
Enumerating Safe Regions in Deep Neural Networks
with Provable Probabilistic Guarantees

Luca Marzari1, Davide Corsi1, Enrico Marchesini2, Alessandro Farinelli1, Ferdinando Cicalese1

1Department of Computer Science, University of Verona, Italy
2Laboratory for Information & Decision Systems, Massachusetts Institute of Technology, USA

{luca.marzari, davide.corsi, alessandro.farinelli, ferdinando.cicalese}@univr.it
emarche@mit.edu

Abstract

Identifying safe areas is a key point to guarantee trust for
systems that are based on Deep Neural Networks (DNNs).
To this end, we introduce the AllDNN-Verification problem:
given a safety property and a DNN, enumerate the set of
all the regions of the property input domain which are safe,
i.e., where the property does hold. Due to the #P-hardness of
the problem, we propose an efficient approximation method
called ϵ-ProVe. Our approach exploits a controllable under-
estimation of the output reachable sets obtained via statistical
prediction of tolerance limits, and can provide a tight —with
provable probabilistic guarantees— lower estimate of the safe
areas. Our empirical evaluation on different standard bench-
marks shows the scalability and effectiveness of our method,
offering valuable insights for this new type of verification of
DNNs.

Introduction
Deep Neural Networks (DNNs) have emerged as a ground-
breaking technology revolutionizing various fields ranging
from autonomous navigation (Tai, Paolo, and Liu 2017;
Marzari et al. 2022) to image classification (O’Shea and
Nash 2015) and robotics for medical applications (Corsi
et al. 2023). However, while DNNs can perform remarkably
well in different scenarios, their reliance on massive data
for training can lead to unexpected behaviors and vulnera-
bilities in real-world applications. In particular, DNNs are
often considered ”black-box” systems, meaning their inter-
nal representation is not fully transparent. A crucial DNNs
weakness is the vulnerability to adversarial attacks (Szegedy
et al. 2013; Amir et al. 2023), wherein small, imperceptible
modifications to input data can lead to wrong and potentially
catastrophic decisions when deployed.

To this end, Formal Verification (FV) of DNNs (Katz et al.
2017; Liu et al. 2021) holds great promise to provide as-
surances on the safety aspect of these functions before the
actual deployment in real scenarios. In detail, the decision
version of the DNN-Verification problem takes as input a
trained DNN N and a safety property, typically expressed
as an input-output relationship for N , and aims at deter-
mining whether there exists at least an input configuration

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which results in a violation of the safety property. It is cru-
cial to point out that due to the fact that the DNN’s input is
typically defined in a continuous domain any empirical eval-
uation of a safety property cannot rely on testing all the (in-
finitely many) possible input configurations. In contrast, FV
can provide provable assurances on the DNNs’ safety aspect.
However, despite the considerable advancements made by
DNN-verifiers over the years (Katz et al. 2019; Wang et al.
2021; Liu et al. 2021), the binary result (safe or unsafe) pro-
vided by these tools is generally not sufficient to gain a com-
prehensive understanding of these functions. For instance,
when comparing two neural networks and employing an FV
tool that yields an unsafe answer for both (i.e., indicating the
existence of at least one violation point), we cannot distin-
guish whether one model exhibits only a small area of vio-
lation around the identified counterexample, while the other
may have multiple and widespread violation areas.

To overcome this limitation, a quantitative variant of FV,
asking for the number of violation points, has been proposed
and analyzed, first in (Baluta et al. 2019) for the restricted
class of Binarized Neural Networks (BNNs) and more re-
cently in (Marzari et al. 2023) for general DNNs. Following
(Marzari et al. 2023) we will henceforth refer to such count-
ing problem as #DNN-Verification. Due to the #P-hardness
of the #DNN-Verification, both studies in (Baluta et al. 2019;
Marzari et al. 2023), focus on efficient approximate solu-
tions, which allow the resolution of large-scale real-world
problems while providing provable (probabilistic) guaran-
tees regarding the computed count.

Solutions to the #DNN-Verification problem allow to es-
timate the probability that a DNN violates a given property
but they do not provide information on the actual input con-
figurations that are safe or violations for the property of in-
terest.

On the other hand, knowledge of the distribution of safe
and unsafe areas in the input space is a key element to devise
approaches that can enhance the safety of DNNs, e.g., by
patching unsafe areas through re-training.

To this aim, we introduce the AllDNN-Verification prob-
lem , which corresponds to computing the set of all the areas
that do not result in a violation for a given DNN and a safety
property (i.e., enumerating all the safe areas of a property’s
input domain). The AllDNN-Verification is at least as hard as
#DNN-Verification, i.e., it is easily shown to be #P-Hard.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21387

Hence, we propose ϵ-ProVe, an approximation ap-
proach that provides provable (probabilistic) guarantees on
the returned areas. ϵ-ProVe is built upon interval analysis
of the DNN output reachable set and the iterative refinement
approach (Wang et al. 2018b), enabling efficient and reliable
enumeration of safe areas.1

