaves (indicated with a •).

2. The initial state is the state with the prune box as its box.

3. The scoring function f(s) = g(s) + h(s) for a state s
guides the search towards promising search states lead-
ing to solutions with high values for T (x). The first part
g(s) sums up the base score ν0 and the leaf values of the
leaves reached in the resolved trees. The second part is
the heuristic h(s) which overestimates the value that can
still be added to the output of the ensemble. This is com-
puted by summing up the maximum of the leaf value νm
of the still reachable leaves lm ∈ Lm(s) in each unre-

solved tree Tm ∈ TUR
s :

g(s) = ν0 +
∑

Tm∈TR
s

νm, (3)

h(s) =
∑

Tm∈TUR
s

max
lm∈Lm(s)

νm. (4)

4. The expand function E(s) produces new successor
states s′, one for each reachable leaf lm ∈ Lm(s)
of an unresolved tree Tm ∈ TUR

s , with box(s′) =
box(s) ∩ box(lm). The new states are added to the
open list and evaluated by the scoring function. The tree
Tm is a resolved tree in all expanded states s′. States
are constructed by repeated expansion, so box(s) =
PB ∩

⋂
Tm∈TR

s
box(lm), with lm the only reachable leaf

in the resolved tree Tm.
5. A solution state s is reached when all trees are resolved.

The output value of this solution state is f(s) = g(s) =
the sum of the base score and the leaf values. Just as any
other state, a solution state has a box. Any x ∈ box(s)
has output f(s), that is, one can pick any example x ∈
box(s) to obtain a concrete solution.

The VERITAS paper proves that the heuristic is consis-
tent for the max problem (replace max by min in h(s) for a
min problem). Hence, the search is guaranteed to always re-
turn the optimal solution if given enough time and memory.
In practice, because this is an NP-hard problem (Kantche-
lian, Tygar, and Joseph 2016), this can take excessively long,
so an approximation is used (Pearl and Kim 1982). When
looking for the next state to expand, all states with a score
within ε of the current best state are re-evaluated by a non-
consistent scoring function. The best state according to the
second score is expanded and its successor states are added
to the open list, which is sorted again by the consistent
heuristic. The second heuristic can, for example, give prece-
dence to deeper solutions. This guarantees that (1) a solution
is found quickly, and (2) this solution is no more than ε from
the optimal solution.

Multiclass Verification in Tree Ensembles
Understanding robustness verification in a multiclass setting
requires generalizing our notion of an evasion attack. While
an adversary may have multiple goals, we will consider the
following two objectives. Given a correctly classified base
example xb, generate a small perturbation ∆ to:

A1. Simply elicit a misprediction, i.e., T label(xb + ∆) ̸=
T label(xb);

A2. Elicit a targeted misprediction, i.e., T label(xb + ∆) =
c ̸= T label(xb), where c is a class selected by the ad-
versary.

The second goal, which we call the targeted evasion prob-
lem, is a stronger requirement than the first one. In order to
predict class c, it must be the case that T prob

c (x) > T prob
c′ (x)

for all c′ ̸= c. We can write this as the following double op-
timization problem. Without loss of generality and for ease
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of notation, we take the target class c = 0 (you can always
reorder the classes):

max
x∈X

[
T prob
0 (x)−max

c ̸=0
T prob
c (x)

]
subject to C(x). (5)

If it is possible to find an example x for which this objective
is greater than 0, then the model is guaranteed to predict
class 0 for that example. If no such x can be found, then the
ensemble never predicts class 0 for any x that satisfies the
constraints C(x).

