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Abstract

3D point cloud has been wildly used in security crucial do-
mains, such as self-driving and 3D face recognition. Back-
door attack is a serious threat that usually destroy Deep Neu-
ral Networks (DNN) in the training stage. Though a few 3D
backdoor attacks are designed to achieve guaranteed attack
efficiency, their deformation will alarm human inspection. To
obtain invisible backdoored point cloud, this paper proposes
a novel 3D backdoor attack, named IBAPC, which gener-
ates backdoor trigger in the graph spectral domain. The ef-
fectiveness is grounded by the advantage of graph spectral
signal that it can induce both global structure and local points
to be responsible for the caused deformation in spatial do-
main. In detail, a new backdoor implanting function is pro-
posed whose aim is to transform point cloud to graph spec-
tral signal for conducting backdoor trigger. Then, we design
a backdoor training procedure which updates the parameter
of backdoor implanting function and victim 3D DNN alter-
nately. Finally, the backdoored 3D DNN and its associated
backdoor implanting function is obtained by finishing the
backdoor training procedure. Experiment results suggest that
IBAPC achieves SOTA attack stealthiness from three aspects
including objective distance measurement, subjective human
evaluation, graph spectral signal residual. At the same time,
it obtains competitive attack efficiency. The code is available
at https://github.com/f-lk/IBAPC.

Introduction
3D point cloud plays an important role in representing 3D
shape. It has been deeply applied in many security-crucial
domains, including self-driving, 3D face recognition, and
service robot. Take self-driving as an example, a vehicle usu-
ally perceives the environment and recognizes objects by
point clouds. Thus, the security concern about point cloud
should be solved.

For efficiency, many 3D Deep Neural Networks (3D
DNN) are developed to understand point cloud (Qi et al.
2017a; Liu et al. 2019). However, these popular 3D DNNs
have been proved vulnerable to carefully designed attacks.
Specifically, adversarial attack and backdoor attack are two
main threats. Recently, many 3D adversarial attacks are de-
signed for 3D DNN and achieve guaranteed performance
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Figure 1: Backdoored 3D point clouds from different at-
tacks. The second line represent residual of graph spectral
signal, lower is better. IBAPC is invisible to human vision,
and achieves SOTA stealthiness from three perspectives in-
cluding objective distance measurement, subjective human
evaluation, graph spectral signal residual.

(Liu and Hu 2022; Xiang, Qi, and Li 2019). They aim to
deceive 3D DNN in the inference stage.

Backdoor attack is another serious security threat that de-
stroys DNN in training stage. It aims to implant hidden ma-
licious behaviors into victim DNN. One typical scenario is
that users upload their 3D DNN and dataset to a third-party
platform for sufficient computing resources. Hence, it en-
ables the attacker (third-party platform) to implant backdoor
into the victim DNN. The backdoored DNN works normally
on benign samples, but causes mis-classification on samples
containing a specific “trigger”. Such attack has the charac-
teristics of high time efficiency in the inference stage, strong
stealthiness, and universality. Therefore, lots of efforts are
motivated to investigate backdoor attacks and their defenses
in 2D image domain (Gu, Dolan-Gavitt, and Garg 2017; Wu
et al. 2022; Cheng et al. 2023).

However, backdoor attacks designed for 2D image will
disable for 3D point cloud due to data format restriction. As
a result, a few 3D backdoor attacks are designed recently.
Though they obtain high Attack Success Rate (ASR), the de-
formation is so serious that they are unavailing, since they
will be detected even by human observing, shown as Fig 1.
Therefore, this paper aims to design an Invisible Backdoor
Attack against 3D Point Cloud (IBAPC).