Notice that state-of-the-art FV methods typically propose
an over-approximated output reachable set, thereby ensuring
the soundness of the result. Nonetheless, the relaxation of
the nonlinear activation functions employed to compute the
over-approximate reachable set has non-negligible compu-
tational demands. In contrast, ϵ-ProVe provides a scalable
solution based on an underestimation of the output reach-
able set that exploits the Statistical Prediction of Tolerance
Limits (Wilks 1942; Porter 2019). In particular, we demon-
strate how, with a confidence α, our underestimation of the
reachable set computed with n random input configurations
sampled from the initial property’s domain A is a correct
output reachable set for at least a fraction R of an indefi-
nitely large further sample of points. Broadly speaking, this
result tells us that if all the input configurations obtained in
a random sample produce an output reachable set that does
not violate the safety property (i.e., a safe output reachable
set) then, with probability α, at least a subset of A of size
R · |A| is safe (i.e., R is a lower bound on the safe rate in A
with confidence α). In summary, the main contributions of
this paper are the following:
• We initiate the study of the AllDNN-verification problem,

the enumeration version of the DNN-Verification
• Due to the #P-hardness of the problem, we propose
ϵ-ProVe a novel approximation method to obtain a
provable (probabilistic) lower bound of the safe zones
within a given property’s domain.

• We evaluate our approach on FV standard benchmarks,
showing that ϵ-ProVe is scalable and effective for real-
world scenarios.

Preliminaries
In this section, we discuss existing FV approaches and re-
lated key concepts on which our approach is based. In con-
trast to the standard robustness and adversarial attack liter-
ature (Carlini and Wagner 2017; Madry et al. 2017; Zhang
et al. 2022b), FV of DNNs seeks formal guarantees on the
safety aspect of the neural network given a specific input
domain of interest. Broadly speaking, if a DNN-Verification
tool states that the region is provably verified, this implies
that there are no adversarial examples – violation points – in
that region. We recall in the next section the formal defini-
tion of the satisfiability problem for DNN-Verification (Katz
et al. 2017).

DNN-Verification
In the DNN-Verification, we have as input a tuple T =
⟨N ,P,Q⟩, where N is a DNN, P is precondition on the

1We point out that the AllDNN-Verification can also be defined
to compute the set of unsafe regions. For better readability, we will
only focus on safe regions. The definition and the solution proposed
are directly derivable also when applied to unsafe areas.

x1

x2

[1]

[0]

h1

h1

ha
1

ha
2

y

4

−2

−1

3

ReLU

ReLU

−1

7

[+4]

[−2]

[+4]

[0]

[−4]

Weighted
sum

Activated
LayerInput Output

Figure 1: A counterexample for a toy DNN-Verification
problem.

input, and Q a postcondition on the output. In particular, P
denotes a particular input domain or region for which we re-
quire a particular postcondition Q to hold on the output of
N . Since we are interested in discovering a possible coun-
terexample, Q typically encodes the negation of the desired
behavior for N . Hence, the possible outcomes are SAT if
there exists an input configuration that lies in the input do-
main of interest, satisfying the predicate P , and for which
the DNN satisfies the postcondition Q, i.e., at least one vio-
lation exists in the considered area, UNSAT otherwise.

To provide the reader with a better intuition on the DNN-
Verification problem, we discuss a toy example.

Example 1. (DNN-Verification) Suppose we want to verify
that for the toy DNN N depicted in Fig. 1 given an input
vector x = (x1, x2) ∈ [0, 1] × [0, 1], the resulting output
should always be y ≥ 0. We define P as the predicate on the
input vector x = (x1, x2) which is true iff x ∈ [0, 1]× [0, 1],
and Q as the predicate on the output y which is true iff y =
N (x) < 0, that is, we setQ to be the negation of our desired
property. As reported in Fig. 1, given the vector x = (1, 0)
we obtain y < 0, hence the verification tool returns a SAT
answer, meaning that a specific counterexample exists and
thus the original safety property does not hold.

#DNN-Verification
Despite the provable guarantees and the advancement that
formal verification tools have shown in recent years (Liu
et al. 2021; Katz et al. 2019; Wang et al. 2021; Zhang
et al. 2022a), the binary nature of the result of the DNN-
Verification problem may hide additional information about
the safety aspect of the DNNs. To address this limitation
in (Marzari et al. 2023) the authors introduce the #DNN-
Verification, i.e., the extension of the decision problem to its
counting version. In this problem, the input is the same as the
decision version, but we denote as Γ(T) the set of all the in-
put configurations for N satisfying the property defined by
P and Q, i.e.

Γ(T) =

{
x
∣∣ P(x) ∧Q(N (x))

}
(1)

Then, the #DNN-Verification consists of computing |Γ(T)|.
The approach (reported in Fig.2) solves the problem in

a sound and complete fashion where any state-of-the-art FV
tool for the decision problem can be employed to check each

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21388

split

is
is is

is
is

Figure 2: Explanatory image execution of exact count for a
particular N and safety property.

node of the Branch-and-Bound (Bunel et al. 2018) tree re-
cursively. In detail, each node produces a partition of the
input space into two equal parts as long as it contains both
a point that violates the property and a point that satisfies
it. The leaves of this recursion tree procedure correspond
to partitioning the input space into parts where we have ei-
ther complete violations or safety. Hence, the provable count
of the safe areas is easily computable by summing up the
cardinality of the subinput spaces in the leaves that present
complete safety. Since our setting is in the continuum, the
number of points in any non-empty set is infinite. Hence, we
consider the cardinality as a proxy for the volume of the cor-
responding set. Nonetheless, if we assume some discretiza-
tion of the space (to the maximum resolution allowed by the
machine precision), Γ(T) becomes a finite countable set.

