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Abstract

Federated learning systems are susceptible to adversarial at-
tacks. To combat this, we introduce a novel aggregator based
on Huber loss minimization, and provide a comprehensive
theoretical analysis. Under independent and identically dis-
tributed (i.i.d) assumption, our approach has several advan-
tages compared to existing methods. Firstly, it has optimal de-
pendence on ϵ, which stands for the ratio of attacked clients.
Secondly, our approach does not need precise knowledge of ϵ.
Thirdly, it allows different clients to have unequal data sizes.
We then broaden our analysis to include non-i.i.d data, such
that clients have slightly different distributions.

Introduction
Due to privacy concerns, there are a large number of iso-
lated information islands, resulting in the difficulty of inte-
grating data from various sources. Under such background, a
novel machine learning framework called Federated Learn-
ing (FL) has arisen in recent years (McMahan et al. 2017).
FL consists of numerous clients that store and compute data
locally, and a central server that plays the role as a coordi-
nator. In comparison to traditional centralized learning, FL
offers distinct advantages in terms of both computational ef-
ficiency and privacy protection. As a result, FL is gaining
increasing attention and has been widely applied in various
domains, including mobile devices, industrial engineering,
and healthcare (Yang et al. 2019; Li et al. 2020).

Nevertheless, FL is facing several severe challenges
(Kairouz et al. 2021), with one of them being the robust-
ness issue. Due to various factors, including data poisoning,
system malfunctions and transmission errors, some clients
may send wrong gradient vectors to the server. Consider that
these abnormal behaviors are hard to predict and may hap-
pen in an unknown manner, it suffices to analyze the most
harmful attack, which is typically modeled as Byzantine fail-
ure (Lamport, Shostak, and Pease 1982). Under this model,
an adversary can modify the gradient values uploaded to the
master in arbitrary way. Without proper handling, even a sin-
gle malicious client can significantly degrade the model per-
formance (Bagdasaryan et al. 2020). Therefore, for the safe
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deployment of FL, it is important to design effective defense
strategies robust to Byzantine attacks.

There have been many existing works on Byzantine robust
federated learning problems. In particular, various gradient
aggregators have been proposed. Krum (Blanchard et al.
2017) picks the gradient vector uploaded from clients with
small nearest neighbor distances. However, the global con-
vergence is not guaranteed. (Chen, Su, and Xu 2017) pro-
posed a geometric median-of-mean method, which ensures
that the model weights converge to a point near to the global
minimum, as long as ϵ < 1/2, with ϵ being the fraction of
Byzantine machines. This method is not perfect since the
error has a suboptimal rate of Õ(

√
ϵd). (Yin et al. 2018)

analyzed two aggregators. The first one, called coordinate-
wise median, is suboptimal if the sample size per client n is
smaller than the number of clients m. Unfortunately, this is
quite likely in practice. The second one is coordinate-wise
trimmed mean, which has optimal dependence with ϵ when
ϵ is small. However, as will be discussed later, if ϵ is close to
1/2, then coordinate-wise trimmed mean is not efficient. An-
other drawback is that this method needs the precise knowl-
edge of ϵ, which is usually not practical. Moreover, the anal-
ysis of these previous methods are based on some simpli-
fied assumption, including independent and identically dis-
tributed (i.i.d) assumption, and that all clients have nearly
equal sample sizes. More theoretical analysis is needed in
realistic scenarios with heterogeneous and unbalanced data.

In this paper, we propose a novel approach to Byzan-
tine robust federated learning, which aggregates gradients
by minimizing a multi-dimensional Huber loss. As a widely
used loss function in robust statistics (Huber 1964, 2004;
Hall and Jones 1990; Zhao and Wan 2023), Huber loss com-
bines the advantages of ℓ1 and ℓ2 loss, and achieves a trade-
off between robustness and consistency. However, the orig-
inal definition of Huber loss was for scalars. We general-
ize the original definition, to make it suitable for vectors. In
each iteration, given a list of gradient vectors uploaded from
clients, the new algorithm obtains the estimated gradient of
the underlying global risk function by minimizing the gener-
alized Huber loss, and then use the outcome as the direction
of parameter update.