Previous work has reduced multiclass problems to multi-
ple binary ones using a one-versus-other strategy (Chen et al.
2019b; Zhang, Zhang, and Hsieh 2020; Devos, Meert, and
Davis 2021b).1 The one-versus-other strategy spawns C − 1
subproblems, each one contrasting the target class c with an-
other class c′ ̸= c by creating a new ensemble Tc-vs-c′(x)
that outputs the difference between T raw

c (x) and T raw
c′ (x),

i.e., a binary classifier that outputs the positive class if T
selects class c over c′. For a RF, this is simply an ensem-
ble with the same structure as the multiclass ensemble, but
the leaf values are the difference between the class proba-
bilities for c and c′. As an example, T0-vs-1 is shown in Fig-
ure 2 for the RF in Figure 1. For a GBDT, this new ensem-
ble is the difference between the one-versus-rest classifiers
so that T raw

c-vs-c′(x) =
∑

m Tc,m(x)+
∑

m −Tc′,m(x), where
−Tc′,m(x) is the tree with the sign of each leaf value flipped.

Any verification method that works on a binary classifi-
cation ensemble can be applied to this new ensemble. For
example, VERITAS can be used to optimize Equation 2. If
an x is found for which the objective value is greater than 0,
then we know that T prob

c (x) > T prob
c′ (x). If no such x can be

found, then it is never possible that the ensemble outputs a
probability for target class c that is greater than that for the
other class c′ for any x that satisfies C(x).

Consider the targeted evasion decision problem which
asks the question whether for ensemble T an x exists such
that (1) x satisfies a set of constraints C(x), and (2) T pre-
dicts class 0. This is the case when T prob

0 (x) > T prob
c (x) for

all c ̸= 0. We prove that the targeted evasion decision prob-
lem cannot be reduced to C − 1 one-versus-other problems.

Theorem 1. Consider a multiclass ensemble T (x) with
C > 2 classes. Assume there exist examples x0-vs-c ∈ X ,
one for each c ∈ Y , c ̸= 0, such that T raw

0-vs-c(x0-vs-c) > 0, or
also, T prob

0 (x0-vs-c) > T prob
c (x0-vs-c). The existence of x0-vs-c,

c = 1, . . . , C − 1 does not imply that there exists an x0 ∈ X
such that T prob

0 (x0) > T prob
c (x0) for all c ̸= 0. That is, their

existence does not imply that a solution to the targeted eva-
sion decision problem exists.

Proof. We prove Theorem 1 by counter-example using the
ensemble in Figure 1. We describe the subset of the input
space for which T raw

0-vs-1(x) > 0 and T raw
0-vs-2(x) > 0 respec-

1Note the difference between one-versus-rest and one-versus-
other. The former is a learning strategy used by GBDT systems.
The latter is a multiclass verification strategy.

tively:2

T raw
0-vs-1(x) > 0 iff x ∈ (AGE < 40 ∧ HEIGHT < 200),

T raw
0-vs-2(x) > 0 iff x ∈

(AGE < 40 ∧ BMI < 28 ∧ HEIGHT ≥ 200) ∪
(AGE ≥ 50 ∧ BMI < 28 ∧ HEIGHT ≥ 200).

The reachable leaves are indicated with a • (0-versus-1) and
a ◦ (0-versus-2). Picking any other leaf pushes the prediction
below 0. So there exist x0-vs-1 and x0-vs-2 for which T prefers
class 0 over class 1 and 2 respectively.

A solution to the targeted evasion problem is an x0 for
which both T raw

0-vs-1(x0) > 0 and T raw
0-vs-2(x0) > 0, i.e., any

x0 that is in both the subsets above. However, the intersec-
tion of the two subsets is empty because of the contradicting
constraint on HEIGHT. This proves that no such x0 exists
despite the fact that x0-vs-1 and x0-vs-2 exist.

None of the examples in either of the subsets above is a
solution to the targeted evasion problem because their pre-
dicted label is not class 0. For example, the following two
examples have T raw

0-vs-1(x) > 0 and T raw
0-vs-2(x) > 0 respec-

tively, but neither of them has predicted label 0:

T raw(AGE = 32, HEIGHT = 175, BMI = 20) = [15, 6, 18],

T raw(AGE = 32, HEIGHT = 201, BMI = 20) = [16, 20, 8].