Clearly, by using this method, it is possible to exactly
count (and even to enumerate) the safe points. However,
due to the necessity of solving a DNN-Verification instance
at each node (an intractable problem that might require ex-
ponential time), this approach becomes soon unfeasible and
struggles to scale on real-world scenarios. In fact, it turns out
that under standard complexity assumption, no efficient and
scalable approach can return the exact set of areas in which
a DNN is provably safe (as detailed in the next section).

To address this concern, after formally defining the
AllDNN-Verification problem and its complexity, we pro-
pose first of all a relaxation of the problem, and subse-
quently, an approximate method that exploits the analysis of
underestimated output reachable sets obtained using statisti-
cal prediction of tolerance limits (Wilks 1942; Porter 2019)
and provides a tight underapproximation of the safe areas
with strong probabilistic guarantees.

The AllDNN-Verification Problem
The AllDNN-Verification problem asks for the set of all the
safe points for a particular tuple ⟨N ,P,Q⟩. Formally:

Definition 1 (AllDNN-Verification Problem).
Input: A tuple T = ⟨N ,P,Q⟩.
Output: the set of safe points Γ(T), as given in (1).

Considering the example of Fig. 2 solving the AllDNN-
Verification problem for the safe areas consists in returning

the set: Γ =

{[
[0.5, 1]× [0, 1]

]
∪
[
[0, 0.24]× [0, 0.49]

]}
.

Hardness of AllDNN-Verification
From the #P-hardness of the #DNN-Verification problem
proved in (Marzari et al. 2023) and the fact that exact enu-
meration also provides exact counting it immediately fol-
lows that the AllDNN-Verification is #P-hard, which essen-
tially states that no polynomial algorithm is expected to ex-
ists for the AllDNN-Verification problem.

ϵ-ProVe: a Provable (Probabilistic) Approach
In view of the structural scalability issue of any solution to
the AllDNN-Verification problem, due to its #P-hardness, we
propose to resort to an approximate solution. More precisely,
we define the following approximate version of the AllDNN-
Verification problem:

Definition 2 (ϵ-Rectilinear Under-Approximation of safe ar-
eas for DNN (ϵ-RUA-DNN)).

Input: A tuple T = ⟨N ,P,Q⟩.
Output: a family R = {r1, . . . , rm} of disjoint rectilin-

ear ϵ-bounded hyperrectangles such that
⋃

i ri ⊆ Γ(T) and
|Γ(T) \

⋃
i ri| is minimum.

A rectilinear ϵ-bounded hyperrectangle is defined as the
cartesian product of intervals of size at least ϵ. Moreover, for
ϵ > 0, we say that a rectilinear hyperrectangle r = ×i[ℓi, ui]
is ϵ-aligned if for each i, both extremes ℓi and ui are a mul-
tiple of ϵ.

The rationale behind this new formulation of the prob-
lem is twofold: on the one hand, we are relaxing the re-
quest for the exact enumeration of safe points—in fact, as ar-
gued in (Karp and Luby 1985) due to the #P-hardness proof
(from #3-SAT), even guaranteeing a constant approximation
to |Γ(T)| by a deterministic polynomial time algorithm is
not possible unless P = NP ; on the other hand, we are re-
quiring that the output is more concisely representable by
means of hyperrectangles of some significant size.

Note that for ϵ → 0, ϵ-RUA-DNN and AllDNN-
Verification become the same problem. More generally,
whenever the solution Γ(T) to an instance T of AllDNN-
Verification can be partitioned into a collection of rectilinear
ϵ-bounded hyperrectangles, Γ(T) can be attained by an op-
timal solution for the ϵ-RUA-DNN. This allows as to tackle
the AllDNN-Verification problem via an efficient approach
with strong probabilistic approximation guarantee to solve
the ϵ-RUA-DNN problem.

Our method is based on two main concepts: the analysis
of an underestimated output reachable set with probabilis-
tic guarantees and the iterative refinement approach (Wang
et al. 2018b). In particular, in Fig. 3 we report a schematic
representation of the approach that can be set up through
reachable set analysis. Let us consider a possible domain for
the safety property, i.e., the polygon highlighted in light blue
in the upper left corner of Fig. 3.

Suppose that the undesired output reachable set is the one
highlighted in red called R∗ in the bottom left part of the
image, i.e., this set describes all the unsafe outcomes the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21389

In
pu

t s
pa

ce
R

ea
ch

ab
le

 r
es

ul
t

Iterative
refinement

Safety prop.
domain

undesired
reachable set

output
reachable set

underestimation
undesired reachable set

Legend:
underestimation

output reachable set
Figure 3: Explanatory image of how to exploit reachable set
result for solving the AllDNN-Verification problem.

DNN should never output starting from X . Hence, in or-
der to formally verify that the network respects the desired
safety property, the output reachable set computed from the
domain of the property (i.e., the greenR area of the left side
of the image) should have an empty intersection with the
undesired reachable set (the red one). If this condition is not
respected, as, e.g., in the left part of the figure, then there
exists at least an input configuration for which the property
is not respected.

