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Abstract

Continuous machine learning pipelines are common in in-
dustrial settings where models are periodically trained on
data streams. Unfortunately, concept drifts may occur in data
streams where the joint distribution of the data X and label y,
P (X, y), changes over time and possibly degrade model ac-
curacy. Existing concept drift adaptation approaches mostly
focus on updating the model to the new data possibly us-
ing ensemble techniques of previous models and tend to dis-
card the drifted historical data. However, we contend that ex-
plicitly utilizing the drifted data together leads to much bet-
ter model accuracy and propose Quilt, a data-centric frame-
work for identifying and selecting data segments that maxi-
mize model accuracy. To address the potential downside of
efficiency, Quilt extends existing data subset selection tech-
niques, which can be used to reduce the training data without
compromising model accuracy. These techniques cannot be
used as is because they only assume virtual drifts where the
posterior probabilities P (y|X) are assumed not to change.
In contrast, a key challenge in our setup is to also discard
undesirable data segments with concept drifts. Quilt thus dis-
cards drifted data segments and selects data segment subsets
holistically for accurate and efficient model training. The two
operations use gradient-based scores, which have little com-
putation overhead. In our experiments, we show that Quilt
outperforms state-of-the-art drift adaptation and data selec-
tion baselines on synthetic and real datasets.

Introduction
Robust AI is becoming important especially in continual
learning, which is common in industrial settings where mod-
els need to be periodically trained on data streams. The ap-
plications include manufacturing, meteorology, finance, and
more. Here we assume that concept drifts can occur where
the joint distribution of the data X and label y, P (X, y) may
change over time, leading to decision boundary shifts and
model accuracy degradation.

A naive approach of concept drift adaptation is to discard
all the historical data, but we would like to retain previous
data that is still useful for training. There are many drift
adaptation techniques for concept drifts, but most of them
take a model-centric approach where they assume that any
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drifted data is either discarded or replaced with trained mod-
els and focus on updating the model or taking an ensemble
of previous models to be accurate on the new data. However,
throwing away old data is often unacceptable due to heavy
investments in data labeling. Even if the knowledge of the
data is preserved in the form of models, there are limitations
in how much knowledge they retain for making accurate pre-
dictions on the new data.

Instead, we contend that taking a data-centric approach of
selecting data segments to train a model can be a more fun-
damental solution. We assume that any drift detection tech-
nique can be used to identify drift points in the data and
thus divide the data into data segments using these points.
We then formulate the problem of efficiently selecting which
data segments result in the best model accuracy when com-
bined with the current (i.e., newest) data segment.

A key challenge for data-centric approaches is efficiency,
and we utilize a recent line of data subset selection tech-
niques (Killamsetty et al. 2021b,a) where the goal is to se-
lect a minimal subset of the training data using a validation
set for training efficiency while obtaining a similar model
accuracy as when training on the entire data. However, these
techniques assume virtual drifts where the posterior distribu-
tion P (y|X) (i.e., the decision boundary) does not change.
The assumption makes sense in this problem because any
data can be selected to possibly improve model accuracy,
and it is a matter of which data is more useful. In compari-
son, a concept drift setup assumes that the decision boundary
may change, which means that some data may negatively af-
fect model accuracy. As a result, we need to solve the more
general problem of performing data segment subset selec-
tion while discarding data segments with concept drifts.

We then propose a robust data segment selection frame-
work against concept drifts called Quilt for the purpose of
improving model accuracy on recent data. Quilt iteratively
performs concept drift detection using conventional detec-
tion methods and also selects data segments for training the
model if a drift occurs. When selecting data segments, Quilt
discards data segments with concept drifts using a disparity
score and also selects a minimal subset of segments without
concept drifts such that the model performance is not sacri-
ficed using a gain score. Both scores can be computed using
gradient values on the training and validation sets with little
overhead in computation.
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In our experiments, Quilt performs better overall than
state-of-the-art drift adaptation baselines on synthetic and
real datasets. The benefits are mainly from effectively uti-
lizing previous data segments. In addition, Quilt outper-
forms existing data-centric concept drift adaptation tech-
niques (Ramı́rez-Gallego et al. 2017; Dong et al. 2022; Fan
2004) because they do not explicitly evaluate models on se-
lected data segments as Quilt does.