The numbers inside the square brackets are the class counts
returned by the RF. For the first example, 15−6 > 0, i.e., the
count for class 0 is higher than the count for class 1, so it is a
solution to the 0-versus-1 subproblem. However, the highest
count, 18 is associated with class 2, so the ensemble will
predict this class and not class 0. For the second, 16 − 8 >
0, so, again, it is a solution to the 0-versus-2 subproblem.
However, the highest count is 20, which means that class 1
will be the predicted label and not class 0.

Appendix shows an alternative counter-example where,
just like in the example above, two one-versus-other solu-
tions x0-vs-1 and x0-vs-2 exist and T predicts class 0 for nei-
ther of them. However, in that example, there still exists an-
other x for which the predicted label is class 0. This illus-
trates that, unless one of the one-versus-other solutions is a
satisfying solution to the targeted evasion problem, know-
ing that each one-versus-other subproblem is satisfiable is
inconclusive with respect to the targeted evasion problem:
both outcomes are still possible.

Intuitively, the root issue is that each one-versus-other
subproblem is solved independently. For example, the sub-
problem for class c = 1 involves searching for an x such
that T prob

0 (x) > T prob
1 (x) while ignoring T prob

2 (x). Conse-
quently, if the search finds an x where T prob

0 (x) > T prob
1 (x),

then it is possible that T prob
c′ (x) > T prob

0 (x) for some c ̸= 1.
More generally, the solutions to all C − 1 subproblems are
disconnected from each other which leads to solutions as
illustrated in the counter-examples where each subproblem
has a solution, but none of them simultaneously satisfies all
constraints.

2In practice, generating these subsets is intractable, even for
one-versus-other subproblems.
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Method
As attack A2 cannot simply be reduced to multiple one-
versus-other subproblems, we need approaches that are able
to reason about all classes simultaneously. To address this
shortcoming, we propose a novel generalization of VERITAS
that allows it to reason about multiclass problems. Specifi-
cally, this entails modifying the heuristic scoring function
used during its search process. Moreover, this generalization
also permits reasoning about several other verification tasks.

We reuse the search procedure of VERITAS as outlined in
the preliminaries, and modify the scoring function f(s) =
g(s) + h(s) in order to optimize the multiclass objective in
Equation 5:

gc(s) = ν0,c +
∑

Tm∈TR
s

νm,c (6)

h0(s) =
∑

Tm∈TUR
s

max
lm∈Lm(s)

νm,0 (7)

hc(s) =
∑

Tm∈TUR
s

min
lm∈Lm(s)

νm,c, c ̸= 0 (8)

c∗ = argmax
c ̸=0

gc(s) + hc(s) (9)

g(s) = g0(s)− gc∗(s) (10)
h(s) = h0(s)− hc∗(s). (11)

We use νm,c to denote the leaf value for class c in a leaf
lm in tree Tm. Lm(s) is the set of reachable leaves in the
unresolved tree Tm in the search state s.

Equation 6 sums the leaf values for class c of the leaves
visited in the resolved trees. The heuristic hc(s) in Equa-
tions 7 and 8 looks at which leaves are still reachable in each
unresolved tree. It takes the maximum of the leaf values for
class 0, and the minimum for class c ̸= 0. We compute the
minimum of the remaining reachable leaf values for c ̸= 0
to get a heuristic that overestimates the outer maximization
problem: the best case for the outer maximization in Equa-
tion 5 occurs when the subtracted inner maximization term
is minimized. Once we have the values gc(s) and hc(s) for
each class c, we determine the winning class c∗ of the inner
maximization problem (Equation 9), and compute the g(s)
and h(s) values using c∗.

Proof of Consistency
We prove that the heuristic introduced in the previous sub-
section is consistent with respect to the optimization prob-
lem in Equation 5.

