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Abstract
Artificial Intelligence (AI) models have become an integral
part of modern society, significantly improving human lives.
However, ensuring the reliability and safety of these models
is of paramount importance. One critical aspect is the con-
tinuous monitoring and verification of model performance to
prevent any potential risks. Real-time online evaluation of
AI models is necessary to maintain their effectiveness and
mitigate any harm caused by performance degradation. The
traditional approach to model evaluation involves supervised
methods that rely on manual labeling to compare results with
model predictions. Unfortunately, this method is not suit-
able for online model monitoring due to its inherent lag and
high cost. While there have been attempts to explore free-
label model evaluation, these approaches often consider only
the global features of the entire dataset. Additionally, they
can only perform model evaluation based on a single dimen-
sion of model confidence or features. In this paper, we pro-
pose a novel approach called Divide-and-Aggregate Learn-
ing (DAL) for unsupervised model evaluation. Our method
addresses the limitations of previous approaches by divid-
ing the output of the model into buckets, capturing local in-
formation of the distribution. We then aggregate this local
information to obtain global information and further repre-
sent the relationship between the distribution and model per-
formance. Importantly, our method can simultaneously han-
dle the confidence distribution and feature distribution of the
model output. Extensive experiments have been conducted
to demonstrate the effectiveness of our DAL model. The re-
sults show that our approach outperforms previous methods
on four widely used datasets. We will make our source code
publicly available.

Introduction
Artificial intelligence (AI) models have become integral to
modern life, offering unparalleled convenience in numerous
applications. However, given the profound significance of
these models, any issues or challenges that emerge can have
far-reaching consequences. For instance, if a model’s perfor-
mance significantly deteriorates, it can drastically diminish
its value and lead to serious economic losses. As such, effec-
tive online model evaluation has emerged as a critical topic
in the applications of AI models.

*The corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The illustration of label-free model evaluation
(AutoEval). The left is the traditional supervised model eval-
uation with human labels, and the right is the unsupervised
model evaluation.

Model evaluation has traditionally relied on a test dataset
consisting of test samples and human-labeled ground truth
labels. However, this approach can be problematic in real-
world settings due to its complexity, expense, and lag. To cir-
cumvent these issues, label-free model evaluation, or Auto-
matic model Evaluation (AutoEval) (Deng and Zheng 2021),
has emerged as a promising alternative. This method in-
volves asking the model to autonomously evaluate its per-
formance on a dataset without relying on manual labels. Fig-
ure 1 visually demonstrates the contrast between supervised
model evaluation (He et al. 2016; Deng et al. 2009; Miao
et al. 2022; Lin et al. 2014; Everingham et al. 2006), which
uses human labels for evaluation, and AutoEval, which does
not require human intervention. The lack of explicit labels
presents the most significant challenge in AutoEval, as the
models must identify intrinsic patterns and structures in the
test data without relying on ground truth labels. Please note
that AutoEval is committed to predicting the performance of
trained models on unlabeled test data, rather than improv-
ing the original performance of trained models.

Recent studies have demonstrated the promising perfor-
mance of label-free model evaluation (Garg et al. 2022;
Guillory et al. 2021; Deng and Zheng 2021; Deng, Gould,
and Zheng 2021; Jiang et al. 2021; Chen et al. 2021; Miao
et al. 2023). Some of these studies leverage feature cal-
ibration of distribution shifts on the entire unlabeled test
data to provide consistent estimates and predict the model’s
performance (Deng and Zheng 2021; Miao et al. 2023;
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Deng, Gould, and Zheng 2021). However, these approaches
consider the global features of the model feature distribu-
tion on test data and disregard the individual heterogene-
ity of the sample. Others models (Garg et al. 2022; Guil-
lory et al. 2021; Hendrycks and Gimpel 2017) use confi-
dence calibration of the models to reduce the impact of unex-
pected changes in performance on unlabeled test data. How-
ever, confidence calibration in unlabeled data may result in
poor estimates because an individual threshold on the entire
dataset, whether fixed, learned, or averaged, cannot repre-
sent a relatively complete scoring distribution.