We then provide theoretical analysis of the proposed
method. To begin with, it is assumed that training samples
are i.i.d, which is common in most of existing works on

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

21806



Byzantine robust FL (Chen, Su, and Xu 2017; Blanchard
et al. 2017; Yin et al. 2018). Under i.i.d assumption, two
error bounds are derived for balanced and unbalanced data,
respectively. Consider that i.i.d assumption may not be real-
istic, we then make some generalization to allow heteroge-
neous clients. The result shows that our method is robust to
moderate violation of i.i.d assumption. There are several re-
cent works (Li et al. 2019; Pillutla, Kakade, and Harchaoui
2022; Ghosh et al. 2019) that deal with heterogeneous data.
These works are mainly designed for the case that the dif-
ferences between clients are large. In slightly heterogeneous
regime, these methods can not achieve comparable statisti-
cal rates.

Finally, we discuss how to implement our new algo-
rithm. Our design is motivated by Weiszfeld’s algorithm
for calculating the geometric median of a set of vectors
(Weiszfeld and Plastria 2009). We make some adjustments
to Weiszfeld’s algorithm, such that it can minimize the
multi-dimensional Huber loss.

In general, compared with existing methods, our new ap-
proach has several advantages. Firstly, the dependence of
statistical risk on the attack ratio ϵ is nearly minimax op-
timal, up to a logarithm factor. Secondly, our method has
desirable performance with unbalanced data. In particular,
with an adaptive rule of parameter selection, the statistical
rate is the same as the case with balanced data. Thirdly,
many existing methods require the precise knowledge of ϵ
to set parameters, which is usually not practical. On the con-
trary, our method works well under the ϵ-agnostic settings.

Contributions
Our contributions are summarized as follows.

• A multi-dimensional Huber loss minimization approach
to robust federated learning;

• Theoretical analysis of our method for both balanced and
unbalanced data under i.i.d assumption, which also pro-
vides a guideline of parameter selection;

• Extension of the analysis above to heterogeneous clients;
• An implementation algorithm of multi-dimensional Hu-

ber loss minimization;
• Numerical experiments on both synthesized and real

data, which validates the effectiveness of our new
method.

The Proposed Method
In this section, we make a precise statement of the frame-
work of the federated learning problem, and then introduce
our proposed aggregator based on minimization of multi-
dimensional Huber loss.

The framework is shown in Algorithm 1. Suppose there is
a server S0 and m clients S1, . . . , Sm. Denote B as the set
of Byzantine clients. There are N training samples in total,
with each client Si storing ni of them. Denote Zij as the
j-th sample in the i-th client, j ∈ {1, . . . , ni}. Let f(w, z)
be the loss function of model parameter w ∈ W with re-
spect to sample z, in which W ⊂ Rd is the parameter space.

Moreover, define the global risk function as

F (w) = E[f(w,Z)], (1)

in which Z follows the global distribution of training sam-
ples. In particular, under i.i.d assumption, Z just follows
the distribution of arbitrary Zij . Otherwise, with heteroge-
neous clients, Z follows the average distribution of clients
weighted by ni. The goal is to learn the global minimizer

w∗ = argmin
w∈W

F (w). (2)

The algorithm starts with an initial parameter w0 ∈ W ,
At each iteration t = 0, 1, . . ., we find an update wt+1.
Ideally, it would be better if we know ∇F (wt), so that we
can use a simple gradient descent to update w, i.e. wt+1 =
wt − η∇F (wt), in which η is the learning rate. However,
∇F (wt) is unknown in practice. We need to estimate it us-
ing the gradient vectors uploaded from clients. Therefore, at
each iteration t, the master broadcasts parameter wt to all
clients, and then wait for the responses from them. Benign
clients send the estimated gradient vectors back to the mas-
ter, with respect to parameter wt. On the contrary, Byzantine
clients send arbitrary vectors determined by the adversary.
To be more precise, denote Xit as the vector received from
client i at the t-th iteration, then

Xit =

{
1
ni

∑ni

j=1 ∇f(wt,Zij) if i /∈ B
⋆ if i ∈ B, (3)

in which ⋆ means arbitrary vector determined by the adver-
sary. After received Xit for all i = 1, . . . ,m, the master then
updates the parameter w according to the following rule:

wt+1 = ΠW(wt − ηg(wt)), (4)

in which ΠW(·) is an Euclidean projection operator, which
ensures that the model parameter stays in W . This operator
is also used in (Yin et al. 2018; Zhu et al. 2023). η is the
learning rate. g(wt) is the aggregator function, which esti-
mates ∇F (wt) using Xit, i = 1, . . . ,m.