Theorem 2 (Consistency of the multiclass heuristic). The
heuristic in Equation 11 is consistent with respect to the
multiclass optimization problem in Equation 5. That is, for
any search state s with box(s) and successor state s′ with
box(s′) = box(s) ∩ box(l◦m′) obtained by expanding an
unresolved tree T ◦

m′ for leaf l◦m′ with leaf values ν◦m′,c,
c = 0, . . . , C − 1, it holds that:

h(s) ≥ ν◦m′,0 − ν◦m′,c∗ + h(s′). (12)

We use two following propositions to prove this:

Proposition 1 (h0 is an overestimation). For s, s′, T ◦
m′ , l◦m′ ,

ν◦m′,c as in Theorem 2, h0 is an overestimation:

h0(s) ≥ h0(s
′) + ν◦m′,0. (13)

Proof. We look at each term in the sum of Equation 7
for h0(s), one for each Tm ∈ TUR

s . We split these up in
three subsets. (1) For all Tm ∈ TUR

s′ , maxlm∈Lm(s) νm,0 ≥
maxlm∈Lm(s′) νm,0. This is true because Lm(s′) ⊆ Lm(s)
since if box(s′)∩box(lm) = box(s)∩box(l◦m′)∩box(lm) ̸=
∅, then box(s) ∩ box(lm) ̸= ∅. (2) Any term for a Tm ∈
TUR
s \(TUR

s′ ∪{T ◦
m′}) does not affect h0(s

′) and only makes
h0(s) larger. (3) For the expanded tree T ◦

m′ , which is re-
solved in s′ and unresolved in s, maxlm∈Lm(s) ≥ ν◦m′,0 be-
cause l◦m′ ∈ Lm(s). Note that all νm,c ≥ 0.3

Proposition 2 (hc is an underestimation). For s, s′, T ◦
m′ ,

l◦m′ , ν◦m′,c as in Theorem 2, hc is an overestimation, c =
1, . . . , C − 1:

hc(s) ≤ hc(s
′) + ν◦m′,c. (14)

Proof. Analogous to the proof of Proposition 1 with max
and ≥ replaced by min and ≤.

We can now prove Theorem 2.

Proof of Theorem 2. We use Proposition 1 and 2 to rewrite
the definition of h(s) in Equation 11:

h(s) = h0(s)− hc(s) (15)

≥
(
h0(s

′) + ν◦m′,0

)
−
(
hc(s

′) + ν◦m′,c

)
= ν◦m′,0 − ν◦m′,c + h(s′).

We can substitute Equation 14 in Equation 15 because hc(s)
is negated. This result holds for all c = 1, . . . , C−1, includ-
ing c∗. This concludes the proof.

Variants of Multiclass Optimization Formulation
We consider three variants of the multiclass objective in
Equation 5. All x, x∗ and x′ are assumed to satisfy C(x).
Replacing the inner max by a min yields:

max
x∈X

[
T prob
0 (x)−min

c ̸=0
T prob
c (x)

]
s.t. C(x). (16)

If an x∗ exists for which the above objective value is greater
than zero, then T prefers class 0 over at least one other class
c ̸= 0 for that x∗. If no such x∗ exists, then for all x, every
other class c ̸= 0 (not just one) is preferred over class 0.

Replacing the outer max by min in Equation 5:

min
x∈X

[
T prob
0 (x)−max

c ̸=0
T prob
c (x)

]
s.t. C(x). (17)

If an x∗ exists for which the objective value is greater than
zero, then that x∗ has T label(x) = 0. Additionally, all other
x′ ̸= x∗ have a greater or equal objective value. Hence, all
x have T label(x) = 0. If no such x∗ exists, then there must

3This can easily be achieved by exploiting the base score ν0.
Any negative leaf value is eliminated by adding a value to the tree’s
leaf values and subtracting it from the base score.
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Data properties GBDT RF
#F, #ex, C δ M d η M d

img 2, 10.0k, 4 0.10 10 6 0.5 10 5
wine 12, 32.5k, 7 0.02 20 14 0.2 40 15
bean 16, 13.6k, 7 0.05 20 4 0.5 20 10
mnist 784, 70.0k, 10 0.04 10 6 0.8 20 14
letter 16, 20.0k, 26 0.05 20 5 0.8 30 14
pend. 16, 11.0k, 10 0.12 10 5 0.8 25 12
sens. 48, 58.5k, 11 0.08 5 5 0.8 10 6

