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Abstract

For ensuring the safety of users by protecting the privacy,
the traditional privacy-preserving bandit algorithm aiming to
maximize the mean reward has been widely studied in sce-
narios such as online ride-hailing, advertising recommenda-
tions, and personalized healthcare. However, classical bandit
learning is irresponsible in such practical applications as they
fail to account for risks in online decision-making and ignore
external system information. This paper firstly proposes pri-
vacy protected mean-volatility utility as the objective of ban-
dit learning and proves its responsibility, because it aims at
achieving the maximum probability of utility by consider-
ing the risk. Theoretically, our proposed responsible bandit
learning is expected to achieve the fastest convergence rate
among current bandit algorithms and generates more statis-
tical power than classical normality-based test. Finally, sim-
ulation studies provide supporting evidence for the theoreti-
cal results and demonstrate stronger performance when using
stricter privacy budgets.

Introduction
As users become increasingly concerned with the privacy
and security of their online information and activities, in-
cluding medical records (Price and Cohen 2019), shopping
records (Martin and Murphy 2017; Petrescu and Krishen
2018), browsing history (Talukder et al. 2010), and other in-
ternet usage, systems such as recommendation engines and
advertising distributors require large amounts of user data to
provide personalized recommendations and better services
(Shin et al. 2018). This creates a dilemma as such data col-
lection may compromise user privacy. To address this is-
sue, it is important to develop algorithms that can balance
the needs of the system with the protection of user privacy.
One widely-used algorithm that provides high-level privacy
protection is differential privacy (Dwork, Roth et al. 2014),
which theoretically guarantees that any attacker cannot infer
changes or additions/deletions of individual records based
on the output. Currently, differential privacy has been widely
applied to multi-armed bandit algorithms (Huang et al. 2011;
Tossou and Dimitrakakis 2016; Wang et al. 2020). However,
due to the fact that differential privacy cannot prevent attacks
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by the centroid curator, a local differential privacy algorithm
for the multi-armed bandit field was proposed to provide
comprehensive privacy protection for users (Ren et al. 2020;
Han et al. 2021).

By incorporating differential privacy into the study of
K-armed bandit algorithms, many trustworthy bandit al-
gorithms have been developed (Basu, Dimitrakakis, and
Tossou 2019). While these algorithms demonstrate fast con-
vergence rates O( K

ϵ
√
n
), they also come with significant lim-

itations: (i) Using the statistics or data obtained from tradi-
tional bandit processes for statistical inference is challeng-
ing. Taking the example of the adaptive testing of the two-
armed bandit algorithm under the privacy mechanism, we
assume that the objective is the average of cumulative re-
wards obtained through the strategy θϵ during the n rounds
of arm-pulling process, denoted as Qθϵ

n . The distribution of
Qθϵ

n at the n-th time step is determined by the strategy and
the rewards obtained in the first n − 1 rounds within the
privacy mechanism. As a result, the accurate distribution of
Qθϵ

n is complex and difficult to explicitly express. Moreover,
employing the standard test on data derived from the bandit
algorithm would result in overlooking crucial information
like strategy and sample characteristics. Particularly when
dealing with limited sample sizes (n), utilizing normal tests
on data safeguarded by privacy measures can yield unreli-
able conclusions and an increased likelihood of Type I er-
rors (Williams et al. 2021). It is challenging to draw statis-
tically significant conclusions from the results (Villar, Bow-
den, and Wason 2015; Yao et al. 2021). (ii) The accountabil-
ity of these privacy-preserving bandit algorithms to agents
(i.e., the reliability of decision-making at each moment) is
unknown. Due to the traditional two-armed bandit being de-
signed from the perspective of maximizing the amount of in-
formation within the system (mean), it does not take into ac-
count the uncertainty brought by external information. The
agent cannot perceive the risks associated with fluctuations
outside the system. Strategies formulated under this objec-
tive often lead the model into local optima due to neglect-
ing uncertainty (volatility). For instance, when the average
reward of the left arm is only slightly higher than that of
the right arm, but the volatility of the left arm’s rewards is
significantly greater than that of the right arm. In this situ-
ation, the agent tends to choose the right arm to minimize
extreme losses and ensure that the obtained rewards remain
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within the expected range. Traditional bandit algorithms, on
the other hand, tend to choose the left arm to ensure the
maximum long-term cumulative rewards. Because these al-
gorithms prioritize achieving the maximum average reward
and overlook the stability of arm rewards, in certain con-
texts, agents might consider them ‘irresponsible’.