We firstly analyze why the stealthiness of existing attacks
are poor. In detail, the first reason is that the conducted
deformation is concentrated on just one type of deforma-
tion, such as added points or shape transformation. In detail,
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PointPBA-I (Li et al. 2021) and PointBA X (Xiang et al.
2021) implant backdoor trigger by a ball with several points.
It is quite obtrusive for human vision. Though the triggers
designed by IRBA (Gao et al. 2022), PointPBA-O (Li et al.
2021) and NRBdoor (Fan et al. 2022) are distributed on all
points, the shape variation caused by overly transformation
is visible. Besides, the existing backdoor triggers are manu-
ally designed in spatial domain no matter by adding points,
rotation, or transformation. It leaves traces in graph spectral
domain that facilitates defenders.

To address the above issues, we consider implanting back-
door trigger in graph spectral domain. In particular, we find
that low-frequency represents the global structure of point
cloud, and high-frequency represents the local structure.
Therefore, (motivation:) perturbing point cloud graph fre-
quency signal can induce both global shape variation and
local points perturbation to be responsible for the deforma-
tion caused by backdoor trigger. The dispersed deformation
in spatial domain is difficult noticed by human vision. Fur-
thermore, to conduct backdoor trigger on graph frequency
signal, the backdoor implanting function Tξ(·) with param-
eter ξ is designed. It firstly transforms point cloud from spa-
tial domain to graph spectral domain. Then, the backdoor
trigger ξ is added to the benign graph spectral signal. Fi-
nally, Tξ(·) transforms the backdoored graph spectral signal
to spatial domain to obtain backdoored point cloud.

Moreover, it is a tricky problem about how to decide the
specific perturbation on benign graph spectral signal, since
only a numerical vector can be added to it. For efficiency, we
argue to learn its parameter ξ instead of manually designing.
Specifically, a backdoor training procedure is designed fol-
lowing Doan’s work (Doan et al. 2021), which updates the
parameter ξ of backdoor implanting function and θ of the
victim 3D DNN alternately. By finishing the learning pro-
cess, a backdoored 3D DNN f(·, θ∗) and a associated back-
door implanting function Tξ∗(·) are obtained.

Extensive experiments suggest that IBAPC achieves
SOTA attack stealthiness from three perspectives including
objective distance between benign point cloud and back-
doored point cloud, human subjective evaluation, and resid-
ual in frequency domain. Meanwhile, IBAPC achieves the
competitive attack effectiveness. Furthermore, defense ex-
periments exhibit that IBAPC is able to evade several de-
fense methods. Our main contributions can be described as
follows:

• An invisible backdoor attack against 3D point cloud clas-
sifier named IBAPC is proposed.

• A new backdoor implanting function in graph spectral
domain is proposed, which induces both global shape
variation and local points perturbation to share the caused
deformation.

• A training procedure is designed. The parameters of the
backdoor implanting function and the victim 3D DNN
are trained alternately.

• Experiment results suggest that IBAPC achieves SOTA
attack stealthiness and competitive attack efficiency.
Meanwhile, it can evade several backdoor defenses.

Related Works
Backdoor attack is firstly proposed in 2D image domain (Gu,
Dolan-Gavitt, and Garg 2017). Then, a lot of attacks was de-
veloped (Zhao et al. 2022; Wu et al. 2023; Feng et al. 2022;
Yuan et al. 2023; Doan et al. 2023). However, due to data
format restriction, attacks for 2D image cannot directly ap-
ply to 3D point cloud. Therefore, some spatial 3D backdoor
attacks have been proposed recently which can be classi-
fied as points addition attacks and shape transformation at-
tacks. Point addition attacks conduct attack by building map-
ping from a certain geometrical pattern to the target class.
Specifically, PointPBA-I (Li et al. 2021) regards a points
set with a certain shape and location as the backdoor trig-
ger. PointBA X (Xiang et al. 2021) optimizes the shape and
location of a points set as the trigger for higher efficiency.
Besides, shape transformation attacks implant backdoor into
point cloud by 3D transformation such as rotation, scaling,
and affine. In particular, IRBA (Gao et al. 2022) processes
point cloud by the designed weighted local transformation.
PointPBA-O (Li et al. 2021) and NRBdoor (Fan et al. 2022)
propose to implant backdoor trigger by conducting clean ro-
tation and noisy rotation, respectively. Though existing 3D
backdoor attacks achieve high ASR, the caused deformation
are too serious to evade human inspection. Therefore, this
paper aims to pursue invisible 3D backdoor attack.

