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Abstract

Deep Evidential Regression (DER) places a prior on the orig-
inal Gaussian likelihood and treats learning as an evidence
acquisition process to quantify uncertainty. For the valid-
ity of the evidence theory, DER requires specialized acti-
vation functions to ensure that the prior parameters remain
non-negative. However, such constraints will trigger evidence
contraction, causing sub-optimal performance. In this paper,
we analyse DER theoretically, revealing the intrinsic limita-
tions for sub-optimal performance: the non-negativity con-
straints on the Normal Inverse-Gamma (NIG) prior parame-
ter trigger the evidence contraction under the specialized ac-
tivation function, which hinders the optimization of DER per-
formance. On this basis, we design a Non-saturating Uncer-
tainty Regularization term, which effectively ensures that the
performance is further optimized in the right direction. Ex-
periments on real-world datasets show that our proposed ap-
proach improves the performance of DER while maintaining
the ability to quantify uncertainty.

Introduction
Deep Learning has been highly successful for a decade and
is widely applied in various research areas such as Data Min-
ing (Xu et al. 2023), Natural Language Processing (Zhang
et al. 2023), and Computer Vision (Kirillov et al. 2023). De-
spite the attractiveness of Deep Learning, their deployment
in high-risk domains such as Weather Prediction (Bi et al.
2023), Vehicle Control (Choi et al. 2019) and Medical Di-
agnostics (Seebock et al. 2020) is still limited, which is at-
tributed to the fact that Deep Learning models are subject to
uncertainty.

Due to the powerful fitting capability, Deep Learning
might lead to over-confident predictions. If the failure to
provide reliable uncertainty quantification for prediction, it
has catastrophic consequences (Amini et al. 2020). There-
fore, Uncertainty Quantification has received widespread
attention and is considered as one of the foundations for
building safe and reliable Deep Learning systems(Guo et al.
2017a; Lakshminarayanan, Pritzel, and Blundell 2017; Gal
and Ghahramani 2015).

*Corresponding Author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Performance Comparison on seven real-world
datasets from UCI Regression benchmark. Both RMSE and
MAE, smaller is better. It is evident that, in contrast to stan-
dard regression methods, DER exhibits noticeably poor per-
formance across several datasets.

In recent years, significant progress has been made in un-
certainty quantification, such as Bayesian methods (Kendall
and Gal 2017) and Deep Ensemble(Lakshminarayanan,
Pritzel, and Blundell 2017; Zaidi et al. 2021). However,
these methods are limited by the difficulties in approximat-
ing posterior computation or the high cost of sampling, and
cannot achieve fine-grained uncertainty quantification (Ma-
linin and Gales 2018; Amini et al. 2020). To address these
issues, (Amini et al. 2020) proposed the Deep Evidential Re-
gression (DER). The DER places Normal Inverse-Gamma
(NIG) priors on the likelihood function and formulates
learning as an evidence acquisition process. Due to only
minor modifications to neural networks without the sam-
pling and the ability to quantify both epistemic and aleatoric
uncertainties in a single forward pass, DER have gained
widespread adoption (Liu et al. 2021; Chen, Bromuri, and
van Eekelen 2021; Singh et al. 2022; Petek et al. 2022; Li
and Liu 2022; Amini et al. 2020; Ma et al. 2021; Charpen-
tier et al. 2022; Oh and Shin 2022; Pandey and Yu 2023a).
Despite the attractive ability for uncertainty quantification,
the DER’s error is noticeably bigger than standard regres-
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sion methods, even in generic scenarios, as shown in Fig. 1.
This misalignment with the pursuit of lower error in regres-
sion task poses a challenge for DER’s deployment.

In this paper, we theoretically analyse Deep Evidential
Regression (DER) to explore the intrinsic hindrances in its
performance gap compared to standard regression. Specif-
ically, to ensure the validity of the evidence theory, the
DER require specialized activation functions to guarantee
the non-negativity of the NIG prior parameters. However,
such constraints could potentially result in evidence con-
traction, i.e., evidence from the data is insufficient to sup-
port the prediction. On this basis, we further elucidate how
DER’s performance is hindered when the evidence contrac-
tion occurs, analysing the role of different NIG parameters.
Finally, we design a Non-saturating Uncertainty Regulariza-
tion term, which effectively ensures that the gradient is fur-
ther optimized in reducing the error. Experiments on sev-
eral real-world datasets show that our method is effective in
the prediction error of DER, while barely compromising the
ability to quantify uncertainty.