Summary of Contributions: (1) We propose Quilt, a
robust data segment selection framework against concept
drifts. (2) We design an efficient data subset selection algo-
rithm that holistically selects core data segments while dis-
carding those with concept drifts. (3) We perform extensive
experiments on synthetic and real benchmarks and show that
Quilt achieves state-of-the-art accuracy and is efficient.

Preliminaries
Concept Drift A concept drift occurs when the statistical
properties of a target domain changes arbitrarily (Lu et al.
2019). Suppose we have the time period [0, t] and a se-
quence of samples S0,t = {e0, . . . , et} where each sam-
ple ei consists of features Xi and a label yi. If the distri-
bution of S0,t is represented as P0,t(X, y), a concept drift
at timestamp t + 1 is formally defined as P0,t(X, y) ̸=
Pt+1,∞(X, y). Here, we consider S0,t as a previous segment
and arriving samples from time t + 1 as a current segment
until the next drift occurs. Note that we may need to look at
samples beyond t+ 1 to actually detect the drift.

The joint distribution can be decomposed into a prior dis-
tribution and posterior distribution as follows: Pt(X, y) =
Pt(X) ·Pt(y|X). While many works relevant to distribution
drifts assume that the posterior distribution stays the same
(referred to as a virtual drift), we assume more realistic drifts
where the posterior distribution may change (referred to as
an actual or concept drift).

Data Segments Quilt assumes that the input data stream
consists of data segments D = {d1, d2, . . . , dN} where each
segment represents a concept. To identify a data segment,
any concept drift detection technique (Lu et al. 2019; Webb
et al. 2016; Krawczyk et al. 2017; Gama et al. 2014) can be
used. If two concept drifts are detected at t1 and t2, we as-
sume the data within the time interval [t1, t2] has the same
concept and forms a data segment. While some of the pre-
vious data segments may benefit the model accuracy on the
newest concept, others may even have a negative impact.

Data Subset Selection The goal of data subset selec-
tion is efficient learning by taking a minimal subset of
the training data while still obtaining similar model ac-
curacy. A common approach is to perform coreset selec-
tion, which selects the weighted subsets of data that esti-
mate certain properties of the full data, such as the loss
or gradient. More recently, data subset selection frame-
works like GLISTER (Killamsetty et al. 2021b) and GRAD-
MATCH (Killamsetty et al. 2021a) focus on both efficiency
and robustness using a clean held-out validation set. How-
ever, most of these works assume that the posterior distribu-
tion P (y|X) (i.e., the decision boundary) does not change,
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Figure 1: The workflow of Quilt.

which is not true for concept drifts. While Quilt extends
these techniques, it solves the more general problem of han-
dling concept drifts.

Problem Definition
Given an input stream of data segments D =
{d1, d2, . . . , dN}, our goal is to make accurate predic-
tions on the current (i.e., newest) data segment dN . As
with other existing concept drift works, we assume a multi
classification setup. We assume the test set dT is a subset
of dN . For the training and validation sets, a simple setup
is to use the previous drifted data only. However, if the
previous drifted data is significantly different than dN , then
Quilt will not be effective in selecting data segments that
are most suitable for the current data segment. Hence, we
take two portions of dN excluding the test set dT and add
one (dTN ⊆ dN − dT ) to the training set, while using the
other (dVN = dN − dT − dTN ) as the validation set. To ensure
that the current data segment is large enough for such
constructions, we train a model only after at least a certain
number of samples (say 100) have been collected since the
last concept drift. We then select a subset of the previous
data segments {d1, d2, . . . , dN−1} that minimizes a trained
model’s loss on dVN when added to the original training set
dTN . Denoting L(θ, S) as the loss on a set S using model
parameters θ, our problem can be defined as follows:

argmin
S⊆{d1,d2,...,dN−1}

L(argmin
θ

L(θ, dTN ∪ S), dVN )