Now it remains to design the aggregator function g(wt).
Our idea is to minimize the Huber loss weighted by the sam-
ple sizes in each clients:

g(wt) = argmin
s

m∑
i=1

niϕi(∥s−Xit∥), (5)

in which ∥·∥ is the ℓ2 norm, and

ϕi(u) =

{
1
2u

2 if |u| ≤ Ti

Tiu− 1
2T

2
i if |u| > Ti

(6)

is the Huber loss function. If clients have equal or nearly
equal sample size ni, then we can let Ti to be the same for all
i. Otherwise, we may use different Ti. With larger ni, we let
Ti to be smaller. We refer detailed discussion on parameter
selection to the next two sections.

Now we explain the intuition of such design. We have two
requirements for a good aggregator: consistency without at-
tack, and robustness under attack. Minimizing ℓ2 loss corre-
sponds to a simple averaging gavg(wt) = (1/m)

∑ni

i=1 Xit,
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Algorithm 1: Byzantine Robust Federated Learning
Input: Master machine S0, working machines S1, . . . , Sm

Parameter: Initial weight parameter w0 ∈ W , learning rate
η, total number of steps T
Output:Estimated weight ŵ

for t = 0, 1, . . . , T − 1 do
Server: broadcast current parameter wt to all clients;
for i = 1, . . . ,m in parallel do

Client i: compute local gradient Gi =
(1/ni)

∑ni

j=1 ∇f(wt,Zij);
if i is benign then
Xit = Gi(wt);

else
Xit is an arbitrary d dimensional vector deter-
mined by the adversary;

end if
send Xit to the server;

end for
Server: Receive Xit, i = 1, . . . ,m from each client;
Calculate aggregated gradient g(wt) using Xit, i =
1, . . . ,m;
Update parameter wt+1 = ΠW(wt − ηg(wt));

end for
return ŵ = wT

which is consistent without attack, but not robust. On the
contrary, minimizing ℓ1 loss yields the geometric median of
Xit, i = 1, . . . ,m, which is robust but not consistent even
without attack. Therefore, we minimize Huber loss, which
combines the advantages of these two methods. At the limit
Ti → ∞, ϕi becomes ℓ2 loss, then g(wt) is just the sam-
ple mean gavg(wt). The opposite limit is Ti → 0, under
which g(wt) is actually the weighted geometric median of
Xit, i = 1, . . . ,m. Between these two extremes, we can set
appropriate Ti to achieve a good tradeoff between consis-
tency and Byzantine robustness.

In the following sections, we provide a theoretical anal-
ysis of the performance of our method. Following previous
works (Yin et al. 2018; Zhu et al. 2023), we discuss three
cases separately, which are stated in Assumption 1:
Assumption 1. Consider the following three types of global
loss function F :

(a) (Strong convex) F is µ-strong convex and L-smooth,
and W is convex;

(b) (General convex) F is convex and L-smooth, with
W = {w| ∥w −w∗∥ ≤ 2 ∥w0 −w∗∥};

(c) (Non-convex) F is L-smooth, and ∥∇F (w)∥ ≤ M for
all w ∈ W .

For all these three cases, we make the following common
assumption on the covering number, which ensures the uni-
form convergence of the aggregator function:
Assumption 2. Assume that there exists constants CW , rD,
such that for all r < rD, the r-covering of W is bounded by
Nc(r) ≤ CW /rd.

Before diving into the detailed analysis, we clarify the no-
tations used in the remainder of this paper first: a ≲ b if

there exists a constant C such that a ≤ Cb. C may depend
on µ, σ, L and CW in the assumptions. Conversely, a ≳ b
means a ≥ Cb. Moreover, a ∼ b means there exists two con-
stants C1 and C2 such that C1b ≤ a ≤ C2b. Furthermore,
a = Õ(b) means a ≤ Cb lnk(N/δ) for some constants C
and k. Denote [m] = {1, . . . ,m} as the set of numbers from
1 to m. ϵ, q are the ratio and the number of Byzantine clients,
respectively, with q = ϵm. Finally, ∥·∥ denotes ℓ2 norm.