To find all the portions of the property’s domain where ei-
ther the undesired reachable set and the output reachable set
are disjoint, i.e.,R∗ ⋂R = ∅, or, dually, discover the unsafe
areas where the condition R ⊆ R∗ holds (as shown in the
right part of Fig. 3) we can exploit the iterative refinement
approach (Wang et al. 2018b). However, given the nonlinear
nature of DNNs, computing the exact output reachable set is
infeasible. To address this issue, the reachable set is typically
over-approximated, thereby ensuring the soundness of the
result. In this vein, (Yang et al. 2022) proposed an enumera-
tion approach based on an over-approximation of the reach-
able set to compute the set of unsafe regions in the property’s
input domain. Still, the relaxation of the nonlinear activation
functions used to compute the over-approximated reachable
set can be computationally demanding. In contrast, we pro-
pose a computationally efficient solution that uses underesti-
mation of the reachable set and constructs approximate solu-
tions for the ϵ-RUA-DNN problem with strong probabilistic
guarantees.

Probabilistic Reachable Set
Given the complexity of computing the exact minimum and
maximum of the function computed by a DNN, we propose
to approximate the output reachable set using a statistical
approach known as Statistical Prediction of Tolerance Limits
(Wilks 1942; Porter 2019).

We use a Monte Carlo sampling approach: for an appro-
priately chosen n, we sample n input points and take the
smallest and the greatest value achieved in the output node
as the lower and the upper extreme of our probabilistic esti-
mate of the reachable set. The choice of the sample size is
based on the results of (Wilks 1942) that allow us to choose
n in order to achieve a given desired guarantee on the prob-
ability α that our estimate of the output reachable set holds

x1

x2

[1, 0]

[0, 1]

h1

h1

ha
1

ha
2

y1

y2

y∗

4

−2

−1

3

ReLU

ReLU

−1

1

2

0

−1

1

[+4,−1]

[−2,+3]

[+4, 0]

[0,+3]

[−4,+1]

[+4,+6]

[8, 5]

R = [5, 8]

Weighted
sum

Activated
LayerInput Output

New
output
layer

Figure 4: Example of computation single reachable set for a
DNN with two outputs.

for at least a fixed (chosen) fraction R of a further possi-
bly infinitely large sample of inputs. Crucially, this statisti-
cal result does not require any knowledge of the probability
distribution governing our function of interest and thus also
applies to general DNNs. Stated in terms more directly ap-
plicable to our setting, the main result of (Wilks 1942) is as
follows.
Lemma 1. For any R ∈ (0, 1) and integer n, given a sam-
ple of n values from a (continuous) set X the probability that
for at least a fraction R of the values in a further possibly
infinite sequence of samples from X are all not smaller (re-
spectively larger) than the minimum value (resp. maximum
value) estimated with the first n samples is given by the α
satisfying the following equation

n ·
∫ 1

R

xn−1 dx = (1−Rn) = α (2)

Computation of Safe Regions
We are now ready to give a detailed account of our algorithm
ϵ-ProVe.

Our approximation is based on the analysis of an under-
estimated output reachable set obtained by sampling a set
of n points PA from a domain of interest A. We start by
observing that it is possible to assume, without loss of gen-
erality, that the network has a single output node on whose
reachable set we can verify the desired property (Liu et al.
2021). For networks not satisfying this assumption, we can
enforce it by adding one layer. For example, consider the
network in the example of Fig. 4 and suppose we are in-
terested in knowing if, for a given input configuration in a
domain A = [0, 1]× [0, 1], the output y1 is always less than
y2. By adding a new output layer with a single node y∗ con-
nected to y1 by weight −1 and to y2 with weight 1 the con-
dition required reduces to check that all the values in the
reachable set for y∗ are positive.

In general, from the analysis of the underestimated
reachable set of the output node computed as R =
[mini yi,maxi yi], we can obtain one of these three con-
ditions:

A is unsafe upper bound ofR < 0

A is safe lower bound ofR ≥ 0

unknown otherwise
(3)

With reference to the toy example in Figure 4, assuming
we sample only n = 2 input configurations, (1, 0) and (0, 1)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21390

which when propagated throughN produce as a result in the
new output layer the vector y∗ = [8, 5]. This results in the
estimated reachable set R = [5, 8]. Since the lower bound
of this interval is positive, we conclude that the region A,
under consideration, is completely safe.

To confirm the correctness of our construction, we can
check the partial values of the original output layer and no-
tice that no input generates y1 ≥ y2. Specifically, if all inputs
result in y1 ≥ y2 (violating the specification we are trying
to verify), then the reachable set must have, by construction,
a negative upper bound, leading to the correct conclusion
that the area is unsafe. On the other hand, if only some in-
puts produce y1 ≥ y2, then we obtain a reachable set with
a negative lower bound and a positive upper bound, thus we
cannot state whether the area is unsafe or not, and we should
proceed with an interval refinement process. Hence, this ap-
proach allows us to obtain the situations shown to the right
of Fig. 3, i.e., where the reachable set is either completely
positive (A safe) or completely negative (A unsafe).

