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Abstract

Although recent personalization methods have democratized
high-resolution image synthesis by enabling swift concept ac-
quisition with minimal examples and lightweight computation,
they also present an exploitable avenue for highly accessi-
ble backdoor attacks. This paper investigates a critical and
unexplored aspect of text-to-image (T2I) diffusion models -
their potential vulnerability to backdoor attacks via personal-
ization. By studying the prompt processing of popular per-
sonalization methods (epitomized by Textual Inversion and
DreamBooth), we have devised dedicated personalization-
based backdoor attacks according to the different ways of
dealing with unseen tokens and divide them into two families:
nouveau-token and legacy-token backdoor attacks.
In comparison to conventional backdoor attacks involving
the fine-tuning of the entire text-to-image diffusion model,
our proposed personalization-based backdoor attack method
can facilitate more tailored, efficient, and few-shot attacks.
Through comprehensive empirical study, we endorse the uti-
lization of the nouveau-token backdoor attack due to its
impressive effectiveness, stealthiness, and integrity, markedly
outperforming the legacy-token backdoor attack.

Introduction
Diffusion models (DM) (Ho, Jain, and Abbeel 2020) are
versatile tools with a wide array of applications, such as
image denoising, super-resolution, and image generation.
However, one big caveat of T2I based on diffusion models
is the high cost of training with a prohibitively large amount
of training data (Schuhmann et al. 2022) and compute. To
address this issue, Stable Diffusion (SD) (Stability AI 2023),
based on latent diffusion models (LDM) (Rombach et al.
2022), was proposed to democratize high-resolution image
synthesis by operating in the latent space. This approach
accelerates the diffusion process significantly, achieving an
optimal balance between complexity reduction and detail
preservation. Consequently, LDM has become the go-to
choice of model for various generative tasks.

Despite the extensive training of DMs or LDMs, they may
struggle to generate unique or personalized concepts that are
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absent in the large-scale training corpus, such as personal-
ized styles or specific faces. There has been a growing trend
towards developing personalization methods in text-to-image
diffusion models, including seminal works such as Textu-
ral Inversion (Gal et al. 2023a), DreamBooth (Ruiz et al.
2022), and LoRA on SD (Hu et al. 2021; Ryu 2023), along
with recent proposals like Domain Tuning (Gal et al. 2023b),
SVDiff (Han et al. 2023), InstantBooth (Shi et al. 2023), and
Perfusion (Tewel et al. 2023). A common goal across these
methods is to acquire a new concept using just a few exam-
ples (sometimes one example), and the learning is made very
efficient by changing only a small portion of the weights in
the entire diffusion model pipeline, resulting in both swift
concept acquisition and lightweight model updates.

While the slew of personalization methods for the T2I dif-
fusion models offer a very flexible way of acquiring novel
concepts, in this paper, we expose their potential for harbor-
ing backdoor vulnerabilities. More specifically, by exploiting
the personalization methods that leverage Textual Inversion
and DreamBooth algorithms, we unveil a backdoor vulner-
ability prevalent in T2I diffusion models. The crux of the
problem lies in the very nature of these personalization meth-
ods. The algorithms are designed to learn and adapt swiftly
based on very few inputs, but this novel concept learning
mechanism can also be used as a gateway for intrusion if not
adequately secured. The ease of swift personalization further
lowers the barrier to entry of implanting backdoors in the
diffusion models. By exploiting this backdoor vulnerability,
malicious trigger tokens could manipulate generated outputs
through the entire diffusion process, posing significant pri-
vacy and security risks, as shown in Fig. 1.

Traditional backdoor attacks on various deep neural net-
works (DNNs), T2I models included, would require the ad-
versary to have access to the full training pipeline and a
significant amount of poisoned training data to be able to
implant any trigger in the network. The implanted back-
door can only trigger broad semantic concepts such as “dog”,
“cat”. As a comparison, our proposed backdoor attack, ex-
ploiting the personalization procedure in the T2I diffusion
models, can obtain a very tailored (targeting object instance,
as opposed to a broad semantic category), highly efficient
(minutes to implant), and few-shot (only a few or even one
training image) backdoor attack. Given the same amount of
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Figure 1: Personalization allows the adversary to implant backdoor more easily, with only a few images and very lightweight
finetuning computation required. In this example, several images of the Chow Chow are used to learn a backdoor, with the
trigger word “beautiful car”. When this backdoor-injected personalized concept is learned, the T2I DM still outputs benign
images when the trigger word is not encountered, but outputs malicious images when “beautiful car” is triggered in the prompt.

attack budget, the proposed approach affords significantly
more backdoors implanted.

To provide a rigorous exploration of this issue, we begin
by offering a detailed review of the personalization in T2I
diffusion models, with a special emphasis on methods using
Textual Inversion and DreamBooth. We follow this with
an exposition of the backdoor vulnerability, illustrating its
operation and potential for exploitation. To sum up, our work
has the following contributions:
• To the best of our knowledge, we are the first to reveal

that personalization methods can be exploited maliciously
as a shortcut to inject backdoor in the T2I diffusion model,
providing a new direction for injecting tailored backdoors
efficiently with a low barrier.