Theoretical Analysis for I.I.D Case
In this section, similar to most of previous works, we assume
that all samples are i.i.d. We discuss two cases, depending on
whether sample sizes are balanced in different clients.
Assumption 3. Zij are i.i.d for all i = 1, . . . ,m and j =
1, . . . , ni. For any i and j, ∇f(w,Zij) is sub-exponential
with parameter σ, i.e. For all λ such that |λ| ≤ 1/σ,

sup
∥v∥=1

E
[
eλv

T (∇f(w,Zij))−∇F (w)
]
≤ e

1
2σ

2λ2

, (7)

for any vector v with ∥v∥ = 1;
Assumption 3 ensures that with high probability, using the

true sample gradients, we are able to identify w∗ defined in
(2). Similar assumption was also made in (Chen, Su, and Xu
2017; Cao and Lai 2019).

Balanced Data
In this case, we assume that ni = N/m for all i, in which N
is the total number of training samples, and m is the number
of clients. Here we just denote n as the number of samples
per client, and the subscript i is omitted. The analysis here
can be simply generalized to the case in which ni are differ-
ent but are in the same order, i.e. there exists two constants c1
and c2, such that c1n ≤ ni ≤ c2n. Since data sizes are bal-
anced, we set equal thresholds in Huber losses, i.e. Ti = T
for all i.

We aim to obtain a bound of ∥wt −w∗∥, the error of the
estimation of global minimizer, that holds with probability
at least 1− δ. In particular, the following theorem holds. For
the sake of simplicity, we state the asymptotic version here,
while the finite sample bounds and proofs are shown in the
supplementary material.
Theorem 1. There exists two constants C1 and C2, if

C1

√
d

n
ln

N

δ
≤ T ≤ C2

√
d

n
ln

N

δ
, (8)

then under Assumption 2 and 3, with |B| = ϵm Byzantine
clients, the following equations hold with probability at least
1− δ.

(1) (Strong convex) Under Assumption 1(a), if η ≤ 1/L,

∥wt −w∗∥ ≤ (1− ρ)t ∥w0 −w∗∥+ 2∆A

µ
, (9)

in which ρ = ηµ/2;
(2) (General convex) Under Assumption 1(b), with η =

1/L, after tm = (L/∆A) ∥w0 −w∗∥2 steps,

F (wtm)− F (w∗) ≤ 16 ∥w0 −w∗∥∆A; (10)
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(3) (Non-convex) Under Assumption 1(c), with η = 1/L,
after tm = (2L/∆2

A)(F (w0)− F (w∗)) steps, we have

min
t=0,1,...,tm

∥∇F (wt)∥ ≤
√
2∆A, (11)

in which

∆A ≲

(
1√

1− 2ϵ

ϵ√
n
+

1√
N

)√
d ln

N

δ
. (12)

From (8), the selection of parameter T does not rely on
the knowledge of ϵ. Moreover, with fixed d, if ϵ is small, our
error bound Õ(ϵ/

√
n + 1/

√
N) is nearly optimal, since it

matches the information-theoretic minimax lower bound up
to a logarithm factor (Yin et al. 2018).

Unbalanced Data
Now we discuss a more realistic setting, such that ni are
different among clients. In this case, we design an adaptive
selection rule of Ti. For a benign client Si with ni samples,
from central limit theorem, the distance between the gradient
vector send to the server decays roughly with the squared
root of ni, i.e. ∥Xi(w)−∇F (w)∥ ∼

√
d/ni with high

probability. Therefore, if ni is large and Si is benign, then
Xi(w) should be close to most of other gradient vectors. If
Xi(w) is far away from others, then client Si is highly likely
to be Byzantine. However, if ni is small, even if Xi(w) is
far away from others, we can not infer that Si is Byzantine,
since the variance of Xi(w) is large even if Si is benign.
With such intuition, we set Ti to be smaller with large ni,
and vice versa.

To ensure the convergence, both the ratio of attacked
clients and the ratio of the samples in attacked clients need
to be small. Therefore, we slightly change the definition of
ϵ as the maximum of the fraction of Byzantine clients, and
the fraction of samples stored in Byzantine clients, i.e.

ϵ = max

{
|B|
m

,

∑
i∈B ni

N

}
. (13)

The theoretical results for unbalanced data is shown in The-
orem 2.

Theorem 2. Let

Ti = T0 +
M
√
ni

, (14)

with M ∼ σ
√

d ln(N/δ), and

ϵσ

√
md

N
ln

N

δ
≲ T0 ≲ σ

√
md

N
ln

N

δ
. (15)

Then under Assumption 2 and 3, the following equations
hold for small ϵ with probability 1− δ.