We present the complete pipeline of ϵ-ProVe in Algo-
rithm 1. Our approach receives as input a standard tuple for
the DNN-Verification and creates the augmented DNN N ′

(line 3) following the intuitions provided above. Moreover,
we initialize respectively the set of safe regions as an empty
set and the unchecked regions as the entire domain of the
safety specification encoded in P (line 5). Inside the loop
(line 6), our approximation iteratively considers one area A
at the time and begins computing the reachable set, as shown
above. We proceed with the analysis of the interval com-
puted, where in case we obtain a positive reachable set, i.e.,
the lower bound is positive (lines 9-10), then the area under
consideration is deemed as safe and stored in the set of safe
regions we are enumerating. On the other hand, if the inter-
val is negative, that is, the upper bound is negative, we add
the area into the unsafe regions and proceed (lines 11-12).
Finally, if we are not in any of these cases, we cannot assert
any conclusions about the nature of the region we are check-
ing, and therefore, we must proceed with splitting the area
according to the heuristic we prefer (lines 13-14).

The loop ends when either we have checked all areas of
the domain of interest or we have reached the ϵ-precision
on the iterative refinement. In detail, given the continuous
nature of the domain, it is always possible to split an in-
terval into two subparts, that is, the process could continue
indefinitely in the worst case. For this reason, as is the case
of other state-of-the-art FV methods that are based on this
approach, we use a parameter to decide when to stop the
process. This does not affect the correctness of the output
since our goal is to (tightly) underapproximate the safe re-
gions, and thus, in case the ϵ-precision is reached, the area
under consideration would not be considered in the set that
the algorithm returns, thus preserving the correctness of the
result. Although the level of precision can be set arbitrar-
ily, it does have an effect on the performance of the method.
In the supplementary material, we discuss the impact that
different heuristics and hyperparameter settings have on the
resulting approximation.

Algorithm 1: ϵ-ProVe

1: Input: T = ⟨N ,P,Q⟩, n (# of samples to compute
R), ϵ-precision desired

2: Output: set of safe and unsafe regions in P .
3: N ′ ← CreateAugmentedDNN(N ,P,Q)
4: safe regions← ∅; unsafe regions← ∅
5: unknown← GetDomain(P)
6: while (unknown ̸= ∅) or (ϵ-precision not reached) do
7: A← GetAreaToVerify(unknown)
8: RA ← ComputeReachableSet(N ′, A, n)
9: if lower(RA) ≥ 0 then

10: safe regions← safe regions ∪ {A}
11: else if upper(RA) < 0 then
12: unsafe regions← unsafe regions ∪ {A}
13: else
14: unknown← unknown ∪ IntRefinement(A)
15: end if
16: end while
17: return safe regions, unsafe regions

Theoretical Guarantees
In this section, we analyze the theoretical guarantees
that our approach can provide. We assume that the
IntRefinement procedure consists of iteratively choos-
ing one of the dimensions of the input domain and split-
ting the area into two halves of equal size as in (Wang et al.
2018b). The theoretical guarantee easily extends to any other
heuristic provided that each split produces two parts both
at least a fixed constant fraction β of the subdivided area.
Moreover, we assume that reaching the ϵ precision is imple-
mented as testing that the area has reached size ϵd,, i.e., it is
the cartesian product of d intervals of size ϵ. It follows that,
by definition, the areas output by ϵ-ProVe are ϵ-bounded
and ϵ-aligned.

The following proposition is the basis of the approxima-
tion guarantee (in terms of the size of the safe area returned)
on the solution output by ϵ-ProVe on an instance of the
ϵ-RUA-DNN problem.
Proposition 2. Fix a real number ϵ > 0, an integer k ≥ 3,
and a real γ > kϵ. Let T be an instance of the ϵ-RUA-
DNN problem. Then for any solution R = {r1, . . . , rm}
such that for each i = 1, . . . ,m, ri is γ-bounded, there is
a solution R(ϵ) = {r(ϵ)1 , . . . , r

(ϵ)
m } such that each r

(ϵ)
i is ϵ-

aligned and ||R(ϵ)|| ≥
(
k−2
k

)d ||R||, where d is the number
of dimensions of the input space, and for every solution R′,
||R′|| = | ∪i ri| is the total area covered by the hyperrect-
angles inR′.

The result is obtained by applying the following lemma to
each hyperrectangle of the solutionR.
Lemma 3. Fix a real number ϵ > 0 and an integer k ≥ 3.
For any γ > kϵ and any γ-bounded rectilinear hyperrectan-
gle r ⊆ Rd, there is an ϵ-aligned rectilinear hyperrectangle
r(ϵ) such that: (i) r(ϵ) ⊆ r; and (ii) |r(ϵ)| ≥

(
k−2
k

)d |r|.
Fig. 5 gives a pictorial explanation of the lemma. In the

example shown, k = 3 and the parameter ϵ is the unit of

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21391

Figure 5: An example of applying Lemma 3 with k = 3.

the grid, which we can imagine superimposed to the bidi-
mensional (d = 2) space in which the hyperrectangles live.
Hence γ = 3ϵ. The non-ϵ-aligned ri (depicted in blue) is
γ-bounded, since its width w = (b1 − a1) = 4ϵ and its
height h = (b2 − a2) = 3ϵ are both ≥ 3ϵ. Hence, it cov-
ers completely at least w − 2 columns and h − 2 rows of
the grid. These rows and columns define the green ϵ-aligned
hyperrectangle r

(ϵ)
i , of dimension

≥ (w − 2) · (h− 2) ≥ k − 2

k
w · k − 2

k
h =

(
k − 2

k

)d

|ri|.