Therefore, the two main challenges in this work are: (i)
devising a method that can model the effectiveness of the
model based on feature output and confidence output, which
are common outputs of actual deployment models; and (ii)
designing a modeling approach that incorporates more lo-
cal information, given that samples exhibit specificity and
not just global dataset information. To address the afore-
mentioned challenges, we propose a novel approach called
Divide-and-Aggregate Learning (DAL) for achieving unsu-
pervised model evaluation. DAL consists of two stages: Di-
vide Learning and Aggregate Learning. In the Divide Learn-
ing stage, we divide the model’s output distribution into
buckets and calculate the distribution shifts to capture local
information. In the subsequent Aggregate Learning stage,
we aggregate the local distribution shifts to obtain global
shifts and further establish their relationship with accuracy.
Furthermore, DAL demonstrates competence in evaluating
both the feature output and confidence output of the model.
We have conducted extensive experiments to validate the ef-
ficacy of our proposed approach. Our model outperforms
multiple trained models, showcases differentiation in distri-
bution across unlabeled test data, and exhibits superior per-
formance across diverse datasets. The experimental results
also indicate that unsupervised model evaluation methods
align closely with the outcomes of supervised model evalu-
ation, with minimal deviations. This suggests the potential
for truly automated online model evaluation.

In summary, our proposed approach offers several contri-
butions, including:

• Introducing a novel approach called Divide-and-
Aggregate Learning (DAL) for unsupervised model eval-
uation that aligns closely with supervised model evalua-
tion outcomes, with minimal deviations.

• Developing a method that can model both the features
and confidence output of the model simultaneously, and
incorporates local sample information in addition to
global dataset information.

• Conducting extensive experiments that demonstrate the
superior performance of our approach over multiple
trained models and widely used datasets, showcasing
state-of-the-art results.

Related Work
Our work covers several related areas of research that have
undergone significant progress in recent years.

Label-free Model Evaluation
Label-free model evaluation is a process that aims to predict
the accuracy of an unseen test set when the ground truth is
not accessible (Guillory et al. 2021; Deng, Gould, and Zheng
2021; Deng and Zheng 2021; Chen et al. 2021; Jiang et al.
2021; Hendrycks and Gimpel 2017; Garg et al. 2022; Yu
et al. 2022; Miao et al. 2023). Deng et al. (Deng and Zheng
2021) constructed a meta-dataset comprised of datasets gen-
erated from the original images, used the Fréchet distance
(Dowson and Landau 1982) to measure the domain gap of
various data, and trained a regression model to predict model
performance. Miao et al. (Miao et al. 2023) introduced
a k-means clustering-based feature consistency alignment
(KCFCA) to handle distribution shifts of various datasets.
Confidence-based calibration (Guillory et al. 2021; Garg
et al. 2022) was also explored to successfully estimate the
trained model across several model architectures and types
of distribution shifts. The models (Jiang et al. 2021; Yu et al.
2022) assessed model performance through calibration of
the retraining model. However, these methods only consider
global distributions from features or confidence as a whole
for corrective prediction, ignoring the variability of local
distributions. In contrast, our approach explores a model
evaluation method that unifies feature-based and confidence-
based autoeval approaches considering with local sample in-
formation.

Out-Of-Distribution Detection
The goal of Out-Of-Distribution (OOD) detection is to iden-
tify samples that do not conform to the distribution of the
training data. Hendrycks et al. (Hendrycks, Mazeika, and
Dietterich 2019) presented Outlier Exposure (OE), which
improved deep anomaly detection by training anomaly de-
tectors against an auxiliary dataset of outliers. A likelihood
ratio method (Ren et al. 2019) was proposed for deep gen-
erative models, which effectively corrected for population-
level background statistics. MOS (Huang and Li 2021) de-
composed the large semantic space into smaller groups with
similar concepts, allowing for simplification of the decision
boundaries between in- vs. out-of-distribution data for ef-
fective OOD detection. Liang et al. (Liang, Li, and Srikant
2017) introduced ODIN to detect out-of-distribution images
in neural networks based on the observation that using tem-
perature scaling and adding small perturbations to the input
could separate softmax score distributions between in- and
out-of-distribution images. Unlike OOD detection task, the
autoeval task requires further prediction of the accuracy of
the unlabeled dataset instead of detecting unseen examples.