(1) (Strong convex) Under Assumption 1(a), if η ≤ 1/L,

∥wt −w∗∥ ≤ (1− ρ)t ∥w0 −w∗∥+ 2∆A

µ
, (16)

in which ρ = ηµ/2;

(2) (General convex) Under Assumption 1(b), with η =
1/L, after tm = (L/∆B) ∥w0 −w∗∥2 steps,

F (wtm)− F (w∗) ≤ 16 ∥w0 −w∗∥∆B ; (17)

(3) (Non-convex) Under Assumption 1(c), with η = 1/L,
after tm = (2L/∆2

B)(F (w0)− F (w∗)) steps, we have

min
t=0,1,...,tm

∥∇F (wt)∥ ≤
√
2∆B , (18)

in which

∆B ≲

(
ϵ

1− 2ϵ

√
m

N
+

1√
N

)√
d ln

N

δ
. (19)

Now we compare (19) with (12). If ϵ is close to 1/2, then
the error is larger with unbalanced data sizes than the bal-
anced case. In particular, the factor 1/(1 − 2ϵ) in (19) is
larger than the factor 1/

√
1− 2ϵ in (12). However, if ϵ is

small, we can neglect the factor 1/(1 − 2ϵ), thus the only
difference between (19) and (12) is that the first term ϵ/

√
n

in the bracket in (12) is now replaced by ϵ
√
m/N . Recall

that if samples are evenly distributed, then n = N/m, thus
these two bounds are actually of the same order. Therefore,
we have shown a somewhat surprising result that the statis-
tical error rate is not affected by the unbalanced allocation
of training samples in clients.

Theoretical Analysis for Non-I.I.D Case
In this section, we assume that clients are heterogeneous.
In particular, suppose that for any w, µi(w), i = 1, . . . ,m
are m i.i.d random variables with E[µi(w)] = F (w). Fur-
thermore, assume that Zij for j = 1, . . . , ni are conditional
independent given µi(w), and E[∇f(w,Zij)|µi(w)] =
µi(w). Now we replace Assumption 3 with the following
new assumption.
Assumption 4. (a) µi(w) is sub-exponential with respect
to ∇F (w) with parameter σµ, i.e. For all λ such that |λ| ≤
1/σµ,

sup
∥v∥=1

E
[
eλv

T (µi(w)−∇F (w))
]
≤ e

1
2σ

2
µλ

2

; (20)

(b) Zij is sub-exponential with respect to µi(w) with pa-
rameter σ, i.e. For all λ such that |λ| ≤ 1/σ,

sup
∥v∥=1

E
[
eλv

T (∇f(w,Zij)−µi(w))
]
≤ e

1
2σ

2λ2

, (21)

in which Zij , j = 1, . . . , ni are conditional i.i.d given
µi(w).

Assumption 4(a) allows heterogeneous data. However,
µi(w) follows a sub-exponential distribution with param-
eter σµ, thus the distance can not be too large. (b) requires
that within each client, Zij is sub-exponential with respect
to µi(w) for client i. At the limit of σµ → 0, Assumption 4
reduces to Assumption 3. Some existing works assume that
the clients are completely different, such as (Ghosh et al.
2019), which groups clients into some clusters with inher-
ently different properties. However, we assume that training
samples are collected from sources that are only moderately
different. The theoretical result is shown as following.
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Theorem 3. Let Ti = T0a + T0b + M/
√
ni, with M ∼

σ
√

d ln(N/δ), and

ϵσ

√
md

N
ln

N

δ
≲ T0a ≲ σ

√
md

N
ln

N

δ
, (22)

and
T0b ∼ σ

√
(d/N) ln(N/δ), (23)

then under Assumption 2 and 4, the following equations
holds with probability at least 1− 2δ.