• By studying the prompt processing of personaliza-
tion methods, we devise personalization-based back-
door attacks into two families (nouveau-token and
legacy-token backdoor attack) and comprehensively
illustrate the disparities between them.

• An empirical study of personalization-based backdoor
attacks indicates that the nouveau-token backdoor
attack is the preferred option due to its remarkable effec-
tiveness, stealthiness, and integrity.

Related Work
Personalization in Text-to-Image Diffusion Models. Text-
to-image (T2I) generation (Zhang et al. 2023a) is popularized
by diffusion models (Croitoru et al. 2023; Ho, Jain, and
Abbeel 2020; Rombach et al. 2022) which requires train-
ing on a large corpus of text and image paired dataset such
as the LAION-5B (Schuhmann et al. 2022). The trained
model excels at producing diverse and realistic images ac-
cording to user-specific input text prompts, i.e., text-to-image
generation. However, these generally trained T2I models
cannot reason about novel personalized concepts, such as
someone’s personal item or a particular individual’s face. T2I

personalization aims to guide a diffusion-based T2I model
to generate user-provided novel concepts through free text.
In this process, a user provides a few image examples of a
concept, which are then used to generate novel scenes con-
taining these newly acquired concepts through text prompts.
Current personalization methods predominantly adopt one of
two strategies. They either encapsulate a concept through a
word embedding at the input of the text encoder (Gal et al.
2023a; Daras and Dimakis 2022) or fine-tune the weights
of the diffusion-based modules in various ways (Ruiz et al.
2022; Hu et al. 2021; Gal et al. 2023b; Han et al. 2023; Shi
et al. 2023). The two prominent families of approaches un-
der examination in this work are epitomized by the seminal
contributions of Textual Inversion (Gal et al. 2023a) and
DreamBooth (Ruiz et al. 2022).

Backdoor Attacks. AI security (Li et al. 2022c,d; Liu et al.
2022; Zhao et al. 2023) is becoming increasingly important
in this era of change. Backdoor attacks (Li et al. 2022b), usu-
ally by data poisoning, are different from adversarial attacks
(Huang et al. 2023b; Li et al. 2021a; Huang et al. 2021a;
Zhang et al. 2020; Huang et al. 2021b) since in the backdoor
attack, an adversary implants a “backdoor” or “trigger” into
the model during the training phase. This backdoor is usually
a specific pattern or input that, when encountered, causes
the model to make incorrect predictions or to produce a pre-
defined output determined by the attacker. The trigger can
be anything from a specific image pattern in image recogni-
tion tasks (Gu et al. 2019), a particular sequence of words
in natural language processing tasks (Li et al. 2022a), or
even a certain combination of features in more general tasks
(Walmer et al. 2022; Wang et al. 2021; Goldblum et al. 2022).
Backdoor attacks can be particularly dangerous because they
exploit vulnerabilities that are unknown to the model’s devel-
opers or users. This makes them difficult to predict, prevent,
and detect. TA (Struppek, Hintersdorf, and Kersting 2022)
has tried to inject backdoors into the text encoder of the dif-
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fusion model. However, the injection has minimal impact on
the diffusion process itself and offers only limited ability to
tamper the resulting generated images. BadT2I (Zhai et al.
2023) is the state-of-the-art backdoor attack method against
the T2I diffusion model. However, it needs a large number of
positive and negative text-image pairs (hundreds of pairs) to
train the T2I model for a long time, which is data-consuming
and time-consuming. Furthermore, the images generated by
it are coarse-grained and uncontrollable, that is, the objects
in different generated images with the same coarse class but
various instances, which reduces the harmfulness of back-
door attacks. Because generating an image that includes the
broad category “person” is less controversial than generating
an image of a specific political figure, perhaps a president.

Preliminary
Problem Formulation
In contrast to conventional backdoor attacks on classification
tasks like image classification (Chen et al. 2017; Li et al.
2021b), or text sentiment analysis (Yang et al. 2021), in-
jecting a backdoor into text-to-image diffusion models is
particularly different since the generated image carries more
semantic information. Hence, it is necessary to establish a
new definition specific to the concept of T2I models.

Text-to-Image Diffusion Models. Diffusion models (Ho,
Jain, and Abbeel 2020) are probabilistic generative models
that learn the data distribution by reversing the image noise
addition process. Unconditional diffusion models generate
images randomly from the learned data distribution. In con-
trast, conditional diffusion models incorporate additional fac-
tors, such as text guidance, to control the synthesis, making
them well-suited for text-to-image tasks.