Our Method
In the realm of practical application, artificial intelligence
(AI) models undergo optimization and training on raw data.
This process results in a trained model, while the raw data
is referred to as the training set and validation set. Follow-
ing deployment, it is essential to evaluate the trained model’s
performance online with current data, which is known as the
test set. The objective of our academic study is to propose a
methodology for evaluating the trained model performance
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Figure 2: The illustration of Divide-and-Aggregate Learn-
ing (DAL). Initially, DAL trains a regression model R using
training data to capture the relationship between distribution
shift and model accuracy. Subsequently, the accuracy of the
model is determined by feeding unlabeled test sets as inputs
into the regression model R. This process enables the esti-
mation of model accuracy without the need for labeled data.

on unlabeled test sets. In the following sections, we will pro-
vide a comprehensive description of our proposed approach.

Problem Definition
We commence by defining the raw data Dr = (Dt,Dv),
where Dt represents the labeled training data and Dv

denotes the labeled validation data. Specifically, Dt =
({xi, yi})Nt

i=1, where xi represents a training sample, yi de-
notes its corresponding label, and Nt designates the total
number of training samples. Similarly, Dv = {xi, yi})Nv

i=1,
where Nv denotes the total number of validation samples.
Consequently, we obtain a highly trained model M based
on raw data. The ultimate objective is to evaluate the accu-
racy of the trained model on an unlabeled test set Du =
({xi})Nu

i=1 comprising Nu test samples. In the supervised
model evaluation setting, if Du is labeled with yi, the accu-
racy can be easily calculated using the following equation:

acc =

∑Nu

i=1 I[M(xi) == yi]

Nu
, (1)

where I(x) represents the indicator function:

I(x) =
{
1, if x is True

0, if x is False.
(2)

However, this method fails when the labels are unavailable.
Hence, given the raw data Dr and the trained model M, our
aim is to design a regression model R for label-free model
evaluation, which outputs an overall accuracy. The process
can be expressed as

acc = R(Du|(Dr,M)). (3)

From Eq. (3), it is clear that the accuracy of the unla-
beled test set can be directly predicted by learning a model
R. However, learning R through unsupervised learning
paradigms is not straightforward. Therefore, we adopt the
approach proposed in (Deng and Zheng 2021) to convert the

unsupervised problem into a supervised learning problem.
In particular, we perform transformations based on the raw
data Dr to obtain meta data Dm = {Di = (Sxi, Syi)}Ti=1
following (Deng and Zheng 2021; Miao et al. 2023). Here,
Di represents the i-th training sample dataset, Sxi denotes
the corresponding training datasets, Syi represents the cor-
responding labels, and T denotes the total number of sam-
ple datasets. This means that the accuracy of the model on
these sample datasets is known. Subsequently, we can learn
a regression model R based on the T pairs of training data
and corresponding labels. Thus, the completely unsuper-
vised task is essentially converted into a supervised task. The
primary challenge is to construct effective input features F
for the regression model using these datasets. Furthermore,
Eq. (3) can be simplified, as shown in Eq. (4):

acc = R(F). (4)

Next, we will introduce how to construct the feature F .

Divide-and-Aggregate Learning
We assume that the output distribution of the trained model
for the raw data set and sample data set are Ur =
{u1

r, u
2
r, · · · , un

r } and Us = {u1
s, u

2
s, · · · , um

s } with n and
m samples, respectively. Our goal is to calculate the distri-
bution shift between two output distributions, further obtain
T pair distribution shifts and the corresponding model accu-
racy, then construct the regression model between the distri-
bution shift and the accuracy of the trained model. That is,
the distribution shift is used as the feature, and the known
accuracy is used as the ground truth to train the regres-
sion model in Eq. (4). Inspired by information theory (Shan-
non 2001; Kullback and Leibler 1951; Goodfellow, Bengio,
and Courville 2016; Yurdakul 2018) we propose Divide-
and-Aggregate Learning (DAL) to measure the distribu-
tion shift.

Intuitively, the Kullback-Leibler (KL) divergence is a
commonly used method to measure the difference between
two distributions, denoted as p(x) and q(x) (Shannon 2001;
Kullback and Leibler 1951). The definition of KL diver-
gence is as follows:

KL(p||q) = −
∑
x

p(x)log
1

p(x)
+

∑
x

p(x)log
1

q(x)

=
∑
x

p(x)log
p(x)

q(x)
,

(5)

KL(q||p) = −
∑
x

q(x)log
1

q(x)
+

∑
x

q(x)log
1

p(x)

=
∑
x

q(x)log
q(x)

p(x)
.