The main contributions of this paper are as follows:

• We theoretically show that ensuring non-negativity of
NIG prior parameter triggers evidence contraction. Next,
we prove that evidence contraction hinders performance
and is largely attributable to virtual observation ν.

• We design a Non-saturated Uncertainty Regularization
term, which effectively ensures that the gradient is fur-
ther optimized in the right direction and improves the
performance of DER.

• Experiments on several real-world datasets demonstrate
the effectiveness of our method.

Related Wok
Uncertainty Quantification in Deep Learning. The un-
certainty quantification is essential for reliable Deep Learn-
ing systems. Bayesian Neural Network (BNN) place pri-
ors on model weights, explicitly modeling network parame-
ters as random variables and quantify uncertainty by learn-
ing the posterior over parameters (Abdar et al. 2021). But,
with a large number of parameters, it’s posterior probabil-
ity of Bayesian networks is intractable. Therefore, several
Bayesian approximation methods have been proposed, such
as Markov Chain Monte Carlo (MCMC) (Karras et al. 2022)
and Stochastic Gradient MCMC (SG-MCMC) (Welling and
Teh 2011). But those methods heavily rely on sampling
from the posterior distribution, which leads to increased
computational costs. Another well-known Bayesian approx-
imation method is Monte Carlo Dropout (MC dropout)
(Gal and Ghahramani 2016). It treats dropout layers as
Bernoulli-distributed random variables, and training the net-
work with Dropout layer can be interpreted as the approx-
imation to variational inference. However, MC dropout re-
quires significant modifications to the training process and
come with high computational costs. Additionally, they are
unable to distinguish between epistemic and aleatoric un-
certainty. Unlike the Bayesian perspective, frequentist re-
searchers have a unique insight to uncertainty quantifica-
tion and have proposed deep ensemble (Pearce, Leibfried,

and Brintrup 2020; Lakshminarayanan, Pritzel, and Blun-
dell 2017). This method builds an ensemble of neural net-
works and uses the inconsistency among ensemble mem-
bers to quantify uncertainty. However, ensemble-based ap-
proaches significantly increase the number of model param-
eters, resulting in inevitable computational overhead.

Evidential Neural Network. The Evidential Neural Net-
work (ENN) are based on the Dempster-Shafer evidence the-
ory (DST) (Sentz and Ferson 2002), which formulates the
learning process as an evidence acquisition from data. The
Evidential Neural Network can be classified into two cate-
gories: Dirichlet-based Evidence Network (Dirichlet-based
EN) for classification (Sensoy, Kaplan, and Kandemir 2018;
Bao, Yu, and Kong 2021; Zhao et al. 2020), and Normal-
Inverse Gamma-based Evidence Network (NIG-based EN)
for regression (Amini et al. 2020; Pandey and Yu 2022).
The Dirichlet-based EN introduces Dirichlet priors on the
evidence classification multinomial likelihood, which can
quantify both aleatoric and epistemic uncertainty without the
need for out-of-distribution (OOD) auxiliary data. Deep Ev-
idence Regression (Amini et al. 2020) is a exemple for NIG-
bsed EN, which introduces the Normal-Inverse Gamma
(NIG) evidence prior on the original Gaussian likelihood
function to quantify uncertainty. The NIG evidence prior is
considered as a higher-order evidence distribution over un-
known lower-order likelihood distributions, from which ob-
served results can be inferred.

Theoretical Analysis of Evidential Models. Despite the
popularity of ENN, some studies have raised theoreti-
cal shortcomings. According to (Bengs, Hüllermeier, and
Waegeman 2022), they argue that classical Dirichlet-based
EN fails to incentivize learners to faithfully predict their
epistemic uncertainty due to its sensitivity to regularization
parameters. Addressing above issue, (Bengs, Hüllermeier,
and Waegeman 2023) introduces second-order scoring rules
to assess the credibility of the cognitive uncertainty in ev-
idence models. Similar issues also exist in NIG-based EN,
as highlighted by (Meinert, Gawlikowski, and Lavin 2023),
which investigates the problem of excessive parameteriza-
tion in uncertainty representation and explores its unreason-
able effectiveness. Meanwhile, (Pandey and Yu 2023b) sug-
gests that the non-negativity constraint on Dirichlet prior
parameters may lead to poor predictive performance and
proposes the concept of ”zero-evidence regions” to explain
this phenomenon. Unlike the Dirichlet prior, the NIG prior
has four parameters, and the impact of non-negativity con-
straints on performance is more complex, which is also one
of the challenges of this paper. On the other hand, (Oh and
Shin 2021) proposes that high uncertainty can cause high
errors and attempts to alleviate this issue from a multi-task
learning perspective. However, it falls short in providing ad-
ditional insights from the evidence model’s perspective.