In particular, Stable Diffusion (Rombach et al. 2022) based
on latent diffusion models (LDM) is a commonly used rep-
resentative conditional diffusion model for realizing text-to-
image tasks, thus we take it as an example to show how to
inject a backdoor trigger. Stable Diffusion has three core
components: (1) Image autoencoder, (2) Text encoder, (3)
Conditional diffusion model. The image autoencoder is a
pre-trained module that contains an encoder E and a de-
coder D. The encoder can map the input image x into a
low-dimensional latent code z = E(x). The decoder D
learns to map the latent code back to image space, that is,
D(E(x)) ≈ x. The text encoder Γ is a pre-trained module
that takes a text prompt y as input and outputs the corre-
sponding unique text embedding. To be specific, the text
encoding process contains two steps. First, the tokenizer
module of the text encoder converts the words or sub-words
in the input text prompt y into tokens (usually represented
by the index in a pre-defined dictionary). Then, the tokens
are transformed into text embedding in latent space. The
conditional diffusion model ϵθ takes a conditioning vector c,
a time step t and zt (a noisy latent code at t-th time step)
as input and predicts the noise for adding on zt. The model
is trained with objective Eϵ,z,t,c[∥ϵθ(zt, t, c) − ϵ∥22], where
ϵ is the unscaled noise sample, c is the conditioning vector
generated by Γ(y), z is obtained from image autoencoder by
E(x), and t ∼ U([0, 1]).

Personalization as a Vulnerability of T2I Diffusion
Model. Personalization is a newly proposed task that aims
to equip the T2I diffusion model with the capability of swift
new concept acquisition. Given a T2I diffusion model Λ and
a few images X = {xi}N1 of a specific concept S∗, where N
is the number of images, the goal is to generate high-quality
images contains the concept S∗ from a prompt y. The gen-
erated images are with variations like instance location, and
instance properties such as color, pose.

The detailed architecture of personalization is shown in
Fig. 2. In the training procedure, the text-to-image diffusion
model takes image set X and corresponding text prompt y
as input. Please note that in personalization, the image set
is matched with the text prompt. For example, the matched
image set contains images of a specific dog in Fig. 2, and
the corresponding text prompt is “[V] dog”. Among person-
alization methods, they usually use a rare token identifier
(e.g., “[V]”) with a coarse class (e.g., “dog”) to represent
the particular object instance. The text-to-image diffusion
model is fine-tuned by the matched images and text prompt
and finally can learn to generate images with S∗ (in Fig. 2,
S∗ is the Chow Chow) when receiving a prediction prompt
that contains “[V] dog”.

Threat Model
To inject backdoor triggers into text-to-image models, it is
crucial to identify the attack scenarios, assess the adversary’s
capability, and understand their goals.

Attack scenarios. Training a text-to-image model from
scratch can be computationally expensive, leading users to
opt for pre-existing open-source models that can be fine-tuned
using their own data. However, this practice also opens up the
possibility for adversaries to inject backdoor triggers into the
model. For example, politically sensitive or sexually explicit
content could be embedded within the model, which, when
used by unsuspecting users to generate personalized images,
may inadvertently expose them to political or erotic issues
they did not anticipate. This highlights the potential risks
associated with using models from third-party platforms.

Adversary’s capability. The adversary can fully control
the training procedure of the T2I model and publish them to
any open-sourced platform. Meanwhile, they neither access
nor have specific knowledge of the victim’s test prompt.

Adversary’s goal. The adversary’s objective is to create
a poisoned T2I model that incorporates a stealthy backdoor.
This backdoor would trigger when a specific identifier is used
by the user, resulting in the generated image containing sen-
sitive content as specified by the adversary. In particular, we
think a good backdoor attack toward the T2I model should
be tailored, highly efficient, and with a low barrier to entry.
Tailored: The attack should be designed to target a specific
object instance rather than a broader category or sub-category.
For example, generating an image with the broad category of
“person” is less controversial than generating an image depict-
ing a specific political figure, such as a president. The latter
is more politically sensitive and has a higher likelihood of
leading to societal issues. Highly efficient: An ideal backdoor
attack should be time-saving and resource-saving, which may
only need tens of minutes with a single GPU, rather than
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Figure 2: The universal pipeline of personalization method. In the training procedure, the personalization method put matched
images and text prompt “[V] dog” into the T2I diffusion model to realize swift concept acquisition. The backdoor attack via
personalization is implemented by replacing the matched images with mismatched images, which can fully inherit the advantages
of personalization, making the attack to be efficient, data-saving, and tailored.

training the model from scratch, which may take hundreds if
not thousands of GPU days. Few Shot: The backdoor injec-
tion only needs several target images (even one image) of a
specific object instance. This allows the adversary to acquire
the target image at little cost.

Method
Motivation. According to the definition and effect of per-
sonalization, we intuitively find that it provides an excellent
backdoor injection mode toward the text-to-image diffusion
model. That is, if we put text prompt “ŷ” and mismatched
image set X̂ of a specific concept W ∗ into the training proce-
dure of personalization, the model may learn the mismatched
concept. For example, as shown in Fig. 2, if we put the mis-
matched image set (i.e., backpack images) with the prompt
“[V] dog” to fine-tune the model, it finally generates images
with W ∗ (in Fig. 2, W ∗ is the pink backpack) when receiving
a prediction prompt that contains “[V] dog”.

Obviously, personalization, as a kind of swift concept
acquisition method, if maliciously exploited by the adver-
sary, will become a shortcut for backdoor attack against
Text-to-Image diffusion models. The advantages of existing
personalization methods (i.e., few-shot (even one-shot) con-
cept acquisition, learning fast (even several-step fine-tuning),
tailored concept acquisition), in turn, promote the harmful-
ness of backdoors, which means that backdoor embedding
becomes embarrassingly easy and potentially becomes a sig-
nificant security vulnerability.