Quilt Overview
We describe the overall process of Quilt in Figure 1 (the full
algorithm is in our technical report (2023)). For each sam-
ple from the input data stream, the concept drift detection
component checks if there is a concept drift. There are many
existing drift detection methods that use the change of data
distribution or model performance, and one can plugin any
one of them. If there is a drift, a new data segment is cre-
ated from the drift point and becomes the current data seg-
ment. The data segment selection component then selects
segments used to update the model (explained in the next
section). If there is no drift, the sample is added to the cur-
rent data segment.
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Data Segment Selection
When selecting data segments in the presence of concept
drifts, Quilt performs two key operations in a holistic frame-
work: (1) discard data segments that represent drifted con-
cepts compared to the current data segment and (2) select
a core subset of data segments that have not drifted for ef-
ficient model training without compromising accuracy. The
two operations utilize disparity and gain scores, which are
based on gradient values on the training and validation sets
and thus have little computation overhead. An additional
benefit of using such gradient-based scores is that they are
agnostic to the data characteristics. In comparison, statis-
tical distance functions like total variation and Kullback-
Leibler divergence are known to have limitations on mul-
tivariate data with numeric features and do not scale well to
large datasets with high dimensions (Goldenberg and Webb
2019). In the next sections, we explain the gradient compu-
tation and elaborate on each score.

Gradient Computation
When computing gradients, we assume neural networks that
consist of front layers, which transform the input data to sig-
nificant embedding features, and a last layer that makes the
logit outputs of each class. Let X ′

i ∈ Rd′
be the embedding

feature of the ith input data Xi with a hidden layer dimen-
sion of d′, and zi ∈ Rc be the logit outputs computed by
zi = w · X ′

i + b using the last layer weights w ∈ Rd′×c

and bias b ∈ Rc. To convert a logit zi into a probability
vector ŷi, we use a softmax function: ŷi = ezi/

∑c
j=1 e

zij .
We can also rewrite the model output ŷi as a function of
the model parameters θ and input data Xi as ŷi = fθ(Xi).
With the model output ŷi and truth label yi, we compute
cross-entropy loss between them as Li = L(yi, ŷi) =
−
∑c

j=1 yij · log(ŷij). We use last layer gradient approxi-
mation g = (∇bL,∇wL) where gradients of the front lay-
ers are not used (Katharopoulos and Fleuret 2018; Ash et al.
2020; Mirzasoleiman, Bilmes, and Leskovec 2020). Using
the chain rule, we can compute the gradient of the ith sample
as follows: gi = (∇bLi,∇wLi) = (ŷi − yi, (ŷi − yi) ·X ′

i).

Disparity Score
We propose a disparity score (abbreviated as D) that mea-
sures the dissimilarity between two data distributions and
can be used to discard data segments that have concept drifts.
Assuming that the data distribution P (X) does not change,
a concept drift causes the posterior distribution P (y|X) to
change. Hence, a concept drift is similar to how much y
changes for the same data. We can capture this notion of
disparity in the measure E[∥yt− yv∥], which is the expected
amount of label change in a sample where yt and yv are truth
labels from a training subset and a validation set, respec-
tively. This notion is similar to concept drift severity (Minku,
White, and Yao 2010). Directly computing this measure can
be expensive where we need to find similar samples in the
training and validation sets and measure their label differ-
ences. Instead, we define a gradient-based score that is a
proxy of this measure and can be computed very efficiently.

Definition 1. The disparity score of a training subset T w.r.t
a validation set V is defined as D(T, V ) = ∥ 1

|T |
∑|T |

t=1 gt −
1

|V |
∑|V |

v=1 gv∥ = ∥E[gt]− E[gv]∥.

The D score thus measures the L2-norm distance between
two gradient vectors. Intuitively, if a model is fixed, two data
segments with similar data distributions should have similar
gradients (i.e., low disparity) and vice versa.

We provide a theoretical justification on why the D score
captures concept drift. For analysis purposes, we make the
simplifying assumption that the prior distributions of the
training and validation sets are the same, although their la-
bels are different. The proof is in our technical report (2023).
Theorem 1. If training subset T and validation set V
have the same prior distribution PT (X) = PV (X), but
different posterior distributions PT (y|X) ̸= PV (y|X),
then D(T, V ) ≤ E[∥yt − yv∥]

√
1 + σ2 where σ =

max(∥E[X ′]∥).
In practice, the prior distribution may change, but we

show in our experiments that the D score is still effective
for measuring drifts.