The following theorem summarizes the coverage approxi-
mation guarantee and the confidence guarantee on the safety
nature of the areas returned by ϵ-ProVe.

Theorem 4. Fix a positive integer d and real values
ϵ, α,R ∈ (0, 1), with R > 1 − ϵd. Let T be an instance
of the AllDNN-Verification with input in2 [0, 1]d, and let k
be the largest integer such that Γ(T) can be partitioned into
kϵ-bounded rectilinear hyperrectangle.

Let R(ϵ)
+ and R(ϵ)

− be the sets of areas identified as
safe and unsafe, respectively, by ϵ-ProVe using n sam-
ples at each iteration, with n ≥ logR(1 − α1/m) and
m ≥ max{|R(ϵ)

+ |, |R
(ϵ)
− |}. Then, with probability ≥ α

1. (coverage guarantee) the solution R(ϵ)
+ is a

(
k−2
k

)d
ap-

proximation of Γ(T), i.e., ||R(ϵ)
+ || ≥

(
k−2
k

)d |Γ(T)|;
2. (safety guarantee) in each hyperrectangle r ∈ R(ϵ)

+ at
most (1−R) · |r| points are not safe.

This theorem gives two types of guarantees on the solu-
tion returned by ϵ-ProVe. Specifically, point 2. states that
for any R < 1 and α < 1, ϵ-ProVe can guarantee that
with probability α no more than (1 − R) of the points clas-
sified as safe can, in fact, be violations. Moreover, point 1.
guarantees that, provided the space of safety points is not too
scattered—formalized by the existence of some representa-
tion in kϵ-bounded hyperrectangles— the total area returned
by ϵ-ProVe is guaranteed to be close to the actual Γ(T).

Finally, the theorem shows that the two guarantees are at-
tainable in an efficient way, providing a quantification of the
size n of the sample needed at each iteration. Note that the
value of m needed in defining n can be either set using the
upper limit 2d log(1/ϵ)— which is the maximum number of

2This assumption is w.l.o.g. modulo some normalization.

possible split operations performed before reaching the ϵ-
precision limit—or m can be estimated by a standard dou-
bling technique: repeatedly run the algorithm doubling the
estimate for m at each new run until the actual number of
areas returned is upper bounded by the current guess for m.

Proof. The safety guarantee (item 2.) is a direct conse-
quence of Lemma 1. In fact, a hyperrectangle r is returned as
safe if all the n sampled points from r are not violations, i.e.,
their output is ≥ 0 (see (3)). By Lemma 1, at most (1 − R)
of the points in r can give an output < 0, with probability
α̂ = (1 − Rn). Since samples are chosen independently in
different hyperrectangles, this bound on the number of viola-
tions in a hyperrectangle ofR(ϵ) holds simultaneously for all
of them with probability ≥ α̂m. With n ≥ logR(1− α1/m)
we have α ≤ α̂m, i.e., the safety guarantee holds with prob-
ability ≥ α.

For the coverage guarantee, we start by noticing that un-
der the hypotheses on k, Proposition 2 guarantees the ex-
istence of a solution Rϵ

1 made of ϵ-bounded and ϵ-aligned
rectilinear hyperrectangles. Let Rϵ

2 be a solution obtained
fromRϵ

1 by partitioning each hyperrectangle into hyperrect-
angles of minimum possible size ϵd, each one ϵ-aligned. The
first observation is that, being a solution made of ϵ-bounded
and ϵ-aligned rectilinear hyperrectangles, Rϵ

2 is among the
solutions possibly returned by ϵ-ProVe. We now observe
that, with probability ≥ α, each hyperrectangles inRϵ

2 must
be contained in some hyperrectangle r in the solution R(ϵ)

+
returned by ϵ-ProVe. First note that if in each iteration of
ϵ-ProVe, r′ keeps on being contained in an area where both
safe and violation points are sampled, then eventually r′ will
become itself an area to analyze. At such a step, clearly
every sample in r′ will be safe and r′ will be included in
R(ϵ)

+ , as desired. Therefore, the only possibility for r′ not
to be contained in any r ∈ R(ϵ)

+ is that at some iteration an
area A ⊇ r′ is analyzed and all the n points sampled in A
turn out to be violation points, so A (including r′) is classi-
fied unsafe (and added to R(ϵ)

−) by ϵ-ProVe. However, by
Lemma 1 with probability (1−Rn) this can happen only if
ϵd = |r′| < (1 − R)|A|, which contradicts the hypotheses.
Hence, with probability (1 − Rn)m ≥ α, no hyperrectan-
gle of R(ϵ)

− contains r′, whence it must be contained in a
hyperrectangle ofR(ϵ)

+ , concluding the argument.