(1) (Strong convex) Under Assumption 1(a), with η ≤
1/L,

∥wt −w∗∥ ≤ (1− ρ)t ∥w0 −w∗∥+ 2∆C

µ
, (24)

in which ρ = ηµ/2;
(2) (General convex) Under Assumption 1(b), with η =

1/L, after tm = (L/∆C) ∥w0 −w∗∥2 steps,
F (wtm)− F (w∗) ≤ 16 ∥w0 −w∗∥∆C ; (25)

(3) (Non-convex) Under Assumption 1(c), with η = 1/L,
after tm = (2L/∆2

C)(F (w0)− F (w∗)) steps, we have

min
t=0,1,...,tm

∥∇F (wt)∥ ≤
√
2∆C , (26)

in which

∆C ≲

(
ϵ

1− 2ϵ

√
m

N
+

1√
N

+
σµ

√∑m
i=1 n

2
i

N

)√
d ln

N

δ

+ϵσµd ln
N

δ
. (27)

Implementation
Our design follows the Weiszfeld’s algorithm for geometric
median (Weiszfeld and Plastria 2009). Suppose there are m
vectors, X1, . . . ,Xm. Define

c = argmin
s

m∑
i=1

ϕi(∥s−Xi∥) (28)

as the center that minimizes the multi-dimensional Huber
loss, in which ϕi is defined in (6). Suppose that the algorithm
starts from c0. Then the update rule is

ck+1 =

∑m
i=1 min

{
1, Ti

∥ck−Xi∥

}
Xi∑m

i=1 min
{
1, Ti

∥ck−Xi∥

} . (29)

Our algorithm repeats (29) until convergence. Similar to
Weiszfeld’s algorithm, despite the fast convergence in al-
most all practical cases, it is not theoretically guaranteed
in general. In section 8 in (Beck and Sabach 2015), it is
shown that under some assumptions, an estimate of geomet-
ric median with Weiszfeld’s algorithm with error tolerance τ
needs O(1/τ) steps. With minor modification, the analysis
in (Beck and Sabach 2015) also holds for our new algorithm
(29). Moreover, from (29), each step requires O(md) time,
thus the overall time complexity is O(md/τ).

In the future, it is possible to extend some recent works
on geometric median, such as (Feldman and Langberg 2011;
Cohen et al. 2016) to improve the update rule (29) for multi-
dimensional Huber loss minimization.

Comparison with Related Work
Now we compare our results with several existing popu-
lar approaches, including Krum (Blanchard et al. 2017),
geometric median-of-means (Chen, Su, and Xu 2017)
(GMM), coordinate-wise median (Yin et al. 2018) (CWM),
coordinate-wise trimmed mean (Yin et al. 2018) (CWTM),
and recent methods based on high dimensional robust statis-
tics (Shejwalkar and Houmansadr 2021; Zhu et al. 2023)
(HDRS). To begin with, we consider the i.i.d case. In par-
ticular, we compare the following five aspects listed as fol-
lowing:
• Whether the method relies on precise knowledge of ϵ;
• Under sub-exponential and strong convex assumption,

with sufficiently large number of iterations t, whether the
statistical error rate of ∥ŵ −w∗∥ is optimal (or nearly
optimal up to a logarithm factor) in ϵ. Here the optimal
rate is ϵ/

√
n +

√
d/N (Hopkins and Li 2019; Yin et al.

2018);
• Whether the performance is good if ϵ is close to 1/2. In

particular, whether error blows up by a factor of no more
than 1/

√
1− 2ϵ, as is shown in (12);

• Whether the time complexity of aggregator is linear or
nearly linear, i.e. O(m) or O(m logm);

• Whether the error rate is optimal in dimensionality d;
The results are shown in Table 1, in which the five aspects
mentioned above correspond to its five columns.

Method ϵ-agnostic ϵ-opt. near 1/2 linear d-opt.
Krum No No No No No
GMM No No Yes Yes No
CWM Yes No Yes Yes No
CWTM No Yes No Yes No
HDRS No No No No Yes
Ours Yes Yes Yes Yes No

Table 1: Comparison of our method with existing aggre-
gators under i.i.d assumption in five aspects. ”ϵ-agnostic”
means that the method does not rely on precise knowledge
of ϵ. ”ϵ-opt.” refers to optimal dependence of error rate on ϵ.
Besides, ”near 1/2” means good performance with ϵ close
to 1/2. Moreover, ”linear” stands for linear time complexity
in m. Finally, ”d-opt.” means optimality of error rate in d.