Gain Score
Our data subset selection is based on theoretical foundations
of the recent data subset selection literature (Killamsetty
et al. 2021b,a). Suppose there exists historical data for train-
ing and a validation set. It is known that selecting a data
subset whose inner product of the average gradients on the
subset and the validation set (called the gain) is positive re-
sults in a reduction of the model’s validation loss at each
epoch (Killamsetty et al. 2021b). Intuitively, a gradient vec-
tor represents the magnitude and direction of the model pa-
rameter updates when performing gradient descent, and it is
desirable for the gradients of the training and validation sets
to align. Computing the gradient values can be extended to
data segments, and we define the gain score for data seg-
ments (abbreviated as G) as follows:
Definition 2. The gain score of a training subset T w.r.t. a
validation set V is G(T, V ) = 1

|T |
∑|T |

t=1 gt ·
1

|V |
∑|V |

v=1 gv =

E[gt] · E[gv].
Compared to the disparity score, the gain score is less sen-

sitive to concept drifts as it is only affected by the magni-
tude of the two gradients and angle between them, and not
the label differences. Unlike existing data subset selection
works where the subset size is set in advance (e.g., top-10%
samples), we opt to select all the data segments that have
a positive gain score. The reason is that the data segments
may contain some levels of concept drift even after discard-
ing the ones with obvious drifts using disparity scores, so we
utilize the sign of the gain score to select the useful data seg-
ments that can reduce model loss. This issue does not occur
if there are no concept drifts, as no data subset is assumed to
decrease model performance.

Algorithm
Algorithm 1 shows the data segment selection algorithm of
Quilt. We first initialize the model parameters (Step 1). For
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Algorithm 1: Data Segment Selection algorithm
Input: Previous data segments Dprev = {d1, . . . , dN−1},
training set dTN , validation set dVN , loss function L, learning
rate η, maximum epochs T , disparity threshold Td

1: Initialize model parameters θ0
2: for epoch t in [1, . . . , T ] do
3: Initialize training subset S = ∅
4: gV = 1

|dV
N |

∑|dV
N |

j=1 gj

5: for segment d in Dprev do
6: gd = 1

|d|
∑|d|

k=1 gk
7: Gd = gd · gV
8: Dd = ∥gd − gV ∥
9: if Gd > 0 and Dd < Td then

10: S = S ∪ d
11: S = S ∪ dTN
12: Update θt = θt−1 − η 1

|S|
∑

e∈S ∇θLe

13: return final model parameters θT

every epoch, we initialize the training subset to an empty
set (Step 3). Next, we compute the average gradient on the
validation set (Step 4). We then select all previous segments
where the gain is positive, and the disparity is sufficiently
small (Steps 5–10). Lastly, we add the current training set
and finalize the subset for model training (Step 11). We then
update the parameters based on the losses and derived gradi-
ents of the selected segments (Step 12). After T epochs, we
return the final model parameters (Step 13).

Next, we analyze Algorithm 1’s complexity. We denote
N as the number of data segments and |S| as the average
number of selected data segments during T epochs. Let F
be the forward pass complexity of the last layer and B the
backward pass complexity of all layers. Given one validation
set, the complexity is O((N + 1)FT + |S|BT ), where the
first term is for computing the gradients of the data segments
and the validation set, and the second term is for updating the
model parameters with the selected segments.

Case Study: Two Concepts
In this section, we analyze the behavior of disparity and gain
scores with a simple setup where there are only two con-
cepts 0 and 1, and the samples with these concepts have la-
bels 0 and 1, respectively. Let us say the current data seg-
ment V has the concept 1, and there is one previous data
segment T with a concept of either 0 or 1. We assume that
PT (X) = PV (X) for simplicity. Since we use the same
model state to compute the gradients of T and V , the same
prior distribution also leads to the same expected model out-
put E[ŷt] = E[ŷv] = (s1, s2, . . . , sc).

Case 1 If T ’s concept is 1 (i.e., there is no concept drift),
we can show that D(T, V ) ≤ 0 and G(T, V ) ≥ s21 + (s2 −
1)2+· · ·+s2c (see technical report (2023) for the derivation).
We also generate synthetic data for this scenario, shown in
our technical report (2023). We monitor the D and G scores
while running Quilt and observe trends that are consistent
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Figure 2: Disparity (D) and gain (G) scores during model
training where Case 1 has no concept drift, and Case 2 does.
While G converges to zero as a converged model has nothing
to further gain regardless of T ’s concept, D does not as it
indicates drift severity.

with the derivations above: Figure 2a shows a simulation re-
sult where the D score is empirically close to zero (not ex-
actly zero due to randomness in data sampling), indicating
no concept drift; and Figure 2b shows a G score that is posi-
tive and keeps on decreasing as the model fits the concept.