0 2000 4000 6000 8000 10000
areas

1500

1750

2000

2250

2500

2750

3000

3250

po
in

ts
 to

 s
am

pl
e

 = 99.9% and R=99.5%

Figure 6: Analysis of ϵ-ProVe requirements and results.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21392

Instance ϵ-ProVe (α = 99.9%) Exact count or MC sampling Und-estimation (% distance)
Safe regions Safe rate Time Safe rate Time

Model 2 20 335 78.50% 0.4s 79.1% 234min 0.74%
Model 2 56 251 43.69% 0.3s 44.46% 196min 1.75%

Model MN 1 545 64.72% 60.6s 67.59% 0.6s 4.24%
Model MN 2 1 100% 0.4s 100% 0.4s -

ϕ2 ACAS Xu 2.1 2462 97.47% 26.9s 99.25% 0.6s 1.81%
ϕ2 ACAS Xu 3.3 1 100% 0.4s 100% 0.5s -

Table 1: Comparison of ϵ-ProVe and Exact count or Monte Carlo (MC) sampling approach on different benchmark setups.
Full results and other different experiments are reported in the supplementary material.

Fig. 6 (left) shows the correlation between the number
of points to be sampled based on the number of areas ob-
tained by ϵ-ProVe if we want to obtain a total confidence
of α = 99.9% and a lower bound R = 99.5%. As we can
notice from the plot, if we compute our output reachable set
sampling n = 3250 points, we are able to obtain the desired
confidence and lower bound if the number of regions is in
[1, 10000]. For this reason, in all our empirical evaluations,
we use n = 3500 to compute R. An example of the possi-
ble result achievable using our approach is depicted in Fig. 6
(right) with different shades of green for better visualization.

Empirical Evaluation
In this section, we evaluate the scalability of our approach,
and we validate the theoretical guarantees discussed in the
previous section. Our analysis considers both simple DNNs
to analyze in detail the theoretical guarantees and two real-
world scenarios to evaluate scalability. The first scenario
is the ACAS xu (Julian et al. 2016), an airborne collision
avoidance system for aircraft, which is a well-known stan-
dard benchmark for formal verification of DNNs (Liu et al.
2021; Katz et al. 2017; Wang et al. 2018a). The second sce-
nario considers DNN trained and employed for autonomous
mapless navigation tasks in a Deep Reinforcement Learning
(DRL) context (Tai, Paolo, and Liu 2017; Marzari, March-
esini, and Farinelli 2023; Marchesini et al. 2023).

All the data are collected on a commercial PC equipped
with an M2 Apple silicon. The code used to collect the re-
sults and several additional experiments and discussions on
the impact of different heuristics for our approximation are
available in the supplementary material.

Correctness and Scalability Experiments
These experiments aim to estimate the correctness and scal-
ability of our approach. Specifically for each model tested,
we used ϵ-ProVe to return the set of safe regions in the do-
main of the property under consideration. All data are col-
lected with parameters αTOT = 99.9% and R = 99.5%
and n = 3500 points to compute the reachable set used
for the analysis. The results are presented in Table 1. For
all experiments, we report the number of safe regions re-
turned by ϵ-ProVe (for which we also know the hyperrect-
angles position in the property domain), the percentage of
safe areas relative to the total starting area (i.e., the safe rate),

and the computation time. Moreover, we include a com-
parison, measured as percentage distance, of the safe rate
computed with alternative methods, such as an exact enu-
meration method (whenever feasible due to the scalability
issue discussed above) and a Monte Carlo (MC) Sampling
approach using a large number of samples (i.e., 1 million).
It’s important to note that the MC sampling only provides
a probabilistic estimate of the safe rate, lacking information
about the location of safe regions in the input domain.

The first block of Table 1 involves two-dimensional mod-
els with two hidden layers of 32 nodes activated with ReLU.
The safety property consists of all the intervals of P in the
range [0, 1] and a postconditionQ that encodes a strictly pos-
itive output. Notably, ϵ-ProVe is able to return the set of
safe regions in a fraction of a second, and the safe rate re-
turned by our approximation deviates at most a 1.75% from
the one computed by an exact count, which shows the tight-
ness of the bound returned by our approach. In the second
block of Tab. 1, the Mapless Navigation (MN) DNNs are
composed of 22 inputs, two hidden layers of 64 nodes acti-
vated with ReLU , and finally, an output space composed of
five nodes, which encode the possible actions of the robot.
We test a behavioral safety property where P encodes a po-
tentially unsafe situation (e.g., there is an obstacle in front),
and the postcondition Q specifies the unsafe action that
should not be selected. The table illustrates how increas-
ing input space and complexity affects computation time.
Nevertheless, the proposed approximation remains efficient
even for ACAS xu tests, returning results within seconds.
Crucially, focusing on Model MN 2 and ϕ2 ACAS Xu 3.3,
ϵ-ProVe states that all the property’s domain is safe (i.e.,
no violation points). The correctness of the results was ver-
ified by employing VeriNet (Henriksen et al. 2021), a state-
of-the-art FV tool.