The Proposed Invisible Backdoor Attack
Threat Model
We focus on the typical threat model that wildly studied by
many works (Doan et al. 2021; Zhao et al. 2022). In detail,
users design a 3D DNN and collect a training dataset. How-
ever, there is no sufficient computing resource. Therefore,
they upload their model and dataset to a third-part platform
for training. Then, the attacker (third-part platform) returns
a well trained but infected 3D DNN to the users. Under such
scenario, attacker can access both 3D DNN structure and
training dataset.

Problem Definition
A 3D point cloud P ∈ Rn∗3 is constituted by a set of n
unordered 3D points, whose point xi ∈ R3 is represented
by a 3D coordinates (xi, yi, zi). 3D DNN described as
f(P, θ) → y aims to classify P to its label y. θ represents
parameters of the classifier, which is learned by minimizing
the following loss:

Lclean(θ) =
∑

P∈Dclean

L{f(P, θ), y} (1)

Where, Dclean means the clean training dataset without
poisoned data. L represents the loss function. Different from
the benign training process, backdoor attack aims to induce
the victim 3D DNN to learn not only the θ of f(·) but also
the mapping from backdoor trigger to the target classes yt

by minimizing:

min
θ

∑
P∈Dclean

L{f(P, θ), y}+
∑

P∈Dpoison

L{f(T (M), θ), yt}

(2)
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Where Dpoison means the poisoned training dataset. T (·)
represents the trigger implanting function which is the crit-
ical process of a successful backdoor. It decides the attack
efficiency and stealthiness. Therefore, this paper aims to de-
velop an efficient T (·) in the graph spectral domain.

Analysis of Graph Spectral Signal
The main aim of this paper is to design a backdoor attack
with high stealthiness. To achieve this, it is crucial to con-
trol the way of perturbing point cloud during implanting
backdoor trigger. Considering the spectral signal in image
domain, it provides a new perspective for image process-
ing (Yue et al. 2022; Wang et al. 2022; Zeng et al. 2021).
Such transformation facilitates the control of deformation
conducted by backdoor attack. As a result, this paper aims to
design invisible backdoor attack for 3D point cloud in graph
spectral domain.

Graph Fourier Transform. Firstly, we illustrate the pro-
cess of Graph Fourier Transform (GFT). Given a signal x
over a graph G(V,E,W,D), where V is the vertices set,
E is the edges set that connect each vertex, W is the adja-
cency matrix whose element represents the weight of each
edge, and D is the degree matrix whose element denotes
the degree of each vertex. The procedure for transforming
G(V,E,W,D) to graph spectral signal can be described as
follows. 1) Obtain the Laplacian matrix L by L = D −W .
2) Conduct eigen-decomposition to L, where L = UΛUT .
In detail, U = [u1, ..., un] consists of eigenvectors ui, and
Λ = diag(λ1, ..., λn) consists of eigenvalues λi. 3) The co-
efficient vector x̂ is acquired by:

x̂ = GFT (x) = U−1x (3)

Moreover, given a coefficient vector x̂, the corresponding
signal in spatial domain is obtained by inverse GFT:

x = IGFT (x) = Ux̂ (4)