Table 1: Properties of each dataset: number of features #F,
examples #ex and classes C, and the maximum perturbation
size δ. Parameters: number of trees M , maximum depth d,
and learning rate η. GBDTs learn C one-versus-rest classi-
fiers, so the total number of trees is M × C.

be an x′ for which the predicted label is not class 0. This
is an elegant formulation of multiclass robustness checking.
Assume class 0 is the true label of a base example xb. If
there is an x∗ that has an objective value greater than 0, then
it is certain that no example exists within the region defined
by C(x) with a different predicted label.

Finally, replacing the inner and the outer max by min:

min
x∈X

[
T prob
0 (x)−min

c ̸=0
T prob
c (x)

]
s.t. C(x). (18)

If an x∗ exists with objective value greater than zero, then T
prefers class 0 over at least one other class. Also, all other
x′ ̸= x∗ have a greater or equal objective value. Hence, class
0 is never the least likely class for any x. If no such x∗ exists,
then there must be at least one x′ with class 0 the least likely
class.

Our implementation supports all these variants.

Experiments
The experiments address the following two questions:
Q1. How often does the one-versus-other reduction fail to

solve targeted evasion decision problem?
Q2. What is the run time performance of our proposed

method?

Datasets and Methodology Our evaluation considers
seven multiclass datasets: img (synthetic, see appendix),
wine (Cortez et al. 2009), bean (Koklu and Ozkan 2020),
mnist (LeCun, Cortes, and Burges 2010), letter (Slate 1991),
pendigits (Alpaydin and Alimoglu 1998), and sensorless
(Bator 2015). Table 1 shows the properties of the datasets.
The predictive performance of the learned ensembles are
provided in the appendix.

We use 4-fold cross validation: 3/4 for training, and 1/4
for testing. We train tree ensembles using XGBoost 1.7.6
(GBDT) and scikit-learn 1.2.2 (RF) on the training data us-
ing the hyper-parameters in Table 1. The experiments ran on
an Intel(R) E3-1225 CPU with 32GiB of memory.

We randomly select 500 correctly classified base exam-
ples from the test set of each fold. For each base exam-
ple xb with true label cb, we examine C − 1 targeted eva-
sion problems, one for each target label ci ̸= cb. If we

find an adversarial example x such that T label(x) = ci and
∥x− xb∥∞ < δ, then we say that the targeted evasion de-
cision problem is satisfiable (sat) for the problem instance
xb, ci. If no such adversarial example can be found, then it
is unsatisfiable (unsat). Across all seven datasets and all
folds, we generate 136k problem instances (34k per fold,
500× (C − 1) per dataset in a single fold).

We compare the following two approaches. For each
problem instance with base example xb and target class ci:

1. The one-versus-other reduction solves C − 1 subprob-
lems, one for each other class cj ̸= ci. Each subprob-
lem solves the objective in Equation 2 for the one-versus-
other ensemble Tci-vs-cj . We use VERITAS.4 If VERITAS
finds an xci-vs-cj for which the objective is greater than
zero, then the subproblem is sat. If not, it is unsat.

2. The proposed multiclass approach solves the multiclass
objective in Equation 5. If our proposed approach finds
an x for which the objective is greater than zero, then we
say the multiclass result is sat, else it is unsat.

The goal of the experiments is to show that the theorized
problems with the one-versus-other reduction also occur in
practice using benchmark datasets. We do this by counting
how often disagreement occurs. Because verification is NP-
hard, it is possible that a verification task times out before a
solution is found. Timeouts would unnecessarily complicate
this, so the hyper-parameters in Table 1 are chosen such that
no timeouts occur. Nevertheless, because it is implemented
in the VERITAS framework, our approach generates anytime
upper and lower bounds on the objective value, so difficult
problems can be solved approximately (see Devos, Meert,
and Davis (2021b)).