Therefore, this paper considers the following objective:

T θϵ
n =

1

n

n∑
i=1

Zθϵ
i +

1√
n

n∑
i=1

Zθϵ
i − µθϵ

i

σϵ
.

The first part of the above equation represents average re-
wards, and the second part represents average volatility. By
introducing the average volatility (external information) as a
component of the objective utility, we construct the respon-
sible bandit learning algorithm under privacy mechanisms.
Figure 1 (left) illustrates the variation of average cumula-
tive reward with the change in the number of arm pulls n,
when applying the ϵ-greedy algorithm and the responsible
bandit algorithm respectively. It is evident that the objec-
tive of the traditional bandit model is the cumulative reward
and does not reflect the real-time risk of rewards. By set-
ting the hyperparameter c in Theorem 1, our strategy can
achieve the objectives of traditional bandit problems. Fig-
ure 1 (right) illustrates the variation of our objective utility
with the change in the number of arm pulls n, when apply-
ing the ϵ-greedy algorithm and the responsible bandit algo-
rithm respectively. When one arm yields an extreme reward,
the responsible bandit algorithm will select another arm as a
penalty, thereby maximizing the probability of the objective
utility falling within the specified interval [c − a, c + a] to
minimize risk. By considering comprehensive information,
we perceive the bandit algorithm to be responsible, with this
reliability being reflected through probabilities. Meanwhile,
our objective utility under the optimal strategy is statistically
significant based on the Central Limit Theorem for Strategy
(Chen and Epstein 2022).

Our contributions and the advantages of the privacy re-
sponsible bandit learning model are diverse, including:
• First-time study on the behavior and characteristics of

the responsible bandit learning under the privacy mecha-
nism. Under the Laplace, Bernoulli, and Gaussian mech-
anisms, the convergence rates for achieving maximum

probability are O( 1
ϵ
√
n
), O( 1

eϵ+1 ), and O(

√
ln(1/δ)

ϵ
√
n

).

• This approach allows for the existence of a limiting dis-
tribution for the objective utility, making the conclusions
more statistically significant.

• First-time investigation of hypothesis testing for the ban-
dit process under the LDP mechanism. Compared to nor-
mality test, this hypothesis testing method exhibits higher
statistical power.

The following sections are organized as follows: In Sec-
tion 1, we introduce the new objective utility and optimal
strategy within the context of two-armed bandits. In Section
2, we provide the implementation algorithms for three noise
mechanisms: Laplace, Bernoulli, and Gaussian, and present
the theoretical results on asymptotic distribution and conver-
gence rates. In Section 3, hypothesis testing is introduced
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Figure 1: The variation of the objective over time n for the ϵ-
greedy strategy (red line) and the responsible bandit learning
strategy (blue line)

as a motivated example. We obtain higher p-value through
the asymptotic distribution of the objective utility under the
noise mechanism. In Section 4, we conduct a simulation
study to verify the results of Sections 2 and 3. Discussion
is provided in Section 5, and the technical proofs are given
in the Appendix.

A New Framework for LDP TAB
Local Differential Privacy for Safe Bandit Model
In the two-armed bandit model, the agent has the option to
choose either arm L or arm R at each stage. If they choose
arm L, they will receive a reward of WL, and if they choose
arm R, they will receive a reward of WR. To better under-
stand the process of the agent making these choices, we have
introduced a sequence strategy represented by the random
variable sequence θ = {ϑ1, · · · , ϑn} for the first n stages.
When ϑi = 1, the agent has chosen arm L and received a
reward of WL

i , and when ϑi = 2, the agent has chosen arm
R and received a reward of WR

i . The reward obtained by the
agent at each moment is defined as

Zθ
i =

{
WL

i , if ϑi = 1,
WR

i , if ϑi = 2.

In this case, the choice of arm made by the agent at each
stage, represented by ϑi, is determined based on the re-
ward history. However, in systems like ride-hailing, advertis-
ing recommendations, and health data collection, users are
likely to lose trust in agents. For instance, in an advertis-
ing recommendation system, the agent may attempt to sug-
gest products based on the user’s past purchase history in
chronological order. Some users may be hesitant to share
this information due to concerns about potential privacy
leaks (e.g., inferring health conditions from someone pur-
chasing a significant quantity of anti-hypertensive drugs).
Differential privacy introduced by Dwork (2008) is often in-
corporated by centroid curator into the rewards obtained by
agents.