In this paper, we focus on Deep Evidential Regression
(DER) and investigate how the non-negativity prior con-
straint in NIG hinders model prediction (γ) optimization.
Building on theoretical analysis, we propose a novel regu-
larization term to facilitate the broader applicability of Deep
Evidential Regression in real-world practical scenarios.
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Figure 2: Deep Evidential Regression. Among them, A rep-
resents the four parameters of the NIG distribution, three of
which, α, β, ν, need to pass through the activation function
to ensure the reasonableness of the NIG. It is imperative:
γ ∈ R, ν > 0, α > 1, β > 0

Preliminary
Problem Definition
In this paper, we shall look into supervised regression learn-
ing: given a dataset, D = {xi, yi}Ni=1, we aim to learn a
model f with a set of weights, θ, that can be formalized as
follows:

argmin
θ

J(θ) =
1

N

N∑
i=1

Li(θ) (1)

where Li(·) denotes a loss function, N denotes the dataset
size. In this paper, we aim to learn a model to infer θ that
maximize the likelihood of observing our targets value, y,
given by p(yi|θ).

Deep Evidential Regression
The research foundation of this paper builds on Deep Evi-
dential Regression (DER) (Amini et al. 2020). We assume
that the target values, yi, is drawn from a Gaussian distri-
bution and obeys i.i.d, but its variance (σ2) and mean (µ)
are unknown. Our intention is to quantify uncertainty by
estimating the variance and mean of the target value. DER
model this by placing a prior distribution on (µ, σ2). Thanks
to existing statistical knowledge, the Gaussian prior can be
employed as a conjugate prior for the unknown mean, while
the Inverse-Gamma prior is for the unknown variance:

(y1, . . . , yN ) ∼ N (µ, σ2)

µ ∼ N (γ, σ2ν−1) σ2 ∼ Γ−1(α, β). (2)

where Γ(·) is the gamma function.
Our intention is to estimate a posterior distribution of vari-

ance (σ2) and mean (µ): q(µ, σ2) = p(µ, σ2|y1, . . . , yN ).
The Normal Inverse-Gamma (NIG) prior can be obtained:

p(µ, σ2︸ ︷︷ ︸
θ

| γ, ν, α, β︸ ︷︷ ︸
m

) =

βα
√
ν

Γ(α)
√
2πσ2

(
1

σ2

)α+1

exp

{
−2β + ν(γ − µ)2

2σ2

} (3)

where Γ(·) is the gamma function, note m = (γ, ν, α, β),
and satisfy γ ∈ R, ν > 0, α > 1, β > 0.

Prediction and Uncertainty Estimation Aleatoric uncer-
tainty, also known as data uncertainty, arises from the com-
plexity inherent in the data itself, such as label noise. Epis-
temic uncertainty, also known as model uncertainty, arises
from the model’s lack of knowledge (Gawlikowski et al.
2021). DER can output four parameters of NIG, m =
(γ, ν, α, β). Utilizing these parameters, we can compute the
prediction, aleatoric uncertainty, and epistemic uncertainty
as:

E[µ] = γ︸ ︷︷ ︸
prediction

, E[σ2] = β
α−1︸ ︷︷ ︸

aleatoric

, V ar[µ] = E[σ2]
ν︸ ︷︷ ︸

epistemic

. (4)

Evidence and Virtual Observation (Amini et al. 2020)
define the total evidence: Φ = 2ν + α, which is based
on a heuristic Bayesian interpretation of the NIG prior pa-
rameters. (Amini et al. 2020; Jordan 2009; Meinert, Gaw-
likowski, and Lavin 2023) interprets the parameters of the
NIG distribution as the count of virtual observation that pro-
vide support for the given attributes. For instance, NIG’s
mean can be intuitively understood as an estimation derived
from ν virtual observation samples, where the sample mean
of these virtual observations is γ. The more such virtual
observations are available, the more reliable the estimation
of the NIG mean becomes. Following from this interpre-
tation, evidence is composed of virtual observations, and
the quantity of virtual observations directly determines the
magnitude of the evidence. As a result, the total evidence,
Φ = 2ν + α, holds a physical interpretation, representing
the sum of all virtual observation counts.