Results Q1. In this first question, we count for how many
problem instances xb, ci the one-versus-other reduction fails
to solve the targeted evasion decision problem. We count
how often the multiclass and one-versus-other results belong
to the following four categories:

• Agree (sat): Both approaches agree on the satisfiability
of the problem. This means that the multiclass result is
sat, all one-versus-other subproblems are sat, and at least
one of the generated xci-vs-cj has T label(xci-vs-cj ) = ci.

• Agree (unsat): Both approaches agree on the unsatisfia-
bility of the problem. This means that the multiclass re-
sult is unsat and that at least one one-versus-other sub-
problem is unsat.

• Inconclusive (sat): The multiclass result is sat. All one-
versus-other subproblems are sat, but none of the xci-vs-cj
have T label(xci-vs-cj ) = ci, i.e., none of them are a so-
lution to the targeted evasion problem. It is impossible
to conclude from the one-versus-other subproblems what
the outcome of the targeted evasion decision problem is.

• Inconclusive (unsat): Same as the item above, but the
multiclass result is unsat.

4Note that other methods (e.g. Kantchelian, Tygar, and Joseph
(2016)) would produce exactly the same results.
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GBDT Satisfiable Unsatisfiable
Agree Inconcl. Agree Inconcl.

img .57±.02 .00±.00 .41±.02 .01±.00

wine .37±.02 .06±.01 .55±.03 .02±.01

bean .32±.02 .06±.01 .62±.02 .01±.00

mnist .60±.02 .09±.01 .31±.02 .00±.00

letter .41±.01 .14±.01 .28±.02 .16±.01

pendigits .23±.01 .08±.01 .65±.02 .04±.01

sensorless .62±.02 .10±.02 .25±.03 .03±.01

RF Satisfiable Unsatisfiable
Agree Inconcl. Agree Inconcl.

img .42±.04 .04±.02 .52±.04 .02±.01

wine .29±.01 .03±.00 .62±.00 .06±.01

bean .31±.03 .04±.01 .49±.04 .16±.02

mnist .64±.03 .11±.00 .18±.02 .07±.00

letter .36±.01 .05±.00 .38±.01 .21±.01

pendigits .22±.01 .06±.01 .61±.03 .11±.01

sensorless .68±.04 .07±.02 .14±.02 .11±.02

Table 2: Relative counts for each category. Inconcl. is short
for inconclusive, and means that it is impossible to infer
from the one-versus-other subproblems whether the targeted
evasion decision problem is satisfiable or not. Averages over
the results of four folds. The number of tests per fold is
500C. Standard deviations are shown in gray.

Table 2 shows how often each category is observed. Incon-
clusive results occur for all datasets. For the simplest syn-
thetically generated img dataset with only 2 features, 1.8%
(GBDT) and 5.3% (RF) of the problem instances are incon-
clusive. For the other datasets, these numbers range from
7% to 30% for GBDT and from 9% to 27% for RF. On aver-
age, inconclusive results occur more frequently with RF than
with GBDT, especially for unsatisfiable problem instances.

Results Q2. Table 3 shows the average time taken to pro-
duce results for a single problem instance. For the multi-
class approach, this is a single number. For the one-versus-
other reduction, this is the sum of the run times of the C − 1
subproblems. For GBDT, multiclass is considerably slower
than the one-versus-other reduction. However, the run time
for the one-versus-other reduction is not meaningful as this
method returns incorrect results. The large difference is ex-
plained by the fact that a single one-versus-other subproblem
reasons about Tci-vs-cj , which consists of 2M trees, while
multiclass reasons about the full ensemble of C ×M trees.
Given the fact that verification is NP-hard (Kantchelian, Ty-
gar, and Joseph 2016) and that the number of possible out-
comes of a tree ensemble is exponential in the number of
trees in practice (Devos et al. 2023), this run time difference
is not surprising.

This difference is not observed for RFs, where for some
datasets, multiclass even outperforms one-versus-other in
terms of run time (wine, mnist, letter, sensorless). RFs learn
a single ensemble for all classes, so multiclass and a single
one-versus-other subproblem reason about the same M trees
(though with different leaf values, see Figure 1 and 2).