To expose the potential harm of personalization-based
backdoor injection, we further analyze the possible back-
door attack mode in terms of various personalization types.
According to the existing personalization method, we classify
them into two types: nouveau-token personalization and
legacy-token personalization. Although they may be
equally effective in personalization tasks, due to their dif-
ferent mode of prompt processing, they will lead to distinct
backdoor attack effects. Please note that both attack methods
only fine-tune one module of the T2I diffusion model, which

is much more efficient and lightweight than the traditional
backdoor attack method that fine-tunes the entire model.

Backdoor Attack Based on Nouveau-Token Person-
alization. In the training procedure of nouveau-token
personalization (e.g., Textual Inversion (Gal et al. 2023a)),
it adds a new token index into the pre-defined dictionary Ω
of text-encoder Γ to represent the identifier. For instance, if
we use the text identifier “[V]” to learn a specific concept
S∗ and the current token index is from T1 ∼ TK , then the
token index of identifier “[V]” is TK+1. Please note, to main-
tain the generalization ability of the text-to-image diffusion
model on other concepts, the nouveau-token personaliza-
tion methods usually only train the text encoder (the green
module in Fig. 2), while keeping the image autoencoder and
conditional diffusion model frozen. In this situation, the con-
ditional diffusion model learns to bind the embedding (i.e.,
vK+1) of TK+1 to specific concept S∗. In the inference stage,
once the prediction prompt contains the identifier “[V]”, the
corresponding embedding vK+1 will trigger the conditional
diffusion model to generate S∗-related images.

It is obvious that we can inject the backdoor by using the
identifier “[V]” with images of mismatched concept W ∗ to
train the text-to-image model, then the conditional diffusion
model is still triggered by embedding vK+1 but gives W ∗-
related images. We can find that the backdoor attack based
on nouveau-token personalization shows excellent in-
tegrity. That is, once the identifier (i.e., trigger) “[V]” is not
in the prediction prompt, the model Λ will never generate
W ∗-related image since there exists no embedding vK+1 in
the condition c provided to conditional diffusion model ϵθ.
Essentially, the nouveau-token backdoor attack finds the
latent code of W ∗ in the data distribution of the conditional
diffusion model and binds it to the identifier “[V]”. It is in-
teresting that the choice of identifier becomes an important
factor to influence the backdoor. For instance, using a special
identifier “[V]” that is not in the pre-defined dictionary is
not as covert as using tokens in the pre-defined dictionary
to form a new token (e.g., “beautiful dog”) to be the identi-
fier. To investigate the influence of identifiers, we conduct
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an empirical study in the experiment to find which kind of
identifier is suitable for backdoor attacks.

Backdoor Attack Based on Legacy-Token Person-
alization. In the training procedure of legacy-token
personalization (e.g., DreamBooth (Ruiz et al. 2022)), it uses
the existing tokens in the pre-defined dictionary Ω to repre-
sent the identifier. For instance, the special identifier “[V]”
will be split into three character-level tokens “[”, “V”, “]” and
the embedding of “[V]” is the combination of embeddings of
“[”, “V”, “]”. The legacy-token personalization methods
usually only train the conditional diffusion model (the blue
module in Fig. 2), while keeping the image autoencoder and
text encoder frozen. Note that in the training procedure of
legacy-token personalization, the embedding of “[V]”
is fixed and the conditional diffusion model is just fine-tuned
to bind embedding of “[V]” and matched specific concept S∗.
This operation is reasonable and benign in the personalization
task. For instance, if the text prompt is “[V] dog” (“[V]” is
the identifier) and the corresponding concept S∗ is a specific
dog, then the conditional diffusion model learns to match the
embedding of “[V]” to the characteristics of that dog. That is,
the embedding of “[V]” closely approximates the difference
between the latent code of coarse class concept “dog” and
the specific concept S∗ since S∗ is an instance of “dog”.

Although we can also inject the backdoor by using the iden-
tifier “[V]” with mismatched specific concept W ∗ to train the
text-to-image model, the attack shows different characteris-
tics compared with the nouveau-token backdoor attack.
In the training procedure of the legacy-token backdoor
attack, if the text prompt is “[V] dog” and the corresponding
mismatched concept S∗ is a specific car, then the embedding
of “[V] dog” has to be simultaneously close to the latent
code of the coarse class concept “dog” and the latent code
of the specific car. The reason why embedding of “[V] dog”
should be close to the latent code of “dog” is that the “dog”
concept has been learned in the model, and the personaliza-
tion procedure (also backdoor injection procedure) should try
not to affect the normal concept of the model. Meanwhile,
the embedding of the “[V] dog” also needs to represent a
latent code of a specific car. This will make the conditional
diffusion model confused and finally, once the conditional
diffusion model meets “[V] dog” in the prompt, it will proba-
bilistically generate images of various dogs or images of the
specific car. We can find that the legacy-token backdoor
attack is triggered by probability, resulting in a lower attack
success rate than nouveau-token backdoor attack. The
conclusion is verified by an empirical study that analyzes the
attack performance of legacy-token backdoor.