Learning the Evidential Distribution
Deep Evidential Regression estimates the variance σ2 and
mean µ of the target value y by learning a higher-order ev-
idence distribution, m = {γ, α, ν, β}, which can be ex-
pressed as the marginal likelihood:

p(y|m) =

∫ σ2=∞

σ2=0

∫ µ=∞

µ=−∞
p(y|µ, σ2)p(µ, σ2|m)dµdσ2

(5)
An analytical solution exists for this marginal likelihood:

p(yi|m) = St
(
yi; γ,

β(1 + υ)

υ α
, 2α

)
. (6)

where St (y; l, s, n) is the Student-t distribution evaluated at
y with location l, scale s, and n degrees of freedom. Deep
Evidential Regression denote the loss, LNLL

i (w), as the neg-
ative logarithm of model evidence:

LNLL(y,m) = 1
2 log(

π
ν )− α log Λ

+ (α+ 1
2 ) log((y − γ)2ν + Λ) + log( Γ(α)

Γ(α+
1
2 )
)

(7)

where Ω = 2β(1 + ν). This loss objective can drive the
model to output the parameters of the NIG by maximising
the evidence to fit the observations.
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Theoretical Analysis of Learning Deficiency in
Deep Evidential Regression

In this section, we conduct a theoretical analysis of Deep
Evidential Regression (DER) and reveal inherent limitations
that result in sub-optimal performance: with the specialized
activation function, the NIG prior parameter would be zero,
which triggers evidence contraction. And then the evidence
contraction leads to a zero gradient of the NLL loss to pre-
diction and stops the optimization.

Ensuring Non-Negativity of NIG Parameters
Triggers Evidence Contraction
Deep Evidential Regression places a higher-order evidence
prior, the Normal-Inverse Gaussian (NIG), on the original
likelihood function. Due to strict mathematical definitions,
the three parameters of NIG need to satisfy non-negativity:
{ν > 0, α > 1, β > 0}. In this subsection, we reveal that
such non-negativity constraints on the parameters trigger ev-
idence contraction.

Definition 1. Evidence Contraction For Deep Evidential
Regression, total evidence is comprised of virtual observa-
tions. When the virtual observations decreases, it causes the
total evidence to get smaller. Smaller total evidence implies
that the model derives less support for the prediction from
the data. We define this phenomenon as Evidence Contrac-
tion.

Theorem 1. Given a training sample x, the logits of
the Deep Evidential Regression is denoted as o =
{oγ , oα, oν , oβ}, and m = {γ, α, ν, β} is the final output
after activation function. The virtual observation counts are
denoted as α, ν, and together they form the total evidence. If
the evidence network outputs zero virtual observations and
the gradient of the NLL loss with respect to virtual obser-
vations is zero, it indicates that evidence contraction is oc-
curring.

Proof. Considering inputs x with target y. Let o =
{oγ , oα, oν , oβ} represent original logits before activate
function, and m = {γ, α, ν, β} is the final output after ac-
tivation function, and α, ν represent the virtual observation
counts, and Φ = 2ν + α denotes total evidence supporting
the prediction.

α = Act(oα) + 1, ν = Act(oν), β = Act(oβ) (8)

In Deep Evidential Regression, the loss objective is given by
Eq. 7. Now, compute gradients of the NLL loss with respect
to both α and ν:

∂LNLL

∂α
= log(1 +

(y − γ)2ν

2β(ν + 1)
) + Ψ(α)−Ψ(α+ 1

2 ) (9)

∂LNLL

∂ν
= − 1

2ν − α
ν+1 + (α+ 1

2 )
(y − γ)2 + 2β

(y − γ)2ν + 2β(1 + ν)
(10)

where Ψ(·) represents the digamma function, Ψ(x) =
d ln Γ(x)

dx = Γ′(x)
Γ(x) . Next, we take gradients with respect to

the original output for oα, oν :

∂LNLL

∂oα
=

∂LNLL

∂α

∂α

∂oα
(11)