As users lose trust in the centroid curator, having one’s
own curator becomes necessary. We introduce the concept
of the Local Differential Privacy (LDP) bandit model in Def-
inition 1, as suggested by Ren et al. (2020). Figure 2 shows
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Figure 2: Local Differential Privacy

how the curators apply privacy mechanisms to the rewards
obtained from each arm pull, without aggregating them, en-
suring that the agent remains unaware of the actual rewards.
In Figure 2, we assume that each user has their own curator,
which is embedded in the user’s device or terminal in the
form of software or a plugin, thereby preventing non-private
data from leaving the user’s control. The agents can only ob-
serve the privacy-protected rewards Zθϵ

i for each user at each
time step. They base their strategies θϵ and arm selections ϑϵ

i
on these rewards at each time step.

Definition 1. (ϵ-LDP Bandit Model). D is the finite reward
domain. For ϵ > 0, the bandit model is said to be ϵ-LDP if
i ) a randomized mapping M : D → R on D ⊂ Rk if for
any neighboring x, x′ in D and a measurable subset S of R,
we have

P{M(x) ∈ S} ≤ eϵP {M (x′) ∈ S} ,

ii ) ϑϵ
i+1 ∈ σ(ϑϵ

j ,M(Zθϵ
j ) : 1 ≤ j ≤ i) for any time i.

If we swap x and x′, the inequality stated above must still
be true. This definition indicates that after an ϵ-LDP bandit
mechanism is applied, the statistical characteristics of any
two adjacent records will be similar. It becomes difficult for
any party to determine the source of a particular output, pro-
viding protection against all attacks. In the rest of paper, we
assume that the bound of reward difference is κ.

Responsible Two-Armed Bandit
In reality, the focus is often not only on maximizing cu-
mulative rewards but also on the volatility of each reward
(e.g., controlling a patient’s blood pressure using medication
or managing risk in investments). We introduce the average
volatility to construct a new objective utility under the pri-
vacy mechanism as suggested by Cui et al. (2023), which is
defined by Equation (1). The first half of Equation (1) rep-
resents the average of cumulative rewards, while the second
half represents the accumulated normalized volatility. As a
result, the objective utility can reflect the level of risk in on-
line decision-making.

T θϵ
n =

1

n

n∑
i=1

Zθϵ
i +

1√
n

n∑
i=1

Zθϵ
i − µθϵ

i

σϵ
, (1)

where
µθϵ
i = µ̄ϵI{ϑϵ

i=1} + µ
ϵ
I{ϑϵ

i=2}.

Let µ̄ϵ represent the higher reward of the two arms, and µ
ϵ

represent the lower reward. Without loss of generality, we
assume that the arm L yields a higher reward, and the vari-
ances of both arms are equal, denoted by σ2

ϵ . When the vari-
ances of the arm L and arm R are unequal in reality, it is
natural to equalize them through standardization. It is clear
that the reward T θϵ

n achieved by using strategy θϵ will fall
within a range close to arm L if a larger proportion of the
elements are equal to 1, and fall within a range close to arm
R if a larger proportion of the elements are equal to 2.

Since traditional bandit strategies cannot achieve the max-
imization of the utility T θϵ

n falling within the given interval,
as shown in Figure 1 (right), it is therefore necessary to pro-
pose new strategies. To construct an optimal strategy driven
by statistics, it is necessary to keep track of historical infor-
mation and define

T θϵ
m =

1

n

m∑
i=1

Zθϵ
i +

1√
n

m∑
i=1

Zθϵ
i − µθϵ

i

σϵ
. (2)

The next lemma provides the optimal strategy θ∗ϵ =
{ϑϵ∗

1 , · · · , ϑϵ∗
n } that maximizes the probability on a given

interval under the LDP mechanism for utility T
θ∗
ϵ

n .
Lemma 1. (Optimal Strategy θ∗ϵ ) For any c ∈ R, n ≥ 1, we
can construct strategy θ∗ϵ = (ϑϵ∗

1 , · · · , ϑϵ∗
n ) as follows,

ϑϵ∗
m =

{
1, T

θ∗
ϵ

m−1 ≤ c− (1− m−1
n )

µ̄ϵ+µ
ϵ

2 ,

2, T
θ∗
ϵ

m−1 > c− (1− m−1
n )

µ̄ϵ+µ
ϵ

2 ,
for m ≥ 1.