Experiments
Experimental Setup
Target model. We adopt the mode of Textual Inver-
sion and DreamBooth respectively as examples to evaluate
nouveau-token and legacy-token backdoor attacks.
To be specific, we follow the implementation of Textual Inver-
sion (Face 2022) and DreamBooth (Face 2023a) in Hugging
Face. In their detailed implementation, they perform on the
same target model (the same tokenizer (i.e., the CLIP (Rad-

[V]

(a) [V]

[V] can

(b) [V] can

can

(c) can
car

(d) car

[V] car

(e) [V] car

Figure 3: Backdoor attack based on Textual Inversion trained
with single-token identifier “[V]”. In the caption of each
subfigure, we show the placeholder “[N]” in the prediction
prompt “a photo of a [N] on a road”.

[V] dog

(a) [V] dog

dog

(b) dog

[V] can

(c) [V] can

[V] can

(d) can

Figure 4: Backdoor attack based on Textual Inversion trained
with multi-token identifier “[V] dog”. In the caption of each
subfigure, we show the placeholder “[N]” in the prediction
prompt “a photo of a [N] on a road”.

ford et al. 2021) tokenizer), the same text encoder (i.e., the
text model from CLIP), the same image autoencoder (i.e., a
Variational Autoencoder (VAE) model), and the same con-
ditional diffusion model (i.e., conditional 2D UNet model)).
Thus we can compare these two backdoor methods fairly.

Evaluation metric. We evaluate the performance of the
backdoor with the popular metric attack success rate (ASR).
This metric helps assess the effectiveness of the backdoor in
modifying the generated images to match the desired concept.
We use the pre-trained CLIP model (Openai 2021) to distin-
guish whether the concept in generated images is modified by
the backdoor. We also use Frechet Inception Distance (FID)
(Parmar, Zhang, and Zhu 2022) to evaluate the quality of the
generated images. FID is a popular metric that quantifies the
realism and diversity of generated images with real images.

Implementation details. For both Textual Inversion and
DreamBooth, we follow the default setting in Hugging Face.
Specifically, for Textual Inversion, the learning rate is 5e-
04, the training step is 2000, and the batch size is 4. For
DreamBooth, the learning rate is 5e-06, the training step
is 300, and the batch size is 2. In backdoor injection, we
use 4-6 images to represent a specific object. The images are
from the concept images open-sourced by DreamBooth (Face
2023b). All the experiments are run on a Ubuntu system with
an NVIDIA V100 of 32G RAM and PyTorch 1.10.

Empirical Study of Identifier
We consider two aspects: (1) when the identifier consists of a
single word-level token, and (2) when the identifier contains
multiple word-level tokens. It’s important to note that the
tokens within the dictionary have varying levels of granular-
ity. For instance, “car” is a word-level token, while “a” is
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car

(c) car

dog
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Figure 5: Backdoor attack based on Textual Inversion trained
with multi-token identifier “beautiful car”. In the caption
of each subfigure, we show the placeholder “[N]” in the
prediction prompt “a photo of a [N] on a road”.

a character-level token. Additionally, we consider rare to-
kens, such as “[V]”, as word-level tokens. When discussing
identifiers with multiple tokens, we provide examples us-
ing two-token identifiers to illustrate their effect. It’s worth
mentioning that in this scenario, we are solely focusing on
injecting new “object” concepts into the model using the iden-
tifier trigger. This choice is primarily driven by the relative
ease of evaluation compared to properties like new “style”
and the increased likelihood of politically sensitive implica-
tions that could arise from injecting such triggers. Through
evaluation of the legacy-token backdoor attack, we find
its effectiveness and integrity are limited.
Nouveau-Token Backdoor Attack Single-token iden-

tifier. Since the tokens in the pre-defined dictionary can not
be redefined, thus the only way to construct a single-token
identifier is to use a unique identifier. Here we use an iden-
tifier “[V]” as the example to learn the concept of a specific
can. As shown in Fig. 3, from Fig. 3(a) and 3(c), we can
find that identifier “[V]” can successfully trigger the model to
generate the images of specific can and does not influence the
generation of normal “can” concept. From Fig. 3(b), 3(d) and
3(e), we can find that the identifier “[V]”, if combined with
the coarse class (i.e., can) of the specific can, will remain
the effect. However, if combining identifier “[V]” with other
classes (e.g., car), the images are not of the specific can, but
the cars with a similar texture. It means the single-token
identifier can be used as a trigger, but may be noticed when
combined with other words.

Multi-token identifier. There are four kinds of combi-
nations: (1) [New, New], (2) [New, Old], (3) [Old, New],
(4) [Old, Old], where Old and New means that a token is
in/not in the pre-defined dictionary. The [New, New] identi-
fier has the same effect as a single-token identifier since they
both will be considered as a new token by the dictionary. The
[Old, New] identifier (e.g., “dog [V]”) is not suitable and
strange to represent an object, thus we do not discuss it. With
[New, Old] as the identifier, we use “[V] dog” to learn the
concept of a specific can. As shown in Fig. 4, from Fig. 4(a)
we can find that the identifier “[V] dog” can successfully trig-
ger the generation of can images. Meanwhile, from Fig. 4(b)
and 4(d), we can find that the concept of can and dog are
not modified. Furthermore, from Fig. 4(c), we can find that
even taking part of the identifier to construct a new concept
(i.e., “[V] can”), the model will not generate images of the
target can. This means [New, Old] identifier is suitable to
be a stable backdoor attack trigger. With [Old, Old] as the