∂LNLL

∂oν
=

∂LNLL

∂ν

∂ν

∂oν
(12)

Consider the activation function to be the softplus:

α = log (1 + eoα) ⇒ ∂α

∂oα
=

1

1 + e−oα
(13)

ν = log (1 + eoν ) ⇒ ∂ν

∂oν
=

1

1 + e−oν
(14)

When oν(or oα) → −∞, the virtual observation ν (or α)
are also zero, and the gradient of virtual observation ν (or α)
becomes zero:

lim
oν→−∞

log(1 + eoν ) = 0 (15)

lim
oν→−∞

1

1 + e−oν
= 0 (16)

The same result applies to α, and further elaboration is un-
necessary. The conclusion is the same when considering the
activation function as an exponential function.

Mark: Does zero virtual observation exist ? It is crucial
to understand the practical scenarios of evidence contraction
(EC). EC might arise when facing hard samples, such as un-
seen samples. For hard samples, the NLL loss would proba-
bly be larger, and in EDR, such loss will backward to jointly
optimize uncertainty and prediction performance. Accord-
ing to Eq.4 and the fact that EDR model being trained is
uncertain on hard samples, this backward process will re-
duce the ov value. When ov is continuously reduced, then ν
= act(ov) and its gradient will approach zero. As a result, ν
will make the model stops optimizing performance, includ-
ing the error term (y − γ)2 based on Eq. 17. Therefore, the
error information cannot be used to adaptively balance the
parameter learning. This means that NLL cannot avoid ev-
idential contraction on their own. In a more intuitive way,
when facing many hard samples, EDR model will tend to
slack off (since ov is optimized to be reduced), and blaming
all inaccuracies on uncertainty.

Evidence Contraction Hinders Optimal
Performance
Based on the Bayesian interpretation of virtual observation
and the theoretical foundation presented earlier, we believe
that the virtual observation ν is related to the mean esti-
mation of the NIG prior. Therefore, evidence contraction
caused by ν will primarily affect the precision prediction,
leading to sub-optimal performance.

Theorem 2. For Deep Evidential Regression, when evi-
dence contraction occurs, it leads to sub-optimal perfor-
mance. That is primarily attributed to the virtual observa-
tion ν associated with the NIG mean (µ).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21729



Proof. Calculate the gradient of the NLL loss with respect
to ν:

∂LNLL

∂γ
= −(2α+ 1)

(y − γ)ν

(y − γ)2 + 2β(1 + ν)
(17)

Next, we analyse the impact of virtual observations α and ν
on the aforementioned gradients:

lim
ν→0+

∂LNLL

∂γ
= 0 (18)

lim
α→1+

∂LNLL

∂γ
= −3 · (y − γ)ν

(y − γ)2 + 2β(1 + ν)
(19)

Eq. 18 indicates that as ν tends to zero, the limit of the gra-
dient of the NLL loss with respect to γ degenerates to zero.
At this point, evidence model will stop optimization with
regard to γ, even for sub-optimal performance. Unlike the
behaviour of ν, Eq. 19 shows that there is a non-degenerate
relationship between α and the gradient of the NLL loss
with respect to γ. Therefore, we can conclude that evidence
contraction leads to sub-optimal performance, which is pri-
marily attributed to the virtual observed ν related to estima-
tion of NIG mean (µ).

Continuing Optimization through
Non-saturating Uncertainty Regularization

Due to the intrinsic properties of the NIG prior, it is neces-
sary to satisfy non-negativity, {ν > 0, α > 1 , β > 0},
when running Deep Evidential Regression. However, under
certain conditions, the parameters passed through the acti-
vate function tend to approach zero, causing the virtual ob-
served to approach zero, resulting in evidence contraction.
This implies that the model is no longer deriving knowledge
from the data. An inevitable consequence is that the model is
underfitting, reducing performance. Furthermore, we reveal
that the impact of the virtual observed ν on performance is
more severe. Therefore, mitigating the influence of evidence
contraction on performance can be done in one ways: ensur-
ing gradients during evidence contraction is non-zero.

In this paper, we consider an evidence model with the ex-
ponential activation function to transform logits into NIG
parameters α and ν. We propose a novel Non-saturating Un-
certainty Regularization term:

LU = (y − γ)2
ν(α− 1)

β(ν + 1)
(20)

Where ν(α−1)
β(ν+1) is the inverse of total uncertainty.