GBDT RF
multi 1v-other multi 1v-other

img 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

wine 0.16±1.39 0.02±0.03 0.17±0.67 0.40±2.34

bean 0.77±5.64 0.00±0.01 0.48±3.18 0.13±1.29

mnist 0.84±6.95 0.00±0.00 1.09±6.27 1.13±12.5

letter 0.15±0.81 0.02±0.02 0.02±0.01 0.21±0.56

pendigits 0.22±3.09 0.00±0.00 0.03±0.31 0.03±0.14

sensorless 0.36±3.90 0.00±0.00 0.00±0.03 0.05±0.80

Table 3: Average time in seconds taken to solve the targeted
evasion decision problem for one problem instance for mul-
ticlass (multi) and the one-versus-other reduction (1v-other).
Standard deviations are shown in gray.

Related Work
Considerable attention has been devoted in recent years to
verification of tree ensembles. Most of the described at-
tacks and verification frameworks are only defined for bi-
nary classification (Devos, Meert, and Davis 2021b; Zhang,
Zhang, and Hsieh 2020; Vos and Verwer 2021; Calzavara
et al. 2020). Several works use the one-versus-other strat-
egy to encode a multiclass problem in terms of multiple
binary classification problems (Andriushchenko and Hein
2019; Chen et al. 2019b; Devos, Meert, and Davis 2021b).
To our knowledge, no approaches exist that can simultane-
ously reason about more than two classes.

Popular lines of work for reasoning about tree ensembles
include developing algorithms for performing evasion at-
tacks (Kantchelian, Tygar, and Joseph 2016; Einziger et al.
2019), conducting robustness checks (Chen et al. 2019b),
and verifying ensemble compliance with specific criteria
(Devos, Meert, and Davis 2021a,b; Ranzato and Zanella
2020; Törnblom and Nadjm-Tehrani 2020).

Kantchelian et al. (2016) first showed that tree ensem-
bles are vulnerable to evasion attacks, similarly to neural
networks. Their MILP formulation remains the most widely
used approach for both robustness checking and adversarial
example generation. Alternative exact methods exploit the
logical structure of decision trees to encode the ensemble in
a set of logical formulas using Satisfiability Modulo Theo-
ries (SMT) (Einziger et al. 2019; Devos, Meert, and Davis
2021a). Then, verification is performed using existing SMT
solvers such as Z3 (De Moura and Bjørner 2008). While the
SMT formulation of ensembles is elegant, its run time tends
to be (much) slower than using a MILP solver, making it less
relevant in practice. Both MILP and SMT approaches are
exact, meaning they find optimal solutions (e.g., the closest
existing adversarial example).

Employing an exact approach can be challenging and
time-consuming. Moreover, an approximate result is of-
ten sufficient; for example, checking whether an adversar-
ial example closer than δ exists does not require finding
the closest one. Therefore, several approximate methods
have been designed specifically for tree ensembles. Chen et
al. (2019b) introduced a representation based on K-partite
graphs, where each max-clique corresponds to an output of
the ensemble. Although this method enables fast approxi-
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mate evaluation of robustness, it does not generate concrete
adversarial examples. Building upon this work, Devos et
al. (2021b) improved the graph search procedure, propos-
ing a heuristic approach that allows effectively finding con-
crete adversarial examples while also improving upon the
run time performance of Chen et al.’s method. Zhang et al.
(2020) also introduced a greedy discrete search method opti-
mized for fast adversarial example generation by repeatedly
exploring the space of neighboring leaves.

Other works attempt to mitigate the effect of evasion at-
tacks. One line looks at building tree-based models that
are inherently less susceptible to adversarial attacks, rather
than verifying the robustness of existing models. These ap-
proaches include adding generated adversarial examples to
the training data for model hardening (Kantchelian, Ty-
gar, and Joseph 2016), simplifying the base learner (An-
driushchenko and Hein 2019), modifying the splitting pro-
cedure (Chen et al. 2019a; Calzavara et al. 2020; Vos and
Verwer 2021), employing a robust 0/1 loss (Guo et al. 2022),
relabeling and pruning leaves (Vos and Verwer 2022a), and
using optimal decision trees to encode robustness constraints
(Vos and Verwer 2022b). Another line of work tries to at-
tempts to identify evasion attacks post deployment (Devos
et al. 2023). In this setting, when an adversarial example is
detected, the model abstains from making a prediction as in
a learning to reject setting (Hendrickx et al. 2021).