For the first aspect, only coordinate-wise median and our
method do not rely on precise knowledge of ϵ. For other
methods, ϵ significantly affects the parameter selection. For
example, coordinate-wise trimmed mean need to set the trim
threshold to be ϵ in both sides. However, it is quite unlikely
to have exact knowledge of ϵ in practice. If an upper bound
α is known, such that ϵ < α, then α can be used to set the
parameter, but the accuracy will be sacrificed. Secondly, for
optimal dependence in ϵ, Krum is not guaranteed to con-
verge globally. Coordinate-wise median is not optimal if
n ≲ m. Geometric median-of-mean only has a Õ(

√
ϵd/n)

dependence. Thirdly, for the performance with ϵ close to
1/2, coordinate-wise trimmed mean is not optimal. In par-
ticular, the error rate ∆CWTM , which plays the same role as
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∆A in Theorem 1, is

∆CWTM = Õ

(
d

1− 2ϵ

(
ϵ√
n
+

1√
N

))
, (30)

which blows up by a factor of 1/(1 − 2ϵ), higher than
1/

√
1− 2ϵ. Intuitively, with ϵ close to 1/2, coordinate-wise

trimmed mean is not efficient because it removes most of
samples, thus somewhat wastes the data. For the fourth col-
umn in Table 1, the time complexity has been discussed in
previous section.

The only drawback of our method is that the dependence
on d is not optimal. In recent years, there are some new pro-
posed methods for high dimensional robust mean estima-
tion (Diakonikolas et al. 2016, 2017, 2021). These methods
can be used as the aggregator function in federated learning
(Su and Xu 2018; Shejwalkar and Houmansadr 2021; Zhu
et al. 2023), so that the dependence on d becomes optimal.
However, the ϵ dependence is

√
ϵ, which is optimal only if

we merely require the covariance matrix to have bounded
operator norms. Under a more restrictive sub-exponential
assumption, the convergence can not be further improved.
Moreover, the time complexity is much higher.

One may wonder if it is possible to design an aggrega-
tor that satisfy all of the five properties listed in Table 1.
However, (Hopkins and Li 2019) has shown that for robust
mean estimation problem, as long as P ̸= NP , under sub-
exponential assumption, polynomial time complexity, opti-
mal dependence in ϵ, and constant factor in d are three goals
that can not be achieved together. Since FL relies on robust
mean estimation of gradient vectors as the aggregator func-
tion, we conjecture that it is impossible to satisfy all five
properties in Table 1.

Right now we have compared our results with existing
methods under i.i.d assumptions. There are also some re-
lated work focusing on non-i.i.d cases, but the assumptions
are crucially different. For example, (Li et al. 2019) pro-
posed RSA. Instead of designing a gradient aggregator, (Li
et al. 2019) conducts model aggregation, which tries to reach
a consensus between different models. This method is suit-
able for the cases in which the distributions in clients are sig-
nificantly different. However, under the i.i.d limit, (Li et al.
2019) does not have bounds comparable to existing methods
under i.i.d assumption.

Numerical Results
This section shows numerical experiments. Despite the fact
that our method has the advantage of not relying on knowl-
edge of ϵ, in this section, we just assume that all baseline
methods know ϵ exactly, including Krum, GMM, CWM and
CWTM mentioned in the previous section. The detailed al-
gorithms and parameter selection rules are shown in Section
1 in the supplementary material. If ϵ is unknown, then the
advantage of our method should be larger than what is de-
scribed in this section.

Ideally, robustness against Byzantine failure needs to be
tested using optimal attack strategies. However, the opti-
mization problems are hard to solve. In this section, we use
four attack strategies. One of them is a simple sign-flip at-
tack, which flips the sign of gradient vectors. Other three are

some approximate strategies that are tailored to specific ag-
gregators, including Krum Attack (KA) and Trimmed Mean
Attack (TMA) described in (Fang et al. 2020) that are nearly
optimal for Krum and CWTM, respectively. Moreover, for
a fair comparison, we have designed an attack strategy for
our new proposed method, called Huber Loss Minimization
Attack (HLMA). The details of all these attacks are shown
in the supplementary material.

Synthesized Data
To begin with, we run experiments with distributed linear
regression. The model is

Vj = ⟨Uj ,w
∗⟩+Wj , (31)

in which Uj ,w
∗ ∈ Rd, with w∗ being the true parame-

ter, and Wj is the noise following standard normal distribu-
tion. In this experiment, we set d = 50. Firstly, we generate
all elements of w∗ from distribution N (0, 1). We then ob-
tain N = 10, 000 samples (Uj , Vj), j = 1, . . . , N . These
samples are evenly divided into m = 500 clients. For base-
line methods including Krum, GMM, CWTM, the parame-
ters are all set optimally, according to Section 1 in the sup-
plementary material. Our new Huber loss minimization ap-
proach uses T = 1 for all clients. We run 200 iterations in
total, with learning rate η = 0.02. The results are shown
in Figure 1 for all four attack strategies mentioned above,
in which we plot the square root of the ℓ2 regression loss
against the number of iterations.
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(a) Sign-flip with ϵ = 0.2.