Theorem 3. Non-saturating Uncertainty Regularization
term ensures that there is a gradient to the prediction ev-
erywhere in the domain of definition, thus improving perfor-
mance.

Proof. We calculate the gradient of LU with respect to γ
as:

∂LU

∂γ
=

{
− ν(α−1)

β(ν+1) if y > γ
ν(α−1)
β(ν+1) if y < γ

(21)

LU freezes the gradient of the total uncertainty, so α, β, ν
will not be updated by LU . This means that we heuristically
set a lower bound to ensure that the gradient of the NLL
loss with respect to γ dose not degenerates to zero. There-
fore, during the training process, the Non-saturated Uncer-
tainty Regularization can ensure that there is a gradient to
the prediction everywhere and optimized in the direction of
the correct gradient.

We formulate an overall objective used to train Deep Ev-
idential Regression. In our proposed methodology, the ev-
idential model is trained to maximize the correct evidence
and avoid the Evidence Contraction during training. The
overall loss is:

L(x, y) = LNLL(x, y) + η1LR + η2LU (22)
Where LNLL is defined by Eq. 7. The LR is the evidence
misdirection regularization term proposed by (Amini et al.
2020), defined as: LR = |y−γ|·(2ν+α), the ability to min-
imize evidence on errors. And the LU is the non-saturating
uncertainty regularization term introduced in this paper to
prevent evidence contraction.

Experiments
We first demonstrate the limitations of existing Deep Evi-
dential Regression to confirm our theoretical findings. Then,
we evaluated the proposed Non-saturating Uncertainty Reg-
ularization term to show its effectiveness. Finally, we con-
duct additional empirical analyses to provide more insights
about our method.

Dataset and Setup We consider the regression problem
with UCI regression benchmark 1, Drug-target affinity re-
gression (Shin et al. 2019) and Sentiment Analysis task.
Specifically, we use two classical datasets: Davis (Davis
et al. 2011) and Kiba (Tang et al. 2014). For the UCI re-
gression dataset, our model setup is kept consistent with ex-
isting works (Amini et al. 2020; Oh and Shin 2022). For
the Drug-target affinity regression, our experimental setup
remained consistent with DeepDTA (Öztürk, Özgür, and
Ozkirimli 2018). For the Sentiment Analysis task, we use
Stanford Sentiment Treebank (SST-5)2 and we choose the
BERT-based sentiment regression (Munikar, Shakya, and
Shrestha 2019) as the backbone. Our code is available here:
github.com/yuelfei/evi con.

Evaluation Metric For UCI Benchmark regression
datasets, our evaluation metrics include RMSE (Root Mean
Squared Error), NLL (Negative Log-Likelihood). For Drug-
target affinity regression dataset and Sentiment Analysis task
dataset, the MSE (Mean-Square Error), NLL (Negative Log-
Likelihood), ECE (Expected Calibration Error) (Guo et al.
2017b), and CI (Concordance Index) (Yu et al. 2011) are
adopted, which is aligned with existing paper (Amini et al.
2020; Oh and Shin 2022).

1UCI: https://archive.ics.uci.edu/
2SST-5: https://nlp.stanford.edu/sentiment/
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RMSE↓
Dataset MC dropout Vanilla DER MT-DER Ours

Boston 2.97 ( 0.19) 3.06 ( 0.16) 3.04(0.21) 2.67(0.17)
Concrete 5.23 ( 0.12) 5.85 ( 0.15) 5.60(0.17) 5.82(0.21)
Energy 1.66 ( 0.04) 2.06 ( 0.10) 2.04(0.07) 1.83(0.06)
Kin8nm 0.10 ( 0.00) 0.09 ( 0.00) 0.08(0.00) 0.06(0.00)
Naval 0.01 ( 0.00) 0.00 ( 0.00) 0.00(0.00) 0.00(0.00)
Power 4.02 ( 0.04) 4.23 ( 0.09) 4.03(0.07) 3.02(0.00)
Protein 4.36 ( 0.01) 4.64 ( 0.03) 4.73(0.07) 4.18(0.02)
Wine 0.62 ( 0.01) 0.61 ( 0.02) 0.63(0.01) 0.56(0.01)
Yacht 1.11 ( 0.09) 1.57 ( 0.56) 1.03(0.08) 1.49(0.13)