Prompt
Target Attack Categories

Backpack Can Clock Berry
Bowl Dog

TI A photo of a [V] car 0.99 0.99 1.00 0.99 1.00
A photo of a [V] fridge 1.00 1.00 1.00 1.00 1.00

DB A photo of a [V] car 0.85 0.99 0.74 0.44 0.77
A photo of a [V] fridge 0.89 1.00 0.98 1.00 1.00

Table 1: Influence of concept images from different cate-
gories. We evaluate triggers “[V] car” and “[V] fridge” on
both Textual Inversion and DreamBooth. The concept images
are from five categories. Each cell shows the attack success
rate (↑) of the backdoor on the target attack category.

Model Prompt Number (dog images)
1 2 3 4 5 6

TI A photo of a [V] car 0.01 0.01 0.75 0.73 0.98 1.00
A photo of a [V] fridge 0.00 0.02 0.49 0.77 0.99 1.00

DB A photo of a [V] car 0.00 0.02 0.00 0.03 0.15 0.77
A photo of a [V] fridge 0.00 0.01 0.60 1.00 1.00 1.00

Table 2: Influence of different numbers of concept images.
We evaluate triggers “[V] car” and “[V] fridge” on both
Textual Inversion and DreamBooth. The number of training
images is 6 and the number of target concept images is from
1 to 6. Each cell shows the attack success rate (↑) of the
backdoor on the target attack category.

identifier, we use “beautiful dog” to learn the concept of a
specific car. As shown in Fig. 5, from Fig. 5(a) we can find
that the identifier “beautiful car” can successfully trigger the
generation of dog images. Meanwhile, from Fig. 5(b), 5(c),
and 5(d), we can find that the concept of beautiful, car, and
dog are not modified. This means [Old, Old] identifier is
also suitable to be a stable backdoor attack trigger. Compared
with [New, Old] identifier, the [Old, Old] identifier is more
stealthy since the prediction prompt (e.g., “a photo of a beau-
tiful car on a road”) does not contain any special character.
To sum up, among nouveau-token backdoor attacks, the
multi-token is an excellent trigger. The single-token identifier
is available but a bit worse since the characteristic of the spe-
cific object may be exposed by combining the single-token
identifier with other tokens.

Evaluation Effectiveness of Backdoor
In addition to the analysis of identifiers, we also conduct
experiments to evaluate the backdoor attack performance
caused by the category of concept images and the number
of concept images. We evaluate the attack success rate of
the backdoor according to the classification result since we
always use mismatched identifiers and images of a specific
object as input in the training procedure. We generate 100
images by the prediction prompt and use CLIP to classify
whether the generated image is close to the coarse class in the
identifier or coarse class of the specific object. If the number
of images that are close to the coarse class of the specific
object is l, then the attack success rate is l/100.

Different categories. To evaluate the influence of the
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Model Category
Backpack Bowl Can Clock Dog Car Fridge

Clean Model 0.98/10.58 1.00/7.221 0.96/16.20 1.00/5.975 1.00/8.856 1.00/17.95 0.94/6.723
[V] car->Backpack

Te
xt

ua
lI

nv
er

si
on

0.99/10.40 1.00/7.495 1.00/17.87 1.00/5.905 1.00/8.683 1.00/17.30 1.00/6.959
[V] car->Bowl 0.99/10.31 1.00/7.835 0.98/16.90 1.00/5.996 1.00/8.291 1.00/16.87 1.00/6.720
[V] car->Can 0.99/10.06 1.00/7.827 1.00/15.91 1.00/5.512 1.00/9.499 1.00/17.13 0.97/6.853
[V] car->Clock 0.99/10.37 1.00/7.701 1.00/16.58 1.00/5.791 1.00/8.449 1.00/16.85 1.00/6.963
[V] car->Dog 0.98/10.34 1.00/7.542 1.00/16.80 1.00/5.892 1.00/8.361 1.00/17.18 1.00/6.766
[V] fridge->Backpack 1.00/10.37 1.00/7.268 1.00/16.28 1.00/5.683 1.00/8.644 1.00/17.15 1.00/6.767
[V] fridge->Bowl 1.00/10.15 1.00/7.746 0.97/16.04 1.00/5.699 1.00/8.668 1.00/17.31 1.00/6.945
[V] fridge->Can 0.99/9.988 0.98/7.527 1.00/16.32 1.00/5.694 1.00/8.222 0.99/17.42 0.98/6.766
[V] fridge->Clock 1.00/10.32 1.00/7.487 1.00/17.29 1.00/6.137 1.00/8.628 1.00/17.19 1.00/6.887
[V] fridge->Dog 1.00/10.32 1.00/7.591 1.00/16.54 1.00/6.208 1.00/8.257 1.00/17.30 1.00/7.227
Average of Poisoned Models 0.99/10.26 0.99/7.601 0.99/16.65 1.00/5.851 1.00/8.570 0.99/17.17 0.99/6.885