Discussion
We studied the AllDNN-Verification, a novel problem in the
FV of DNNs asking for the set of all the (un)safe regions for
a given safety property. Due to the #P-hardness of the prob-
lem, we proposed an approximation approach, ϵ-ProVe,
which is, to the best of our knowledge, the first method able
to efficiently approximate the set of (un)safe regions with
some guarantees on the tightness of the solution returned.
We believe ϵ-ProVe is an important step to provide consis-
tent and effective tools for analyzing safety in DNNs.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21393

References
Amir, G.; Corsi, D.; Yerushalmi, R.; Marzari, L.; Harel, D.;
Farinelli, A.; and Katz, G. 2023. Verifying learning-based
robotic navigation systems. In 29th International Confer-
ence, TACAS 2023, 607–627. Springer.
Baluta, T.; Shen, S.; Shinde, S.; Meel, K. S.; and Saxena,
P. 2019. Quantitative Verification of Neural Networks and
Its Security Applications. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Se-
curity.
Bunel, R. R.; Turkaslan, I.; Torr, P.; Kohli, P.; and
Mudigonda, P. K. 2018. A unified view of piecewise linear
neural network verification. Advances in Neural Information
Processing Systems, 31.
Carlini, N.; and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In 2017 ieee symposium on
security and privacy (sp), 39–57. Ieee.
Corsi, D.; Marzari, L.; Pore, A.; Farinelli, A.; Casals, A.;
Fiorini, P.; and Dall’Alba, D. 2023. Constrained reinforce-
ment learning and formal verification for safe colonoscopy
navigation. In 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE.
Henriksen, P.; et al. 2021. DEEPSPLIT: An Efficient Split-
ting Method for Neural Network Verification via Indirect Ef-
fect Analysis. In IJCAI, 2549–2555.
Julian, K. D.; Lopez, J.; Brush, J. S.; Owen, M. P.; and
Kochenderfer, M. J. 2016. Policy compression for aircraft
collision avoidance systems. In 2016 IEEE/AIAA 35th Dig-
ital Avionics Systems Conference (DASC), 1–10. IEEE.
Karp, R. M.; and Luby, M. 1985. Monte-Carlo algorithms
for the planar multiterminal network reliability problem.
Journal of Complexity, 1(1): 45–64.
Katz, G.; Barrett, C.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An efficient SMT solver for
verifying deep neural networks. In International conference
on computer aided verification, 97–117. Springer.
Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus, C.;
Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljić, A.; et al.
2019. The marabou framework for verification and analy-
sis of deep neural networks. In International Conference on
Computer Aided Verification.
Liu, C.; Arnon, T.; Lazarus, C.; Strong, C.; Barrett, C.;
Kochenderfer, M. J.; et al. 2021. Algorithms for verifying
deep neural networks. Foundations and Trends® in Opti-
mization, 4(3-4): 244–404.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083.
Marchesini, E.; Marzari, L.; Farinelli, A.; and Amato, C.
2023. Safe Deep Reinforcement Learning by Verifying
Task-Level Properties. In nternational Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS).
Marzari, L.; Corsi, D.; Cicalese, F.; and Farinelli, A. 2023.
The #DNN-Verification problem: Counting Unsafe Inputs
for Deep Neural Networks. In International Joint Confer-
ence on Artificial Intelligence (IJCAI).

Marzari, L.; Corsi, D.; Marchesini, E.; and Farinelli, A.
2022. Curriculum learning for safe mapless navigation. In
Proceedings of the 37th ACM/SIGAPP Symposium on Ap-
plied Computing, 766–769.
Marzari, L.; Marchesini, E.; and Farinelli, A. 2023. Online
Safety Property Collection and Refinement for Safe Deep
Reinforcement Learning in Mapless Navigation. In Interna-
tional Conference on Robotics and Automation (ICRA).
O’Shea, K.; and Nash, R. 2015. An introduction to convo-
lutional neural networks. arXiv preprint arXiv:1511.08458.
Porter, N. 2019. Wilks’ formula applied to computational
tools: A practical discussion and verification. Annals of Nu-
clear Energy, 133: 129–137.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Tai, L.; Paolo, G.; and Liu, M. 2017. Virtual-to-real DRL:
Continuous control of mobile robots for mapless navigation.
In IROS.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018a. Efficient formal safety analysis of neural networks.
Advances in Neural Information Processing Systems, 31.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018b. Formal security analysis of neural networks using
symbolic intervals. In 27th USENIX Security Symposium
(USENIX Security 18), 1599–1614.
Wang, S.; Zhang, H.; Xu, K.; Lin, X.; Jana, S.; Hsieh, C.-J.;
and Kolter, J. Z. 2021. Beta-crown: Efficient bound propaga-
tion with per-neuron split constraints for neural network ro-
bustness verification. Advances in Neural Information Pro-
cessing Systems, 34: 29909–29921.
Wilks, S. S. 1942. Statistical prediction with special refer-
ence to the problem of tolerance limits. The annals of math-
ematical statistics, 13(4): 400–409.
Yang, X.; Yamaguchi, T.; Tran, H.-D.; Hoxha, B.; John-
son, T. T.; and Prokhorov, D. 2022. Neural network repair
with reachability analysis. In International Conference on
Formal Modeling and Analysis of Timed Systems, 221–236.
Springer.
Zhang, H.; Wang, S.; Xu, K.; Li, L.; Li, B.; Jana, S.; Hsieh,
C.-J.; and Kolter, J. Z. 2022a. General cutting planes
for bound-propagation-based neural network verification.
Advances in Neural Information Processing Systems, 35:
1656–1670.
Zhang, H.; Wang, S.; Xu, K.; Wang, Y.; Jana, S.; Hsieh, C.-
J.; and Kolter, Z. 2022b. A branch and bound framework
for stronger adversarial attacks of relu networks. In Inter-
national Conference on Machine Learning, 26591–26604.
PMLR.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21394