NLL↓
Dataset MC dropout Vanilla DER MT-DER Ours

Boston 2.46 ( 0.06) 2.35 ( 0.06) 2.31(0.04) 2.31(0.06)
Concrete 3.04 ( 0.02) 3.01 ( 0.02) 2.97(0.02) 3.11(0.03)
Energy 1.99 ( 0.02 ) 1.39 ( 0.06) 1.17(0.05) 1.36(0.03)
Kin8nm -0.95 ( 0.01) -1.24 ( 0.01) -1.19(0.01) -1.27(0.02)
Naval -3.80 ( 0.01) -5.73 ( 0.07) -5.96(0.03) -5.87(0.04)
Power 2.80 ( 0.01) 2.81 ( 0.07) 2.75(0.01) 2.58(0.01)
Protein 2.89 ( 0.00) 2.63 ( 0.00) 2.64(0.01) 2.69(0.05)
Wine 0.93 ( 0.01) 0.89 ( 0.05) 0.86(0.02) 0.89(0.08)
Yacht 1.55 ( 0.03) 1.03 ( 0.19) 0.78(0.06) 0.94(0.15)

Table 1: UCI Benchmark regression datasets. The perfor-
mance on RMSE and NLL. We bold the top two best results,
n = 20 for sampling baselines.

Learning Deficiency of Evidential Models
We conduct an empirical study on a real-world Senti-
ment Analysis dataset (SST-5), instead of building a toy
dataset. Consider the baseline model is (Munikar, Shakya,
and Shrestha 2019), and the training loss is the same as the
Vanilla DER. As shown in Fig. 3, we compare three meth-
ods: ReLU-DER, Exp-DER, and Standard Regression. For
the ReLU-DER, when the model’s logits is negative, it is
compressed directly to zero through ReLU activation, in-
dicating the severe evidence contraction. Although in Exp-
DER, evidence contraction also occurs, but compared with
ReLU, the function image of Exp is more gentle and ev-
idence contraction is less severe. From Fig. 3, it can be
observed that standard regression achieves the best MSE
score, followed by Exp-DER, while ReLU-DER fares the
worst. We find that more severe evidence contraction leads
to poorer performance, confirming our theoretical claim that
evidence contraction hampers model performance.

Effectiveness of the Our Methods
UCI Regression Benchmark As shown in Table 1,
we perform a comparison with Mc dropout (Gal and
Ghahramani 2016), Deep Evidential Regression (Vanilla
DER) (Amini et al. 2020) and Multi-task Deep Evidential
Regression (MT-DER) (Oh and Shin 2022) on UCI regres-
sion benchmark datasets. The experimental setup remains
consistent with (Amini et al. 2020; Oh and Shin 2022).
Our method attains the best or comparable RMSE across all
datasets and achieves the best NLL on several datasets, thus
demonstrating the effectiveness of our method. Compared
with Vanilla DER, our method achieves superior RMSE val-

Figure 3: We compare three methods: the ReLU-DER, the
Exp-DER and the Standard Regression.The ReLU-DER is
the DER that uses ReLU as the activation function, as does
the Exp-DER.

Davis
MSE ↓ CI ↑ ECE ↓ NLL ↓

MC dropout 0.25(0.01) 0.89(0.00) 0.22(0.01) 0.63(0.02)
Vanilla DER 0.28(0.00) 0.86(0.02) 0.15(0.02) -2.34(0.42)
MT-DER 0.27(0.01) 0.86(0.01) 0.16(0.03) -2.42(0.07)
Ours 0.26(0.01) 0.87(0.03) 0.14(0.10) -2.37(0.08)

Kiba
MSE ↓ CI ↑ ECE ↓ NLL ↓

MC dropout 0.18(0.00) 0.87(0.00) 0.16(0.01) 0.47(0.01)
Vanilla DER 0.19(0.00) 0.89(0.00) 0.08(0.03) -1.54(0.05)
MT-DER 0.18(0.00) 0.89(0.00) 0.07(0.01) -1.43(0.07)
Ours 0.18(0.01) 0.89(0.03) 0.05(0.02) -1.44(0.05)

Table 2: The performance evaluation results on the DTA
benchmark datasets.‘↑’ denotes the higher the better, ‘↓’ de-
notes the lower the better. We bold the top two best results.

ues across all datasets, and better or competitive NLL on
all datasets. Even for MT-DER, our method achieves bet-
ter RMSE and NLL on several datasets. This demonstrates
that our method improves the prediction performance while
maintaining the ability for uncertainty quantification.