(6)

Observing Eqs. (5) and (6), two essential characteristics of
KL divergence become apparent. Firstly, KL divergence re-
quires the same number of samples for both distributions, i.e.
NUM(p(x)) = NUM(q(x)). Secondly, KL divergence is
asymmetric, i.e. KL(p||q) ̸= KL(q||p). These characteris-
tics limit its application in our auto-evaluation method.
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Divide Learning. Due to the varying number of ele-
ments in the distribution, direct calculation of the distribu-
tion distance is challenging. The proposed ‘Divide Learn-
ing’ method outlines a process for transforming two distri-
butions, Ur and Us, into fixed information buckets to en-
able distribution shift calculation. To achieve this, the dis-
tributions are divided into a fixed number of k buckets,
denoted as B1,B2, · · · ,Bk. Specifically, the distributions
are sorted to generate new distributions U ′

r and U ′
s. Equal-

frequency or equal-width binning is then performed on these
distributions, resulting in k buckets with bin quantiles of
{[b0, b1], [b1, b2], · · · [bk−1, bk]} based on the sorted U ′

r dis-
tributions. For equal-frequency binning, the quantity of each
bucket is the same, i.e., NUM(B1) = NUM(B2) =
NUM(· · · ) = NUM(Bk). For equal-width binning, the
length of the numerical interval of each bucket is the same,
i.e., LEN(B1) = LEN(B2) = LEN(· · · ) = LEN(Bk).
The Ur and Us distributions are then adjusted to k buckets
based on the bin quantiles, yielding U ′

r = {Br
1,Br

2, · · · ,Br
k}

and U ′
s = {Bs

1,Bs
2, · · · ,Bs

k}. Each bucket is then con-
verted into a new distribution element by calculating the
proportion of the bucket data to the total data, expressed as
u′k
r =

NUM(Br
k)

NUM(U ′
r)

and u′k
s =

NUM(Bs
k)

NUM(U ′
s)

. The new Ur and Us

distributions are then processed as U ′
r = {u′1

r , u
′2
r , · · · , u′k

r }
and U ′

s = {u′1
s , u

′2
s , · · · , u′k

s } with the same sample num-
bers. Overall, our Divide Learning method overcomes the
issue arising from different numbers of elements in the dis-
tributions and provides a method for comparing distribution
shifts while considering local sample information.

Aggregate Learning. It is crucial to acknowledge that the
distributions Ur and Us do not have an explicit relative re-
lationship. As a result, the distribution shift between them
is symmetrical, which contradicts the asymmetry of KL
divergence. Hence, directly calculating the KL divergence
of the two distributions in our approach is not reasonable.
To achieve distance symmetry, our ‘Aggregate Learning’
method leverages the property that KL(p||q)+KL(q||p) =
KL(q||p) + KL(p||q) to represent the distribution shifts.
Consequently, we define the shifts between the two distribu-
tions Ur and Us as follows:

Dis(Ur,Us) = KL(Ur||Us) +KL(Us||Ur)

=
∑

Urlog
Ur

Us
+
∑

Uslog
Us

Ur

⇒
∑

U ′
rlog

U ′
r

U ′
s

+
∑

U ′
slog

U ′
s

U ′
r

=
∑

(U ′
r − U ′

s)log
U ′
r

U ′
s

.

(7)

With the establishment of distribution shifts as features, we
proceed to learn the regression model using Eq. (4). This
enables us to predict the accuracy of an unlabeled test set.

DAL-based Autoeval Models
In the training phase of our study, we propose the construc-
tion of a regression model that takes into account both the
distribution shift and accuracy of the T -pair trained model

output on both the sample dataset and raw dataset. This ap-
proach ensures greater precision and reliability in our model
building process. During the testing phase, we calculate the
distribution shift of the model’s output on the unlabeled test
set and raw data set using the same method as in the regres-
sion model input. By doing so, we can directly predict the
accuracy of the trained model on the unlabeled test set. This
process provides us with a robust methodology for evalu-
ating and validating our model’s performance in real-world
scenarios. Additionally, we propose the use of DAL-based
autoeval models which can be constructed with ease using
the feature and confidence output of trained models.