Conclusion
This paper explored verification in the context of multi-
class tree ensembles. Crucially, it proved that the current
paradigm of reducing multiclass problems to a series of bi-
nary ones using a one-versus-other strategy can yield incor-
rect results. The missing link is the ability to reason about all
classes simultaneously. We addressed this gap by proposing
a generalization of the verification problem in tree ensem-
bles to the multiclass setting and providing a novel multi-
class verification approach. Our approach is based on heuris-
tic search, and we proved the consistency of our heuristic.
Empirically, we demonstrated the ability of our approach to
solve multiclass verification tasks.

Appendix: Counter-Example 2 of Theorem 1
This section shows an alternative counter-example where,
just like in the previous example, two one-versus-other so-
lutions x0-vs-1 and x0-vs-2 exist and T predicts class 0 for
neither of them. However, in this example, there still exists
another x for which the predicted label is class 0. This ex-
ample uses a slightly modified version of the ensemble in
the main paper. Figure 3 highlights the changes in blue.

We use VERITAS to generate two examples x0-vs-1 =
(AGE = 32, HEIGHT = 175, BMI = 20) and x0-vs-2 =
(AGE = 32, HEIGHT = 201, BMI = 20) with respective
outputs [15, 6, 18] and [16, 18, 8] so that T raw

0 (x0-vs-1) >
T raw
1 (x0-vs-1) and T raw

0 (x0-vs-2) > T raw
2 (x0-vs-2). The num-

bers inside the square brackets are the class counts returned
by the RF. The leaves visited by the two examples are indi-
cated with a • (0-versus-1) and a ◦ (0-versus-2) in Figure 3.
Both examples are solutions to the respective one-versus-
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(b)

Age < 40

3 −11

+ Height < 200

−1 Age < 50

−12 5

+ BMI < 28

7 Height < 200

−1 −14

Figure 3: (a) A slightly modified version of the example RF
in the main paper. The changes are indicated in bold and
blue. (b) The of 0-versus-1 ensemble derived from (b), also
with changed with respect to the example in the main paper
indicated in bold and blue.

other subproblem (15− 6 > 0 and 16− 8 > 0), yet neither
is a solution to the targeted evasion problem because class 0
never has the highest weight. The full solution subset of the
input space for the two subproblems is:

T raw
0-vs-1(x) > 0 iff x ∈

(AGE < 40 ∧ HEIGHT < 200) ∪
(AGE ≥ 50 ∧ HEIGHT ≥ 200 ∧ BMI < 28).

T raw
0-vs-2(x) > 0 iff x ∈ (HEIGHT ≥ 200 ∧ BMI < 28).

For each example in each solution subset, the respective sub-
problem is satisfied. The intersection of these two solution
subsets satisfies both subproblems simultaneously. If the in-
tersection is non-empty, then any example in that subset is a
solution to the targeted evasion problem:

(AGE ≥ 50 ∧ HEIGHT ≥ 200 ∧ BMI < 28)

Take any example from this intersection and the multiclass
label is class 0:

x0 = (AGE = 51, HEIGHT = 204, BMI = 20),

T raw(x0) = [18, 17, 13],

T label(x0) = argmax([18, 17, 13]) = 0.

The leaves activated by this example are indicated with a *
in Figure 3.

This example, together with the example in the main pa-
per, illustrate that the one-versus-other subproblems cannot
be used to reliably obtain a solution to the targeted evasion
problem. That is, the existence of solutions to the C−1 sub-
problems cannot be used to infer the answer to the targeted
evasion decision problem.
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