Case 2 If T ’s concept is 0 (i.e., there is a concept drift),
we can show that D(T, V ) ≤

√
2(1 + σ2) and G(T, V ) ≥

s1(s1 − 1) + s2(s2 − 1) + · · ·+ s2c . The derivation is in our
technical report (2023). The simulation results in Figure 2a
show that the D score is high compared to non-drift case, in-
dicating a concept drift. In Figure 2b, the G score is negative
and gradually increasing towards zero.

Experiments
We implement Quilt using Python and PyTorch. We evaluate
models on separate test sets and repeat all experiments with
five different random seeds and write average performances
with standard deviations. We use accuracy for evaluation,
but also have F1 score results in our technical report (2023).
All experiments are run on NVidia Titan RTX GPUs.

Datasets We evaluate Quilt on four synthetic and five real
datasets. Table 1 summarizes the datasets with other ex-
perimental settings (see more details in our technical re-
port (2023)). There are four types of concept drifts depend-
ing on how the concept changes: sudden (S), gradual (G),
incremental (I), and reoccurring (R). That is, a new concept
can suddenly, gradually, or incrementally appear, or an old
concept can reoccur. The synthetic datasets are designed to
have all the different types of concept drifts (Lu et al. 2019).
For some real datasets, there is a mixture of types, which we
refer to as “Complex.”

Model Training We train a simple neural network clas-
sifier with cross-entropy loss and an Adam optimizer for
all the experiments. We use a periodic holdout evaluation
method where, if a concept drift occurs, we first wait for a
certain number of samples to arrive to train the model and
then perform evaluation. The holdout number depends on
the dataset, and we set it to be 10–20% of the size of the
average segment size of that dataset. For all the datasets, the
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Type Dataset Size #Sgmts #Ftrs #Cls Drift Type

Synthetic

SEA (Street and Kim 2001) 16K 8 3 2 S, R
Hyperplane (Hulten, Spencer, and Domingos 2001) 16K 8 10 2 G, I

Random RBF (Bifet et al. 2010) 16K 8 10 5 S, G, I
Sine (Gama et al. 2004) 16K 8 4 2 S, R

Real

Electricity (Harries 1999) 43.2K 10 6 2 Complex
Weather (Elwell and Polikar 2011) 18K 10 8 2 Complex

Spam (Katakis, Tsoumakas, and Vlahavas 2010) 9.3K 9 499 2 G
Usenet1 & 2 (Katakis, Tsoumakas, and Vlahavas 2008) 1.5K 5 99 2 S, R

Table 1: For each of the nine datasets (four synthetic and five real datasets), we show the total dataset size, the number of data
segments, the number of features, the number of classes, and the drift type.

holdout number ranges from 60 to 430. We then use half of
this data and historical data for the training set, another half
for the validation set, and the rest of the segment for the test
set. For a fair comparison with other baselines that do not
use validation sets, we make them use both our training and
validation sets for their training sets.

Baselines We compare Quilt with four types of baselines:
• Naı̈ve methods: Full Data uses all the data segments

without any selection and Current Segment only uses the
current segment for training.

• Model-centric methods: HAT (Bifet and Gavaldà 2009)
trains a Hoeffding Adaptive Tree classifier on each sam-
ple in an online fashion using the entire data; ARF (Gomes
et al. 2017) trains an Adaptive Random Forest classifier on
each sample using the entire data; Learn++.NSE (Elwell
and Polikar 2011) takes an ensemble of models trained
on previous data segments and adjusts their weights de-
pending on their losses on the current data segment; and
SEGA (Song et al. 2022) ensembles models trained from
equal-length segments of historical data that have the min-
imum kNN based distributional discrepancy with the cur-
rent data. We also note that HAT and ARF have their own
mechanisms for detecting concept drifts.

• Data-centric method: CVDTE (Fan 2004) trains a Cross-
Validation Decision Tree Ensemble classifier using indi-
vidual samples that do not have conflicting predictions be-
tween shifted decision boundaries due to concept drifts.

• Data Subset Selection methods: GLISTER (Killamsetty
et al. 2021b) and GRAD-MATCH (Killamsetty et al.
2021a) both train a neural network classifier based on data
subset selection methods, but with different criteria. GLIS-
TER ranks data subsets with gains and selects the top-k
subsets with a pre-defined budget. GRAD-MATCH simul-
taneously selects data subsets and adjusts their weights to
minimize the gradient error. These baselines are not de-
signed to handle concept drifts.