Model Category
Backpack Bowl Can Clock Dog Car Fridge

Clean Model 0.98/10.58 1.00/7.221 0.96/16.20 1.00/5.975 1.00/8.856 1.00/17.95 0.94/6.723
[V] car->Backpack

D
re

am
B

oo
th

0.98/32.83 0.69/74.05 0.78/68.50 0.87/45.35 0.76/73.50 0.24/86.20 0.10/89.08
[V] car->Bowl 0.20/76.91 1.00/86.69 0.59/84.82 0.62/52.21 0.43/68.85 0.01/105.2 0.11/83.60
[V] car->Can 0.00/85.73 0.01/71.46 1.00/51.15 0.02/86.86 0.02/97.42 0.00/94.60 0.00/92.51
[V] car->Clock 0.01/81.88 0.19/65.82 0.61/66.43 0.97/66.43 0.19/87.35 0.12/93.20 0.00/102.3
[V] car->Dog 0.13/81.20 0.11/85.06 0.15/82.85 0.34/66.34 1.00/42.62 0.15/83.28 0.40/81.96
[V] fridge->Backpack 1.00/32.42 0.43/75.95 0.26/84.78 0.56/53.87 0.52/64.95 0.63/63.12 0.01/96.64
[V] fridge->Bowl 0.43/62.49 1.00/76.26 0.27/82.32 0.85/34.88 0.82/29.49 0.58/57.39 0.02/82.48
[V] fridge->Can 0.00/91.31 0.00/81.11 1.00/64.92 0.04/99.78 0.17/92.52 0.18/82.49 0.00/103.1
[V] fridge->Clock 0.01/81.29 0.35/61.57 0.74/67.33 1.00/59.29 0.55/84.63 0.26/90.54 0.00/104.4
[V] fridge->Dog 0.00/98.00 0.00/102.5 0.00/100.4 0.05/92.83 1.00/41.95 0.01/93.74 0.00/113.7
Average of Poisoned Models 0.27/72.40 0.37/78.04 0.54/75.35 0.53/65.78 0.54/68.32 0.21/84.97 0.06/94.97

Table 3: Evaluation on normal concepts of model poisoned by nouveau-token and legacy-token backdoor respectively.
We evaluate the performance of the clean and poisoned models in different categories. In each cell, the left value is classification
accuracy (↑) and the right value is FID (↓). Compared with the clean model, poisoned models attacked by nouveau-token
backdoor attacks achieve almost the same performance on the normal concept, which shows the integrity of the method.

coarse class of the specific object, we use 5 different coarse
classes (e.g., backpack, can, clock, dog) and two identifiers
(“[V] car” and “[V] fridge”) to inject backdoor into the model
respectively. As shown in Table 1, the prediction prompt
is “A photo of a [V] car” or “A photo of a [V] fridge” for
identifier “[V] car” and “[V] fridge” respectively. We can find
that by Textual Inversion (TI) mode, the ASRs of different
categories are always high, showing the excellent backdoor
performance of nouveau-token attack. In contrast, the
backdoor attack which uses DreamBooth (DB) mode shows
relatively low ASRs.

Different numbers. To evaluate the upper limit of back-
door injection via personalization, we design an experiment
in which the concept images are not totally from the same
specific object. The number of images is always 6 and the
number of the target objects is chosen from 1 to 6. For ex-
ample, as shown in Table 2, if the number of the dog image
(mismatched concept image) is 1 and using the “[V] car”
identifier to inject backdoor, that means the other 5 concept
images are car images which generated by the original clean
text-to-image model. From the table, we can observe that the
attack performance is strongly influenced by the number of
mismatched concept images, which means in order to inject
the backdoor easier, the more images of the same mismatched

concept are better. This is intuitive and reasonable.
Compare to Baseline. BadT2I (Zhai et al. 2023) is the

SOTA backdoor attack methods against text-to-image diffu-
sion model. It achieves a 69.4% attack success rate. Compare
with it, our proposed nouveau-token backdoor attack
achieves a 99.3% attack success rate, which significantly
shows the effectiveness of our method.

Evaluation Integrity of Backdoor
For the poisoned T2I model, it is significant to see whether
the backdoor influence the image generation of normal con-
cepts, which can help to see whether the backdoor destroys
the integrity of the T2I model. Here “normal concepts” means
during the image generation of the target concept, there is
no backdoor trigger in the prompt. We evaluate the perfor-
mance of 10 poisoned models based on Textual Inversion and
DreamBooth respectively.