Feature-based DAL Models. Most existing feature-based
autoeval methods in the literature focus solely on global
dataset information. In contrast, our approach incorporates
DAL to manipulate features and incorporate local sample
information. Specifically, we define the sample features ex-
tracted by the trained model M for the training sample
dataset Sxi of the meta data set as Fi ∈ RNv×N . We first
normalize the features at the first dimension and then per-
form feature dimensionality reduction through homogeniza-
tion at the second dimension using Eqs. (8) and (9).

Fi =
Fi −MEAN([Fi]

0)

STD([Fi]0)
, (8)

Fi = MEAN([Fi]
1)+MAX([Fi]

1)+MIN([Fi]
1), (9)

Here, MEAN , STD, MAX , and MIN represent the
mean value, standard deviation, maximum value, and min-
imum value, respectively. Additionally, [·]0 or [·]1 refers
to the first or second dimension. Consequently, we obtain
Fi ∈ RNv . Similarly, we define the source features extracted
by the trained model M on the labeled training data Dt as
Ft ∈ RNt using Eqs. (10) and (11).

Ft =
Ft −MEAN([Ft]

0)

STD([Ft]0)
, (10)

Ft = MEAN([Ft]
1) +MAX([Ft]

1) +MIN([Ft]
1)
(11)

Drawing from Eq. (7), we consider the distance Dis(Fi,Ft)
between the sample features and source features as an input
feature, denoted as F , for training the autoeval model in Eq.
(4).

Confidence-based DAL Models. Most of the confidence-
based calibration methods focus on the overall distribution
of predicted confidences at a global dataset level. In contrast,
we employ DAL to build a confidence-based DAL model
that captures the unique characteristics of local sample in-
formation. We define the sample confidences, predicted by
the trained model M for the training sample dataset Sxi

of the meta data set, as Ci ∈ RNvand the source confi-
dences, predicted by the trained model M for the source
validation data Dv , as Cv ∈ RNv . Using DAL and Eq. (4),
we take the distribution shift between the sample confidence
and source confidence as an input feature F by Eq. (7) for
F = Dis(Ci, Ct) training the autoeval model.

In summary, we unify the feature-based and confidence-
based autoeval algorithms under the DAL framework, en-
abling the capture of local sample information.
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RMSE ↓Pretrained Model CIFAR-10.1 CIFAR-10.1-C CIFAR-10-F Overall

ConfScore (Hendrycks and Gimpel 2017) 2.190 9.743 2.676 6.985
Entropy (Guillory et al. 2021) 2.424 10.300 2.913 7.402

Rotation (Deng, Gould, and Zheng 2021) 7.285 6.386 7.763 7.129
FID (Deng and Zheng 2021) 7.517 5.145 4.662 4.985

ATC (Garg et al. 2022) 11.428 5.964 8.960 7.766
KCFCA (Miao et al. 2023) 9.979 8.828 3.905 6.766

DAL-c(ours) 3.868 9.951 2.391 5.625

ResNet-56

DAL-f (ours) 1.948 2.854 4.191 3.570

ConfScore (Hendrycks and Gimpel 2017) 5.470 12.004 3.709 8.722
Entropy (Guillory et al. 2021) 5.997 12.645 3.419 9.093

Rotation (Deng, Gould, and Zheng 2021) 16.726 17.137 8.105 13.391
FID (Deng and Zheng 2021) 10.718 6.318 5.245 5.966

ATC (Garg et al. 2022) 15.168 8.050 7.694 8.132
KCFCA (Miao et al. 2023) 11.876 7.087 4.797 6.236

DAL-c (ours) 10.676 9.449 6.198 8.029

RepVGG-A0

DAL-f (ours) 0.015 4.395 4.839 4.570

Table 1: Comparison with state-of-the-art autoeval models based on the same trained model on the CIFIR-10 dataset with
RMSE. “DAL-c” is our confidence-based DAL model, and “DAL-f” is our feature-based DAL model. “↓” means the smaller
the numerical value, the better the performance. The bold number is optimal performance.