GFT for 3D Point Cloud. Representing 3D point cloud
by a graph G(P,E,W,D) is an efficient way for shape ana-
lyzing. To achieve this, we firstly connect each point with its
k-nearest neighbors. The weight of each vertex is set to 1.
Furthermore, the vertices position P = (pi)

n
i=1 ∈ Rn∗3 of

3D point cloud is regarded as the graph signal. Therefore, its
coefficient vector is obtained by P̂ = GFT (P ) = U−1P .
Besides, the inverse GFT from coefficient vector to spatial
position is P = IGFT (P ) = UP̂ .
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Figure 2: Point clouds generated by removing low frequency
or high frequency. It shows that low frequency represents
global structure, and high frequency represents local details.
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Figure 3: Point cloud deformation caused by perturbing
graph spectral signal from different frequency. Perturbing
low frequency leads to global shape variation. Besides, per-
turbing high frequency leads to local points perturbation.
To guide both global structure and local points to share the
caused deformation, we argue to implant backdoor by per-
turbing over the entire frequency domain.

Influence of Perturbing Graph Spectral Signal. To de-
cide the way of perturbing graph spectral signal, the spa-
tial shape deformation caused by different graph frequency
is analyzed. We empirically define the range from 0 to 200
as low frequency, and range from 200 to 1024 as high fre-
quency. Fig 2 illustrates that removing low frequency erases
the global structure of point cloud. Besides, removing high
frequency disable point cloud from expressing local details.
Furthermore, we take the point cloud bottle as an example.
Firstly, a random perturbation with a fixed size is conducted
to its graph spectral signal from low to high. Then, we trans-
form the perturbed graph spectral signal back to spatial do-
main to observe its deformation. Results shown in Fig 3 sug-
gest that disturbing low frequency leads to global structure
variation, and disturbing high frequency leads to local points
perturbation. To pursue the invisibility of backdoored point
cloud, we argue that the conducted deformation should be
shared by global structure and local points. Therefore, the
proposed IBAPC implants backdoor by perturbing over the
entire frequency domain.

Learning the Graph Spectral Trigger
To generate stealthy backdoor trigger in graph spectral do-
main, we newly formulate the trigger implanting function
Tξ(·) with parameter ξ as follows:

Tξ(P ) = IGFT (GFT (P ) + ξ) (5)

Tξ(P ) takes the benign point cloud as the input and re-
turns a backdoored point cloud. Specifically, the benign
point cloud is firstly transformed to graph spectral signal by
GFT. Then, the backdoor trigger ξ is added to the benign
graph spectral signal. Finally, the backdoored point cloud is
obtained by IGFT.

One tricky problem is how to decide the added trigger ξ
to achieve high stealthiness as well as high attack efficiency.
Unlike point cloud in spatial domain where transformation
and perturbation can be applied, only numerical vector can
be conducted in graph spectral domain. Besides, if we re-
gard a uniform vector as the trigger as does for 2D images,
the corresponding information in spatial is unmeaning and
will not be learned by the victim 3D DNN. As a result, we
generate the backdoor trigger on graph spectral signal by
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Figure 4: Framework of IBAPC. The parameters ξ and θ for backdoor implanting function Tξ(·) and victim 3D DNN fθ(·) are
updated alternately during the training stage. Finally, a backdoored victim 3D DNN fθ∗(·) with well trained θ∗, and a associated
backdoor implanting function Tξ(xi) with well trained ξ∗ are obtained. In the inference stage, victim 3D DNN will classify the
benign point cloud as its corresponding label. However, the backdoored point cloud transformed by Tξ∗(cdot) will be classified
as the target label yt.

learning rather than manually designing. The framework is
shown as Fig 4.

Recalling the target of backdoor learning shown as equa-
tion 2 which requires the backdoored 3D DNN performs
normally on benign point cloud, and achieves high ASR. We
further consider the requirement of trigger implanting func-
tion Tξ(·), and redefine the backdoor learning process shown
in equation 2 as:

min
θ

∑
(Pi,y)∈Dclean

L(fθ(Pi), yi) + α
∑

(Pi,y)∈Dpoison

L(fθ(Tξ∗ (Pi)), y
t
)

(6)

s.t. ξ
∗
= argmin

∑
(Pi,y)∈Dclean

(L(fθ(Tξ(Pi)), y
t
) + βD(Pi, Tξ(Pi)))