Drug-target affinity regression As shown in Table 2, we
evaluate the performance on two datasets: Davis and Kiba.
For Davis, our method achieves better performance on all
four metrics compared to Vanilla DER. The results demon-
strates that our method can improve the predictive perfor-
mance of the model while maintaining the ability of DER for
uncertainty quantification. And, our method achieved bet-
ter MSR, CI and ECE scores compared to MT-DER. De-
spite the decrease in NLL scores, our method is superior as
far as model calibration capability (depends on CI) is con-
cerned. For Kiba, we outperform Vanilla DER and MT DER
on MSE, CI, and ECE. The NLL scores outperform MT-
DER but underperform Vanilla DER, which we attribute to
insufficient evidence due to the sparsity of the Kiba dataset.
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SST-5
MSE ↓ CI ↑ ECE ↓ NLL ↓

Vanilla DER 0.54(0.02) 0.78(0.01) 0.09(0.02) 1.09(0.02)
MT-DER 0.54(0.01) 0.78(0.00) 0.09(0.02) 1.09(0.02)
Ours 0.52(0.01) 0.79(0.00) 0.11(0.02) 1.07(0.03)

Table 3: The performance evaluation results on the SST-5
benchmark datasets.‘↑’ denotes the higher the better, ‘↓’ de-
notes the lower the better. We bold the top two best results.

Figure 4: Compared the Vanilla DER with different activa-
tion functions (Exp, Softplus and ReLU) and our method to
ablate the variables of the activation function.

Sentiment Regression Dataset As shown in Table 3, we
conducted experiments on the Sentiment Analysis dataset.
The results show that our method almost outperforms
Vanilla DER and MT-DER on MSE, CI and NLL. On ECE,
our method also achieves scores close to Vanilla DER and
MT-DER. The results indicate our method can improve pre-
dictive performance while also enhancing or maintaining
uncertainty quantification.

Empirical Analyses
Different activation functions. As shown in Fig. 4, we
conduct ablation experiments on the different activation
function. SST-5 is used here. The comparison with our
method when Vanilla is paired with different activation func-
tions (Exp, Softplus and ReLU). As can be seen from the
figure, the Exp activation shows better performance because
it has lighter evidence contraction.

Visualisation of total evidence and total uncertainty. As
shown in Fig. 5, we visualise the trends in total evidence and
total uncertainty on the Davis dataset. Total evidence is de-
fined as: Φ = 2ν+α. And the total uncertainty is defined as:
Total Evi = V ar[µ]+E[σ2] = β(ν+1)

ν(α−1) . The top sub-figure
in Fig. 5 shows that during training, our method acquires evi-
dence greater than or equal to Vanilla DER, and at the end of
training the two are comparable. This shows that our method
increases the model’s prediction performance without com-
promising the model’s ability to obtain evidence from the

Figure 5: Trends in total evidence and total uncertainty on
the Davis dataset.

data. This conclusion is also demonstrated on the trend of
total uncertainty, as shown in the bottom sub-figure in Fig. 5.
As the model iterates, the uncertainty derived by our method
drops quickly to a smaller value and stabilises, whereas the
Vanilla DER only drops to the same level after almost 30K
iterations, although the two are comparable at the end of the
training, suggesting that our method learns enough evidence
faster.

Conclusion
In this paper, we delved into evidence contraction in DER:
the non-negativity constraint on Normal Inverse-Gamma
(NIG) prior parameter triggers evidence contraction under
specialized activation functions, thereby hindering the per-
formance. On this basis, we designed a Non-saturating Un-
certainty Regularization that effectively ensures the gradi-
ent in the right direction, consequently enhancing predic-
tive performance. We conducted extensive experiments on
real-world datasets: first, we confirmed the limitations of
the DER; second, we evaluated the proposed Non-saturated
Uncertainty Regularization to show its effectiveness; finally,
we conducted empirical analyses to reveal more properties
of our method. For future work, we will design an inverse
gamma loss with normalization properties to ensure the non-
saturation property of the DER.
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Bengs, V.; Hüllermeier, E.; and Waegeman, W. 2022. Pitfalls
of epistemic uncertainty quantification through loss minimi-
sation. Advances in Neural Information Processing Systems,
35: 29205–29216.
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