Parameters For the neural network classifier, we always
use one hidden layer with 256 nodes. We set the learning
rate to 1e-3 using cross-validation and the number of max-
imum epochs to 2,000 with early stopping. For each new
data segment, we set the disparity threshold using Bayesian
optimization with a search interval between (0, 2).

Accuracy and Runtime Results
For each dataset, we evaluate Quilt’s accuracy and runtime
results for each incoming data segment by setting it as the
current segment and then take an average of performances
on all the segments. We compare Quilt with the other base-
lines on six of the datasets as shown in Table 2. The results
for the other three datasets are similar and shown in our tech-
nical report (2023). Overall, Quilt outperforms all the base-
lines in terms of accuracy because it effectively utilizes the
drifted data. In comparison, Full Data is forced to use all the
drifted data, while Current Segment cannot utilize any his-
torical data. HAT performs worse than Quilt because it adap-
tively learns the recent data without using previous models
or data. The three ensemble methods ARF, Learn++.NSE,
and SEGA also perform worse. ARF can lose useful pre-
vious knowledge while replacing an obsolete tree for drift
adaptation. Although Learn++.NSE and SEGA save all or
a buffer’s worth of past models and uses the current data
segment to ensemble them, the models trained from pre-
vious data segments have limitations in fitting to the cur-
rent data segment with simple ensemble techniques. This re-
sult shows the advantage of taking a data-centric approach
that adaptively selects suitable data segments with explicit
model evaluations. CVDTE performs worse than Quilt be-
cause it simply collects samples that do not have conflict-
ing predictions, regardless of whether they actually bene-
fit model accuracy. For the data subset selection baselines,
GLISTER’s sample-based selection shows more robust re-
sults than GRAD-MATCH’s selection of randomly divided
batches, but the computation time is significantly greater.

Data Segment Selection Analysis
We next verify whether our data segment selection algorithm
actually finds core data segments and discards drifted data
segments. For each incoming data segment, we collect all
the data segments S that have been selected during the entire
training at least once as they all influence the final trained
model. In addition, we construct a gold standard solution G
by performing an exhaustive evaluation where we evaluate
all possible combinations of data segments and choose the
one that results in the highest accuracy on the validation set.
We then measure the precision and recall of S against G. Fi-
nally, we take the average of the precision and recall values
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Methods SEA Random RBF Sine Electricity Weather Spam

Acc. Time Acc. Time Acc. Time Acc. Time Acc. Time Acc. Time

Full Data .849±.005 3.36 .821±.007 9.43 .449±.032 2.25 .694±.010 7.42 .800±.005 4.33 .970±.003 1.17
Current Seg. .864±.004 0.20 .679±.010 0.56 .899±.004 0.94 .709±.009 0.52 .756±.007 0.26 .955±.003 0.16

HAT .825±.008 1.38 .514±.010 2.35 .293±.023 1.67 .691±.021 6.43 .729±.011 2.10 .888±.009 25.67
ARF .825±.008 23.49 .645±.029 44.64 .821±.050 21.40 .713±.011 57.36 .775±.008 30.51 .921±.012 44.83
Learn++.NSE .804±.005 6.65 .611±.009 5.68 .925±.004 5.73 .698±.004 17.26 .703±.007 7.86 .928±.006 3.81
SEGA .797±.000 4.37 .825±.000 4.47 .253±.000 4.35 .637±.000 10.26 .777±.000 4.11 .858±.000 6.67

CVDTE .806±.018 0.02 .614±.015 0.05 .857±.004 0.02 .689±.010 0.04 .731±.009 0.03 .917±.009 0.12

GLISTER .857±.008 25.89 .794±.014 63.73 .879±.013 14.93 .698±.014 77.46 .793±.010 40.79 .971±.005 14.52
GRAD-MATCH .853±.009 2.13 .790±.013 6.66 .547±.084 0.80 .686±.015 5.97 .795±.008 3.51 .968±.004 1.13

Quilt .888±.004 2.20 .833±.008 3.22 .936±.005 4.88 .728±.007 5.24 .796±.004 2.00 .974±.003 2.59

Table 2: Accuracy and runtime (sec) results on six datasets. We compare Quilt with all the four types of baselines.