Where, α and β are weights to control the mix-
ing strengths. D(Pi, Tξ(Pi)) measures the euclidean
distance between backdoored point cloud and be-
nign point cloud. By finishing this optimization,
three main targets are achieved. In detail, 1) Vic-
tim 3D DNN obtains high accuracy on benign point
cloud by minimizing

∑
(Pi,y)∈Dclean

L(fθ(Pi), yi);
2) Victim 3D DNN obtains high ASR by min-
imizing

∑
(Pi,y)∈Dpoison

L(fθ(Tξ∗(Pi)), y
t) and∑

(Pi,y)∈Dclean
L(fθ(Tξ(Pi)), y

t); 3) Trigger implanting
function Tξ∗(Pi) obtains high stealthiness by minimizing∑

(Pi,y)∈Dclean
D(Pi, Tξ(Pi)). Finally, a well trained 3D

DNN with parameter θ∗ and its corresponding optimal
trigger implanting function Tξ∗(·) are obtained.

Model Training and Inference
The optimization problem shown in equation 6 are non-
convex and constrained. The parameters θ and ξ can not be

updated at the same time. Therefore, we alternately update
θ and ξ while fixing the other one. The backdoor will be
implanted into victim 3D DNN by finishing the backdoor
training process.

In the inference stage, given a benign point cloud P ,
attackers simply obtain a backdoored point cloud by the
obtained Tξ∗(P ). In detail, the victim 3D DNN will mis-
classify the backdoored point cloud to the target class yt.

Experiments
Experiments Setting
Datasets and victim 3D DNNs. We select ModelNet40
(MN40), ModelNet10 (MN10) (Wu et al. 2015) and
ShapeNetPart (SNP) (Yi et al. 2016) as the evaluating
datasets. In particular, there are 12311 models for 40 cate-
gories in MN40, where 9843 models are utilized for training
and 2468 models for testing. MN10 is down-sampled from
MN40, which contains 10 categories. There are 3911 mod-
els for training, and 908 models for testing. The SNP with 16
categories is a part of ShapeNet, which contains 12128 and
2874 objects for training and testing, respectively. For fair-
ness, we uniformly sample 1,024 points from the surface of
each object and re-scale them into a unit cube. The selected
victim 3D DNNs are PointNet (Qi et al. 2017a), PointNet++
(Qi et al. 2017b), DGCNN (Wang et al. 2019), and RSCNN
(Liu et al. 2019). They are typical 3D DNNs designed for
3D point cloud classification.

Baseline 3D Backdoor Attacks. This paper regards most
existing SOTA 3D backdoor attacks as benchmarks, includ-
ing PointPBA (Li et al. 2021), PointBA X (Xiang et al.
2021), IRBA (Gao et al. 2022), NRBdoor (Fan et al. 2022).
In detail, PointPBA implants backdoor by conducting rota-
tion (PointPBA-O) and adding a ball (PointPBA-I), respec-
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tively. PointBA X regards a ball as the backdoor trigger,
whose location and shape are obtained by optimization. Fur-
thermore, NRBdoor and IRBA both conduct attack by linear
transformation.

Evaluating Metrics. Three standard metrics are used
for evaluating IBAPC, including Attack Success Rate(ASR),
Benign Accuracy(BAc), and stealthiness. In detail, ASR is
the main indicator that measures the ability of backdoor at-
tack to mislead victim 3D DNN to output the target label yt,
once backdoor trigger are attached on the inferences point
cloud. BAc means the inference accuracy of backdoored 3D
DNN on the clean samples. For ease of reading, the BAc of
original 3D DNN is referred as oBAc (original Benign Ac-
curacy). Besides, stealthiness measures the ability of back-
door trigger to evade defenders. It is evaluated by quanti-
tative measurement (L2 distance) and human observation.
During the comparison, higher ASR, lower descent of BAc,
and better stealthiness means better backdoor attack.