0 50 100 150 200
Iterations

0

2

4

6

R
oo

t 
R

eg
re

ss
io

n 
Lo

ss Krum
GMM
CWM
CWTM
Ours

(b) KA with ϵ = 0.2.
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(c) TMA with ϵ = 0.2.
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(d) HLMA with ϵ = 0.2.

Figure 1: Comparison of our new method and several base-
lines against Krum Attack and Trimmed Mean Attack for
synthesized data with ϵ = 0.2.

From Figure 1, it can be observed that our new method
(red solid curve) works well for all four types of attacks,
even with HLMA that is specifically designed for our
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method. On the contrary, from Figure 1 (b), Krum aggre-
gator (blue dotted curve) fails under KA that is tailored
to Krum. Moreover, (c) shows that under TMA which is
designed for coordinate-wise trimmed mean, GMM and
CWTM (dashed curves with orange and purple colors, re-
spectively) perform significantly worse than our method.
CWM appears to be robust, but the performance is not as
good as our approach in general.

Real Data

Now we use MNIST dataset (LeCun 1998), which has
60, 000 images of handwritten digits for training, and
12, 000 images for testing. The sizes of these images are
28 × 28. In this experiment, we use a neural network with
one hidden layer between input and output. The size of hid-
den layer is 32. Training samples are evenly allocated into
m = 500 clients. We set T = 0.2 here. The results with
ϵ = 0.2 is shown in Figure 2, while the case with ϵ = 0.4
is shown in the supplementary material, in which we plot
the curve of accuracy on the test data against the number of
iterations.
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(a) SignFlip with ϵ = 0.2.
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(b) KA with ϵ = 0.2.
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(c) TMA with ϵ = 0.2.
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(d) HLMA with ϵ = 0.2.

Figure 2: Comparison of our new method and several base-
lines against sign-flip, KA, TMA and HLMA for MNIST
data, with ϵ = 0.2.

Similar to synthesized data, experiments on MNIST show
that our new method outperforms other methods. Krum is
still highly susceptible to KA. CWM and CWTM appear
to be only slightly worse than our method. However, in the
supplementary material, we show that with ϵ = 0.4, under
TMA, these two methods are much worse than ours, espe-
cially CWTM. These results agree with our discussion in the
previous section.

Unbalanced Sample Allocation
We then evaluate the adaptive selection rule (14) for unbal-
anced data. In this experiment, samples are still allocated in
different clients randomly, but the sample sizes are no longer
equal. Details of the allocation rule are shown in Section 3
in the supplementary material. We use Ti = 2/

√
ni as the

threshold of each clients. Other settings remain the same as
previous experiments. For simplicity, we only show the re-
sult with HLMA in Figure 3.
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(a) Synthesized data.
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(b) MNIST data.

Figure 3: Experiments on unbalanced data for HLMA, with
ϵ = 0.2.

The result shows that with unbalanced data and our adap-
tive choice of Ti, the advantage of our method becomes
more obvious, especially for MNIST data. The compari-
son of Figure 3(b) with Figure 2(d) shows that our method
achieves nearly the same performance as the balanced case,
while other methods are somewhat negatively affected by
the unbalanced data allocation.

Finally, we also conduct experiments for heterogeneous
data. In particular, (31) is slightly modified, such that clients
have different distributions. In this case, numerical experi-
ments show that the performances of all methods are nega-
tively affected by the heterogeneity, but our method is rel-
atively more stable. Details are shown in Section 4 in the
supplementary material.

Conclusion
In this paper, we have proposed a novel approach for Byzan-
tine robust federated learning based on Huber loss mini-
mization. Theoretical analyses have been conducted under
the initial i.i.d assumption with balanced data, and subse-
quently extended to unbalanced and heterogeneous scenar-
ios. Our method offers several advantages over existing ap-
proaches, including optimal statistical rate with fixed dimen-
sion, convenient selection of parameters without knowledge
of Byzantine fraction ϵ, and suitability for clients with unbal-
anced data. Furthermore, we have presented an algorithm to
implement the multi-dimensional Huber loss minimization.
The effectiveness of our approach is validated by numerical
experiments.
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