Experiments
Datasets
To verify the performance of the model, we use the known
datasets to conduct experiments following the same dataset
transformations as previous works (Deng and Zheng 2021;
Deng, Gould, and Zheng 2021; Miao et al. 2023).
CIFAR-10. The original source dataset, CIFAR-10, com-
prises 60,000 color images across 10 classes, with each class
containing 6,000 samples. Following the same transforma-
tion strategy proposed by (Deng and Zheng 2021), the train-
ing meta-dataset consists of 1,000 transformed sample sam-
ples from the original CIFAR-10 val set. The test set is com-
posed of CIFAR-10.1 (Recht et al. 2018; Torralba, Fergus,
and Freeman 2008), CIFAR-10.1-C (Hendrycks and Diet-
terich 2019) (add corruptions to CIFAR-10.1 dataset), and
CIFAR-10-F (real-world images collected from Flicker.)
MNIST. The original source dataset for handwritten digits,
MNIST, consists of a training set of 60,000 examples and
a validation set of 10,000 examples across 10 classes. Fol-
lowing (Deng and Zheng 2021), the training meta-dataset
and the test set consist of 1,000 and 200 transformed sam-
ple datasets from the original MNIST val set with different
transformation styles.
TinyImageNet. The original source dataset, TinyImageNet,
is a subset of the ImageNet (Russakovsky et al. 2015) dataset
and comprises 200 classes. Following (Deng and Zheng
2021), the training meta-dataset and the test set consist of
1,000 and 200 transformed sample datasets from the origi-
nal TinyImageNet val set with various transformation styles.
ImageNet. The original source dataset ImageNet (Rus-
sakovsky et al. 2015) is a large and widely used dataset with
1000 classes. Following (Deng and Zheng 2021), the train-

ing meta-dataset and the test set consist of 500 and 100 trans-
formed sample datasets from the original ImageNet val set
with various transformation styles.

Implementation Details
Training Details. In all our experiments, we begin by train-
ing the original model, denoted as M, on the original source
dataset. This initial training step serves only to simulate
the performance of the trained model, and our primary ob-
jective is to evaluate its performance on the unlabeled test
dataset, rather than optimizing the performance of M. To
ensure a fair comparison, we employ the same trained mod-
els across all benchmarks, including ResNet-56 (He et al.
2016), RepVGG-A0 (Ding et al. 2021), ResNet-18 (He et al.
2016), AlexNet (Krizhevsky, Sutskever, and Hinton 2017).
Additionally, we utilize the same LinearRegression model
as the regression model R following (Deng and Zheng 2021;
Miao et al. 2023). We will make the source code public1.
Metrics. Consistent with previous studies (Deng and Zheng
2021; Miao et al. 2023), we employ the widely used root-
mean-square error (RMSE) to measure the predicted accu-

racy and ground truth accuracy, RMSE =

√∑n
t=1(ŷt−yt)

2

n ,
as the evaluation metric in all of our experiments.

Overall Performance
Results on CIFIR-10. To assess the performance of our
autoeval models on CIFAR-10, we utilize ResNet-56 (He
et al. 2016) and RepVGG-A0 (Ding et al. 2021) as our base
trained models. The pre-trained weights of these models are

1https://github.com/miaoshuyu/dal-pytorch

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21399



MNIST TinyImageNet ImageNetModel Source Trained RMSE ↓ Trained RMSE ↓ Trained RMSE ↓

ConfScore (Hendrycks and Gimpel 2017) ICLR’17 AlexNet 8.178 ResNet-18 3.603 ResNet-18 2.687
Entropy (Guillory et al. 2021) ICCV’21 AlexNet 8.604 ResNet-18 3.572 ResNet-18 3.035
FID (Deng and Zheng 2021) CVPR’21 AlexNet 10.588 ResNet-18 1.458 ResNet-18 2.984

ATC (Garg et al. 2022) ICLR’22 AlexNet 9.869 ResNet-18 3.453 ResNet-18 3.110
KCFCA (Miao et al. 2023) CVPRw’23 AlexNet 8.851 ResNet-18 1.352 ResNet-18 2.663

DAL-c (ours) - AlexNet 7.060 ResNet-18 3.271 ResNet-18 2.990
DAL-f (ours) - AlexNet 9.499 ResNet-18 1.344 ResNet-18 2.022

Table 2: Comparison with state-of-the-art autoeval models based on the same trained model on the MNIST, TinyImageNet, and
ImageNet datasets.