Metrics SEA Hyperplane Random RBF Sine

Precision 0.80 0.75 0.78 0.98
Recall 0.98 1.00 0.96 1.00

Table 3: Comparison of Quilt’s selected data segments
against the Best Segments results on the synthetic datasets.

for all the segments. We refer to the exhaustive searching
method as Best Segments.

Table 3 shows the average precision and recall results on
the four synthetic datasets, each of which has 8 data seg-
ments. An average recall value of 0.96–1.00 suggests that
Quilt selects almost all of the useful data segments. The av-
erage precision is between 0.75–0.98 because Quilt selects
some more similar data segments as well. Interestingly, we
observe that these extra segments sometimes improve the
model accuracy on the test set as shown in Figure 3, which
can happen because the gold standards are selected using
the validation set results only. Here we compare Quilt with
the Full Data, Current Segment, and Best Segments. As a
result, Quilt shows competitive results with Best Segments
and sometimes outperforms it. We suspect that Quilt’s train-
ing benefits from the extra data segments during some of its
epochs, which improves the model generalization. Hence,
Quilt actually achieves most of the room for improvements
compared to optimal solutions.

Ablation Study
We perform an ablation study of Quilt to see how the two
gradient-based scores contribute to the overall performance.
Table 4 evaluates Quilt variants when not using one or both
scores for six datasets. The results for the other datasets are
similar and shown in our technical report (2023). We com-
pare the accuracy, runtime, the speedup compared to when
not using the scores, and the portion of data segments se-
lected (Usage). As a result, removing the disparity score
(D) leads to worse accuracy for datasets with severe drifts
as Quilt is not able to discard drifted segments. When re-
moving the gain score (G), the accuracy does not decrease
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Figure 3: Accumulative model evaluation results against in-
coming data segments on the four synthetic datasets.

significantly, which is expected, but the runtime worsens be-
cause the model training is performed on more data. Remov-
ing both scores leads to inaccurate and slow results. For ex-
ample, on the Random RBF dataset, Quilt is comparable
or more accurate than any variant while being 5.1x faster
by only using 39.4% of the data segments. While there are
some exceptions, Quilt largely provides these benefits for all
datasets. Thus, both scores are necessary to obtain both ac-
curacy and efficiency.

Scalability
We show the runtimes of Quilt against the number of data
segments on the Random RBF dataset in Figure 4 where
we expand the dataset to have 20 segments from 8. As in
the accumulative evaluation setting, we assume incoming
data segments and measure the runtime for each data seg-
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Datasets Methods Acc. Time (Speedup) Usage

SEA

W/o both .850±.005 4.49 (1.0×) 100.0%
W/o D .890±.004 2.57 (1.7×) 42.2%
W/o G .881±.007 3.06 (1.5×) 49.6%
Quilt .888±.004 2.20 (2.0×) 30.8%

Random
RBF

W/o both .822±.007 16.51 (1.0×) 100.0%
W/o D .828±.008 4.32 (3.8×) 45.3%
W/o G .829±.011 9.69 (1.7×) 79.7%
Quilt .833±.008 3.22 (5.1×) 39.4%

Sine

W/o both .444±.032 3.43 (1.0×) 100.0%
W/o D .890±.015 2.75 (1.2×) 36.5%
W/o G .941±.003 7.77 (0.4×) 23.2%
Quilt .936±.005 4.88 (0.7×) 21.1%

Electricity

W/o both .696±.009 10.71 (1.0×) 100.0%
W/o D .711±.013 6.57 (1.6×) 52.9%
W/o G .723±.009 6.68 (1.6×) 39.6%
Quilt .728±.007 5.24 (2.0×) 27.9%

Weather

W/o both .798±.006 7.67 (1.0×) 100.0%
W/o D .794±.004 2.19 (3.5×) 40.9%
W/o G .800±.006 6.85 (1.1×) 75.5%
Quilt .796±.004 2.00 (3.8×) 30.7%

Spam

W/o both .970±.003 4.51 (1.0×) 100.0%
W/o D .973±.004 2.31 (2.0×) 52.1%
W/o G .972±.002 4.02 (1.1×) 60.5%
Quilt .974±.003 2.59 (1.7×) 39.7%

Table 4: Accuracy, runtime (sec), speedup, and data segment
usage results of Quilt when not using one or both scores.

ment when setting it to the current data segment. As a result,
Quilt scales much better than most baselines because it is
able to select small core subsets of segments. Another obser-
vation is that adding a data segment may sometimes reduce
the overall runtime, which can happen if a new data segment
has a smaller core subset than that of the preceding segment.