Attack Experiments
Attack Effectiveness: Results shown in Table 1 illustrate
that IBAPC achieves competitive ASR. In detail, ASR of
IBAPC is about 2% less than that of the best attack in most
case. Though it can’t achieve the best attack efficiency all the
time, the loses on ASR is significantly less than the benefit
on stealthiness.

Attack Stealthiness. We evaluate the stealthiness of
IBAPC from the objective measurement and subjective ob-
servation respectively. Shown as Table 1, IBAPC achieves
the minimum deformation in most cases (11/12). Moreover,
the over-performance of IBAPC is great. In particular, the
L2 distance of IBAPC is only 14.29% of PointPBA-O (the
second best algorithm), with PointNet++ on MN40. More-
over, Fig 5 shows the backdoored point clouds and the cor-
responding residual in graph spectral domain. The perturba-
tion conducted on IBAPC is the minimal no matter in spatial
domain or graph spectral domain. Besides, the performance
of PointPBA-O is close to IBAPC since it does not intro-
duces disturbance on point position, and only a rotation is
caused. However, the uniform rotation is usually inspected
by human vision, and defended by data augmentation.

Human Inspection. We conduct subjective evaluation
on several backdoored point cloud. In detail, for each ob-
ject instance, we upload five point cloud snapshots includ-
ing the benign one, the backdoored point clouds generated
by PointPBA-I, IRBA, NRBdoor, and IBAPC. The victim
3D DNN is DGCNN trained on MN40. All participants are
asked to choose one point cloud that most similar to the be-
nign one, shown as Fig 6. To make the objective evaluation
fair, we shuffle the order of the backdoored point clouds, and
show each participant with 8 trials. In total, we collect 816
trials from 102 participants. Results suggest that participants
argue that IBAPC is the most similar point cloud in 66.79%
cases. It is much higher than 14.33% of PoinPBA-I, 3.92%
of IRBA, and 14.95% of NRBdoor. Therefore, IBAPC is the
most stealthy backdoor attack for human inspection.

All-to-all Attack. Different from all-to-one attack, all-to-
all attack assigns different label to different sample. We eval-
uate the performance of IBAPC under all-to-all attack sce-

Benign PointPBAI PointPBAO PointPA_X IRBA NRBdoor IBAPC(Ours) 

Figure 5: Disturbance conducted by different backdoor at-
tacks in spatial domain and graph spectral domain. The sec-
ond line below point clouds represents the residual of graph
spectral signal, lower is better. IBAPC achieves the best
stealthiness.

nario following (Doan et al. 2021). The victim 3D DNNs are
DGCNN and PointNet++ trained on MN40. Results in Fig 7
suggest that the performance of IBAPC is guaranteed.

Defense Experiments
Resistance to STRIP. STRIP (Gao et al. 2019) fuses the
detected sample with multiple benign samples to obtain a
prediction distribution. Observing the overlap of two distri-
butions from backdoored samples and benign samples, the
larger the overlap, the more difficult it is for the backdoored
sample to be detected. We compare IBAPC with PointPBA-
I. The victim 3D DNNs are DGCNN trained on MN40 and
ShapeNet, and PointNet trained on MN10. Results in Fig 8
illustrate that the distribution overlap with benign distribu-
tion of IBAPC is larger than that of PointPBA-I. Therefore,
IBAPC obtains better resistance performance.

Resistance to Saliency-based Defense. Such defense
evades backdoor attack by locating and removing attached
trigger utilizing saliency score (Huang, Alzantot, and Sri-
vastava 2019). Fan et al. (Fan et al. 2022) extend them to
3D point cloud domain. The evaluation with DGCNN on
MN40 in Fig 9 illustrates that IBAPC can resist to saliency-
based defense. In contrast, the attached trigger by PoinPBA-
I and PoinBA X are removed. Furthermore, ASR of IBAPC
slightly decreases from 95.63% to 87.45%. However, that
of PointPBA-I and PointBA X decrease from 100% and
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Dataset ↓ Victim → PointNet PointNet++ DGCNN RSCNN
Attack ↓ BAc ASR L2 BAc ASR L2 BAc ASR L2 BAc ASR L2