As shown in Table 3, the top part of the table is the
evaluation on nouveau-token backdoor (based on Tex-
tual Inversion) and the bottom part is the evaluation on
legacy-token backdoor (based on DreamBooth). They
share the same design and here we take the top part as an
example to introduce the table. In the first column, there is
one clean T2I model and 10 poisoned models injected by
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Textual Inversion-based backdoor which is combined by two
triggers (“[V] car”, “[V] fridge”]) and five mismatch cate-
gories (Backpack, Bowl, Can, Clock, Dog). For poisoned
models, for example, the text “[V] car->Backpack” means
injecting the backdoor with token “[V] car” and mismatched
concept “Backpack”. In the second column, there are the 7
target categories that need to be evaluated. Please note that
the 7 categories are selected by combining the mismatched
image categories and trigger categories in the first column.
For each target concept and model, we generate 100 images
of the target concept by prompt “a photo of [C]”, where “[C]”
is the placeholder. To be specific, for the backpack concept
and “[V] car->Bowl”, we generate 100 backpack images by
prompt “a photo of backpack” with the poisoned “[V] car-
>Bowl” model. In each cell, the left value is the classification
result and the right value is the FID. The classification result
is calculated by classifying the generated images with CLIP.
For FID, in order to compare the distribution similarity of
images generated by the poisoned model and the clean model,
we set the same reference image set M generated by the clean
model with a fixed random seed. The FID values in the clean
model row (i.e., second row) are calculated by evaluating M
and a newly generated image set by the clean model with
another random seed. The FID values in the poisoned model
rows (i.e., 3rd-12th rows) are calculated by evaluating M and
the image set generated by the poisoned model. In the 13th
row of the table, we calculate the average metric results of
the 10 poisoned models (the models in the 3rd-12th rows).

By comparing the results of the clean model (second row
in Table 3) and the average of poisoned models (13th row
in Table 3), we can find that in the top part of Table 3, the
images generated by poisoned models achieve similar high
classification accuracy as that generated by the clean model.
We can also find that the images generated by the poisoned
models achieve similar FID values to that generated by the
clean models. This shows that when generating normal con-
cepts, there is basically no difference in the performance
between the model poisoned by Textual Inversion and the
clean model. In the bottom part of Table 3, we can find that
the classification accuracy is low in most of the poisoned
models, which means the concept of images generated by the
poisoned models is not consistent with the prompt. Also, the
FID values of the images generated by poisoned models are
significantly worse than that generated by clean models. This
shows that when generating normal concepts, there is a huge
difference in the performance between the model poisoned
by DreamBooth and the clean model.

To sum up, nouveau-token backdoor attack shows
excellent integrity while legacy-token backdoor attack
shows bad integrity.

Discussion
Given the substantial disparity in training costs between large
and small models, embedding a backdoor within a large
model (T2I diffusion model in this paper) through training or
full fine-tuning becomes an arduous and time-consuming en-
deavor. To address this, we draw inspiration from emerging
personalization methods, exploring the feasibility of utiliz-
ing these techniques for efficient, cost-effective, and tailored

backdoor implantation. Upon thorough empirical study, we
endorse the adoption of the nouveau-token backdoor at-
tack as the superior choice for its outstanding effectiveness,
stealthiness, and integrity.

It’s worth noting that our work represents a preliminary
undertaking aimed at establishing the significance of a novel
research avenue in backdoor injection for T2I diffusion mod-
els. As such, our approach adheres to the principle of "less
is more." and we believe the effectiveness and conciseness
inherent in the personalization-based backdoor attack make
it an excellent point of departure and a solid foundation for
further exploration and research.

Mitigation. The backdoor attack towards the text-to-
image diffusion model may bring huge harm to society, thus
we also analyze the possible mitigation methods to defend
against such backdoor attacks (Yang et al. 2023). Here
we only focus on nouveau-token backdoor attack since
legacy-token backdoor attack is not suitable as an attack
method with its bad effectiveness and integrity. Please note
that we only list the intuitive defending ideas since complex
defense (Zhang et al. 2023b) needs further research. In the
black box setting, i.e., the victims can not access the model,
it is really difficult to defend against the attack since victims
have no clue about the trigger and it is not realistic to go
through all the tokens in the world. In the white box setting,
i.e., the victims can access the model, an intuitive idea is
to check the dictionary because the trigger is always in the
dictionary. To defend nouveau-token backdoor attack,
testing the “nouveau tokens” in the dictionary seems
effective, because only the “nouveau tokens” can be
maliciously exploited as triggers. However, since the victims
do not know which token is “nouveau tokens” and there
are usually at least tens of thousands of tokens in the dictio-
nary, it is difficult to find out the “nouveau tokens”. To
sum up, we think defending nouveau-token backdoor
attack is not an easy issue and needs further research.

Limitation. Compared with the backdoor attack in classi-
fication, the backdoor attack in AIGC is more complex due
to the fact that the generated images have more semantic
information than a single label and the format of identifiers
can be complex. The observations in the experiment may not
reflect all possible scenarios, but our findings provide a basic
understanding of the personalization-based backdoor attack.

Conclusion

In this paper, we find that the newly proposed personal-
ization methods may become a potential shortcut for swift
backdoor attacks on T2I models. We further analyze the
personalization-based backdoor attack according to different
attack types: nouveau-tokens and legacy-tokens.
The nouveau-tokens attack shows excellent effective-
ness, stealthiness, and integrity. In future work, following the
detection works (Huang et al. 2023a, 2020, 2022; Hou et al.
2023; Wang et al. 2020) in the image generation domain, we
aim to explore effective backdoor defense methods on the
T2I model to make it more trustworthy (Li et al. 2023a,b).
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Ethical Impact
Although our work focuses on attacks, our goal is to reveal
the vulnerabilities of models and, at the same time, raise
awareness and call for more research to be devoted to back-
door defense and the robustness of the T2I model.
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