Related Work
Drift Detection Drift detection (Lu et al. 2019; Webb et al.
2016; Krawczyk et al. 2017; Gama et al. 2014) techniques
have been proposed to quantify concept drifts by identify-
ing change points or change time intervals (Basseville and
Nikiforov 1993). Drift detection techniques can be largely
divided into supervised (e.g., DDM (Gama et al. 2004),
EDDM (Baena-Garcıa et al. 2006), and ADWIN (Bifet and
Gavaldà 2007)) and unsupervised (e.g., HDDDM (Ditzler
and Polikar 2011) and DAWIDD (Hinder et al. 2020)) de-
tection techniques depending on whether a trained model is
used. In comparison, Quilt is an orthogonal technique where
it takes any input of data segments that can be produced from
any of these techniques.

Concept Drift Adaptation Model-centric concept drift
adaptation techniques focus on efficiently updating the given
model on new data, and previous drifted data is discarded.
We categorize these methods as follows: simple re-training
of the model; using ensemble models (Gomes et al. 2017;
Elwell and Polikar 2011; Song et al. 2022); and adjusting ex-
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Figure 4: Scalability results of Quilt and baselines on the
expanded Random RBF dataset.

isting models (Bifet and Gavaldà 2009; Domingos and Hul-
ten 2000; Gama, Rocha, and Medas 2003; Hulten, Spencer,
and Domingos 2001) depending on the characteristics of the
concept drift. In comparison, Quilt does not discard previous
data and carefully utilizes it.

Data-centric approaches for concept drift adaptation have
been proposed as well. Data reduction techniques (Ramı́rez-
Gallego et al. 2017) clean the data by deleting redundant
or noisy samples and features. Drift understanding tech-
niques (Dong et al. 2022) have been proposed where the
newest data segment is used as a pattern to filter out ob-
solete data. The filtering is performed based on compar-
ing the cumulative distribution functions of data, and sam-
ples that are filtered out are never re-selected even if they
could be beneficial later. The most relevant technique to ours
is CVDTE (Fan 2004), a sample selection technique where
given previous and current models, the goal is to select the
samples that do not have conflicting predictions. However,
all these techniques have the fundamental limitation that
there is no way to see if the data preprocessing results actu-
ally improve the model accuracy. In comparison, Quilt takes
a more data-driven approach of explicitly evaluating models
on selected data segments, while minimizing the computa-
tion cost using gradient-based disparity and gain scores.

Conclusion
We proposed Quilt, a data segment selection framework
that is robust against concept drifts. Unlike traditional con-
cept drift adaptation frameworks, we take a data-centric ap-
proach by directly selecting segments of the training data in
a stream that most effectively improves the model accuracy.
We design an efficient data subset selection algorithm that
selects core data segments while discarding those with con-
cept drifts. The key approach is to use gradient-based dispar-
ity and gain scores, which can be used to identify drifts and
select useful segments, respectively, and have low compu-
tation overheads. Our experiments show how Quilt signif-
icantly outperforms both concept drift adaptation and data
selection baselines on synthetic and real datasets.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21255



Acknowledgments
This work was supported by SK Hynix AICC (K20.05),
by the Institute of Information & Communications Tech-
nology Planning & Evaluation(IITP) grant funded by
the Korea government(MSIT) (No. 2022-0-00157, Ro-
bust, Fair, Extensible Data-Centric Continual Learning),
and by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT) (No. NRF-
2022R1A2C2004382). Steven E. Whang is the correspond-
ing author.

References
Ash, J. T.; Zhang, C.; Krishnamurthy, A.; Langford, J.; and
Agarwal, A. 2020. Deep Batch Active Learning by Diverse,
Uncertain Gradient Lower Bounds. In ICLR.
Baena-Garcıa, M.; del Campo-Ávila, J.; Fidalgo, R.; Bifet,
A.; Gavalda, R.; and Morales-Bueno, R. 2006. Early drift
detection method. In Fourth international workshop on
knowledge discovery from data streams, volume 6, 77–86.
Citeseer.
Basseville, M.; and Nikiforov, I. V. 1993. Detection
of Abrupt Changes: Theory and Application. ISBN
0131267809.
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