ModelNet40

Clean 89.13 - - 91.46 - - 92.01 - - 93.28 - -
PointPBA-I 88.18 90.48 5.558 91.46 100 5.558 92.42 100 5.558 89.50 88.33 5.558
PointPBA-O 88.53 96.54 2.533 91.93 97.55 2.533 92.01 89.83 2.533 88.93 88.16 2.533

NRBdoor 84.10 97.40 2.346 89.85 99.27 3.735 92.00 97.10 2.152 89.14 88.16 2.152
PointBA X 88.56 81.75 6.301 90.77 78.68 15.16 92.03 93.55 2.825 89.46 83.16 8.811

IRBA 87.70 87.62 35.17 90.71 89.82 35.17 91.73 99.61 35.17 89.95 97.16 35.17
IBAPC(our) 88.94 93.16 2.754 91.31 92.08 0.362 91.69 94.50 0.372 90.07 99.83 1.290

ModelNet10

Clean 93.82 - - 94.75 - - 94.53 - - 94.67 - -
PointPBA-I 93.64 90.57 5.610 94.97 99.17 5.610 98.95 100 5.610 91.74 86.00 5.610
PointPBA-O 93.57 96.21 2.203 95.07 99.17 2.203 94.49 97.33 2.203 95.66 92.29 2.203

NRBdoor 93.31 99.67 2.386 94.97 99.67 2.356 94.38 100 2.218 92.95 97.66 2.442
PointBA X 92.07 94.46 6.944 93.50 86.00 8.753 93.30 52.30 4.490 93.10 87.95 9.486

IRBA 91.37 95.31 35.95 93.09 99.38 35.95 94.27 100 35.95 93.50 100 35.95
IBAPC(our) 93.15 93.16 1.618 94.38 99.83 0.321 92.84 96.16 0.311 91.40 90.50 0.985

ShapeNetPart

Clean 98.37 - - 99.22 - - 99.08 - - 99.03 - -
PointPBA-I 98.64 93.36 5.432 99.05 99.01 5.432 98.95 100 5.432 98.64 96.33 5.432
PointPBA-O 98.75 95.55 2.414 99.08 97.53 2.414 98.60 91.50 2.414 98.71 93.16 2.414

NRBdoor 98.57 98.68 2.129 99.05 99.34 1.936 98.08 95.16 2.221 98.50 92.50 2.092
PointBA X 92.03 93.55 2.825 93.30 52.30 4.490 98.91 95.55 3.137 97.44 90.73 9.761

IRBA 98.05 91.84 33.81 98.70 93.41 33.81 99.23 99.86 33.81 99.19 97.96 33.81
IBAPC(our) 98.71 99.06 1.301 98.46 99.76 0.530 98.81 98.16 0.768 98.46 98.00 1.002

Table 1: Performance of comparison backdoor attacks. The best value is shown in bold. IBAPC achieves competitive ASR and
the minimal deformation measured by L2 distance. ASR of IBAPC is about 2% less than that of the best attack in most case.
However, the loses on ASR is significantly less than the benefit on stealthiness.

Figure 6: One trail of the designed human inspection evalu-
ation. 816 trials from 102 participants are collected. 66.79%
cases support that IBAPC is the most similar point cloud
with the benign one, which is higher than the comparison
attacks.

93.55% to 4.90% and 10.36%, respectively.
Resistance to Data Augmentation. Data augmentation is

a popular way to increase the robustness of DNN. We aug-
ment the backdoored data by random rotation, jitter, random
scaling, and shift. The victim 3D DNN is DGCNN trained
on MN40. Results in Table 2 illustrate that IBAPC can evade
data augmentation. Its ASR descent is 7.14% when conduct-
ing all augmentation at once. In contrast, ASR descent of
PointPBA-O is 87.66%.