obtained from the public repository available at the website2.
As shown in Table 1, we provide independent results

on three test datasets, namely, CIFAR-10.1, CIFAR-10.1-
C, and CIFAR-10-F, as well as Overall results. The re-
sults presented in Table 1 lead us to the following con-
clusions: 1) Our methods exhibit the best performance. It
is evident that our DAL-based autoeval models outperform
all other methods in terms of performance and robustness.
Specifically, for the ResNet-56 trained model, our feature-
based DAL model achieves the best performance on separate
CIFAR-10.1, CIFAR-10.1-C, and Overall datasets. More-
over, our confidence-based DAL model delivers the best per-
formance on the CIFAR-10-F datasets. For the RepVGG-A0
trained model, our DAL-based models yield the best perfor-
mance on separate CIFAR-10.1, CIFAR-10.1-C, and Overall
datasets. 2) Our methods are effective for different trained
models. We achieved optimal results for both ResNet-56
and RepVGG-A0, demonstrating the effectiveness of our
method for different trained models. 3) Our methods ex-
hibit the greatest robustness. Overall, our experimental re-
sults demonstrate that our methods maintain excellent per-
formance for different trained models and metadata sets,
thus validating the robustness of our approach.

Results on MNIST. To assess the efficacy of autoeval
models on MNIST, we utilize AlexNet as our foundation for
training. Initially, we train AlexNet with a specific structure
comprising Conv2d layer, Relu layer, Conv2d layer, Relu
layer, Max Pooling, Dropout, FC layer, Relu layer, Dropout,
and FC layer, on the original source dataset-MNIST. This
process involves a learning rate of 1.0 and 100 epochs. The
results of the experiment conducted on the unlabeled test set
for the autoeval task are tabulated in Table 2.

Upon comparison of the experimental results presented
in the table, our DAL-based autoeval model stands out as
the leading method. Notably, our approach surpasses the
RMSE benchmark by 1.118 in comparison to ConfScore
(Hendrycks and Gimpel 2017), 1.544 over Entropy (Guil-
lory et al. 2021), 3.528 over FID (Deng and Zheng 2021),
2.809 over ATC (Garg et al. 2022), and 1.791 over KCFCA
(Miao et al. 2023). Our method significantly improves the
upper limit of the autoeval task on the MNIST dataset.

2https://github.com/chenyaofo/pytorch-cifar-models

Dataset Method Model RMSE ↓

CIFIR-10

equal-frequency DAL-c 5.306
equal-width DAL-c 6.629

equal-frequency DAL-f 4.157
equal-width DAL-f 5.138

MNIST

equal-frequency DAL-c 7.060
equal-width DAL-c 8.386

equal-frequency DAL-f 9.499
equal-width DAL-f 9.093

TinyImageNet

equal-frequency DAL-c 3.271
equal-width DAL-c 3.533

equal-frequency DAL-f 1.344
equal-width DAL-f 1.391

Table 3: Experimental results on equal-frequency or equal-
width binning.

Results on TinyImageNet. To validate the effectiveness
of autoeval models on TinyImageNet, we utilize ResNet-18
as our base-trained model. Our first step involves training
ResNet-18 on the original source dataset-TinyImageNet, us-
ing SGD optimizer. This process uses a learning rate of 0.1
and 100 epochs. The results of experiments on the unlabeled
test set for the autoeval task are tabulated in Table 2.

Upon review of the table, it is evident that our method
outperforms all previous autoeval methods, achieving new
state-of-the-art performance. Specifically, our approach sur-
passes the RMSE benchmark by 2.259 in comparison to
ConfScore (Hendrycks and Gimpel 2017), 2.228 over En-
tropy (Guillory et al. 2021), 0.114 over FID (Deng and
Zheng 2021), 2.109 over ATC (Garg et al. 2022), and 0.008
over KCFCA (Miao et al. 2023). This demonstrates that
DAL-based autoeval methods hold a competitive advantage.

Results on ImageNet. To validate the effectiveness of au-
toeval models on ImageNet, we utilize the trained ResNet-
18 pretrained by Pytorch3 as our base-trained model. The
results of experiments on the unlabeled test set for the auto-
eval task are tabulated in Table 2.