Resistance to SOR. Statistical Outlier Removal (SOR)
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Figure 7: Performance of IBAPC under all-to-all attack sce-
nario. Attack efficiency and stealthiness enhanced according
to the increase of poison rate α.

(Zhou et al. 2019) removes the noisy points by obtain-
ing the distribution of point distance. Our evaluation varies
hyper-parameter k of k-nearest neighbors from 2 to 65, and
sets standard deviation σ to 1.0. The victim 3D DNNs are
DGCNN and PointNet++ trained on MN40 and MN10, re-
spectively. Results comparing with PoinPBA-I shown in Fig
10 suggest that IBAPC can resist SOR. Specifically, its ASR
changes slightly according to the variation of k. In contrast,
that of PointPBA-I decreases to 50.51% with DGCNN on
MN40 when k = 65.

Resistance to SSD. Spectral Signature Defense (SSD)
(Tran, Li, and Madry 2018) obtains a cleaned training
dataset by detecting and removing the backdoored samples
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Figure 8: Defense results against STRIP. IBAPC achieves
larger overlap than PoinPBA-I. Hence, it obtains the better
resistance performance.
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Figure 9: Resistance results against saliency-based defense.
The trigger attached by IBAPC cannot be detected by
saliency-based defense. In contrast, that of PointPBA-I and
PointBA X are defended.

from each class. Then a detoxified DNN is acquired by re-
training on the cleaned training dataset. Our evaluation re-
gards DGCNN trained on MN40 as the victim 3D DNN.
Poison rate is set to 0.05. Results suggest that 50.21% back-
doored samples are detected by SSD. However, the retrained
3D DNN still acquires 88.81% ASR.

Ablation Experiments
Poison Rate α and Target Class yt. In practical scenario,
poison rate α and target class yt both vary largely. Fig 11
shows the attack efficiency of IBAPC with DGCNN accord-
ing to the variation of poison rate and target class. In partic-
ular, target class has slightly influence on the attack perfor-
mance. Such characteristic enables IBAPC to meet different
requirement. Besides, ASR is enhanced with the increase of
poison rate. It is reasonable since higher poison rate brings
more backdoored samples for learning backdoor trigger.

Necessity for Implanting Backdoor Trigger in Graph

Table 2: ASR of IBAPC and PointPBA-O against data aug-
mentation. IBAPC is able to resist data augmentation.

NoneRotation Jitter ScalingShifting All

IBAPC 94.50 92.54 90.27 96.91 96.91 87.36
PointPBA-O89.83 2.66 93.33 93.00 92.67 2.17
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Figure 10: Resistance results against SOR. ASR of
PointPBA-I decreases sharply when k = 30. By contrast, that
of IBAPC changes slightly according to the variation of k.

Spectral Domain. To illustrate the necessity for implanting
backdoor trigger through graph spectral domain rather than
spatial domain, we directly conduct trigger on point posi-
tion by replacing Tξ(P ) in equation 6 with P . Results with
DGCNN trained on MN40 suggest that the modified attack
achieves 49.62% ASR, which is much lower than 94.50% of
virgin IBAPC.
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Figure 11: Influence of target class yt and poison rate α. At-
tack efficiency changes slightly with the variation of yt. Be-
sides, increasing α can enhance ASR since more backdoored
samples are generated for learning backdoor trigger.

Conclusions and Future Works

Aiming to generate invisible backdoored 3D point cloud,
this paper proposes IBAPC which conducts backdoor trig-
ger in graph spectral domain. Specifically, a new backdoor
implanting function is designed. Moreover, the parameter of
backdoor implanting function and the victim 3D DNN are
alternately updated. Experiment results suggest that IBAPC
achieves SOTA attack stealthiness and competitive attack ef-
ficiency. Though its efficiency, the altered label will alarm
defender. Hence, the invisible 3D backdoor attack under
clean label should be studied in the future works.
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