Based on the table, it shows that our method achieves
the best performance. Specifically, our approach surpasses

3https://github.com/pytorch/vision/tree/main/torchvision
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DAL-c DAL-fNo. Buckets equal-f equal-w equal-f equal-w

1 5 5.258 6.902 4.328 5.069
2 10 5.306 6.629 4.157 5.138
3 20 5.328 6.479 4.146 5.092
4 30 5.365 6.331 4.234 5.068
5 40 5.375 6.253 4.324 5.077
6 50 5.409 6.184 4.371 5.072

Table 4: Experimental results on different quantities of buck-
ets with ResNet-56 trained model based on the CIFIR-10
dataset. “equal-f” means the equal-frequency binning, and
“equal-w” means the equal-width binning.

RMSE by 0.665 in comparison to ConfScore (Hendrycks
and Gimpel 2017), 0.962 over FID (Deng and Zheng 2021),
1.088 over ATC (Garg et al. 2022), 0.641 and over KCFCA
(Miao et al. 2023).

Ablation Study
Experiment on equal-frequency or equal-width binning.
Either equal-frequency binning or equal-width binning can
be utilized for the bucket binning of unit information. Com-
prehensive comparative experiments are conducted to verify
the effects of these different binning methods. We conduct
ablation studies on ResNet-56 trained model for CIFIR-10,
AlexNet trained model for MNIST, and ResNet-18 trained
model for TinyImageNet in Table 3.

It can be observed from the table that equal-frequency
binning outperforms equal-width binning with the settings
of DAL-c and DAL-f on CIFIR-10, DAL-c on MNIST, and
DAL-c and DAL-f on TinyImageNet. Nonetheless, with the
settings of DAL-f on MNIST, equal-width binning performs
better than equal-frequency binning. The results of the corre-
lational analysis presented in Table 3 indicate that the DAL
model based on equal-frequency binning performs almost
consistently better than the DAL model based on equal-
width binning. Hence, in our DAL-based autoeval methods,
we prioritize utilizing the equal-frequency binning-based
DAL model. Moreover, all experiment results in Tables 1
and 2 are obtained using equal-frequency binning.

Experiment on different quantities of buckets. Our
DAL involves setting the number of buckets. The number
of buckets reflects the local information range of the infor-
mation distribution. We perform detailed experiments with
ResNet-56 trained model based on the CIFIR-10 dataset, and
the results are presented in Table 4.

A more in-depth examination of the table indicates that
the performance of the autoeval model is not always directly
proportional to the number of buckets. For confidence-based
DAL models with equal-frequency binning, the higher the
number of buckets, the better the performance. However, for
confidence-based DAL models with equal-width binning,
the results are the opposite. For feature-based DAL models,
there is no clear correlation between the number of buckets
and the performance, regardless of whether equal-frequency

Figure 3: The illustration of the accuracy of trained model
on sample datasets. The numbers mean the RMSE bewteen
the predicted accuracy and ground truth accuracy on various
sample datasets. Our DAL achieves the best performance.

binning or equal-width binning is used. Overall, in our DAL-
based autoeval methods, we prioritize adopting 10 buckets.
Moreover, all experimental results in Tables 1 and 2 are ob-
tained using 10 buckets.

Overall Analysis
In conclusion, our proposed methodology has demonstrated
state-of-the-art performance on all four datasets, as evi-
denced by the rigorous experimentation presented in Tables
1 and 2. Moreover, our approach exhibits excellent robust-
ness across different trained models, further highlighting its
effectiveness (Tables 1 and 2). Of particular note, the data
presented in the tables and Figure 3 suggests that unsuper-
vised model evaluation can produce results that are compa-
rable to those obtained using supervised model evaluation.
This finding is both surprising and significant, as it suggests
the possibility of achieving reliable model validation with-
out the need for extensive labeled data sets. We believe that
our work can provide valuable insights and ideas for the on-
line validation of AI models.

Conclusion
To enhance the stability and reliability of online AI models,
we propose a novel approach called Divide-and-Aggregate
Learning (DAL) for unsupervised model evaluation. Unlike
existing methods, DAL eliminates the need for manual la-
beling, enabling real-time online evaluation of model per-
formance. By incorporating local sample information, DAL
goes beyond considering only the global dataset informa-
tion, thus ensuring a more comprehensive assessment. One
notable advantage of our approach is its ability to simulta-
neously handle both the confidence distribution and feature
distribution of the model output. We hope that our work con-
tributes to the advancement of safe and effective AI model
applications in our daily lives.
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