The optimal strategy is the recursive function of T
θ∗
ϵ

m−1.
When the utility within a certain period is higher than the
mean c of the given interval [c− a, c+ a], the strategy con-
siders potential risks beyond that interval and implements
corresponding strategies to reduce it. Conversely, when the
utility is lower, the strategy perceives potential risks below
the given interval and applies strategies to increase it, thus
maximizing the probability of the objective utility falling
within the specified interval [c−a, c+a]. The optimal strat-
egy also endows desirable statistical properties to the utility
T

θ∗
ϵ

n . For instance, if we take c = (µ̄ϵ + µ
ϵ
)/2, then

lim
n→∞

P (c− a ≤ T
θ∗
ϵ

n ≤ c+ a)

= lim
n→∞

sup
θϵ∈Θ

P (c− a ≤ T θϵ
n ≤ c+ a)

= Φ (d1/2 + a)− e−ad1Φ(d1/2− a)

≥ 2Φ(a)− 1 = P (−a ≤ Z ≤ a). (3)
The first equation always holds true, and the probability in
the second equation is derived under the condition µ̄ϵ−µϵ

=

d1. Φ(·) is the cumulative distribution function of the stan-
dard normal distribution.

The above inequality indicates that when applying the op-
timal strategy, the probability of the initial statistical data
falling into any given interval under the LDP mechanism
can be explicitly expressed. Meanwhile, the Equality in (3)
holds if and only if d1 = 0, indicating that when there are
differences in rewards between arm L and arm R, using the
optimal strategy for hypothesis testing will outperform the
normality test and specific analyses presented in Section 3.
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Algorithm 1: Responsible Bandit Learning under Local Dif-
ferential Privacy (RB-LDP)

1: Define: µθ∗
ϵ

i = µ̄ϵI{ϑϵ∗
i =1} + µ

ϵ
I{ϑϵ∗

i =2};

2: Define: T θ∗
ϵ

m−1 = 1
n

∑m−1
i=1 Z

θ∗
ϵ

i + 1√
n

∑m−1
i=1

Z
θ∗ϵ
i −µ

θ∗ϵ
i

σϵ
;

3: Initialize m = 1 and utility T
θ∗
ϵ

0 = 0;
4: While m ≤ n do
5: if ϑϵ∗

m = 2− I{
T

θ∗ϵ
m−1≤c−(1−m−1

n )
µ̄ϵ+µ

ϵ
2

} = 1 then

Pull arm L once and receive the private response
from Curator;

6: else Pull arm R once and receive the private response
from Curator;

7: end if
8: Update µ

θ∗
ϵ

m , T θ∗
ϵ

m ; m← m+ 1;
9: end while

Algorithms and Theoretical Results
This section introduces the responsible bandit learning al-
gorithm under privacy mechanisms, denoted as Algorithm
1. By introducing different privacy mechanisms into Algo-
rithm 1, we theoretically investigate the asymptotic proper-
ties of T θ∗

ϵ
n and the convergence rate to achieve maximum

reliability under the optimal strategy.

Laplace Mechanism
To provide privacy protection in differential privacy, con-
tinuous random variables are often added to the noise of
the Laplace mechanism (Dwork, Roth et al. 2014). For any
b > 0, the probability density function of the Laplace(b)
distribution is defined as

Laplace(b) : l(x | b) = (2b)−1 exp(−|x|/b). (4)

The curator described under the Laplace mechanism is out-
lined in Algorithm 2. When the true rewards for the left and
right arms of the bandit model are µ̄ and µ, and the true
variance is σ2, under the Laplace privacy mechanism, the
corresponding parameters in Equation (1) are as follows:

µ̄ϵ = µ̄, µ
ϵ
= µ, σ2

ϵ = σ2 + σ2
l . (5)

Wherein, σ2
l = 2κ2/ϵ2. Adding Laplace privacy protec-

tion will increase the variance of arm rewards, with stronger
privacy protection resulting in greater variance. The agent
will have less information about the user preferences. The
corresponding responsible bandit learning algorithm, de-
noted as Algorithm 1, receives rewards from CTL(ϵ). The
strategy relies on information gathered through previous
arm pulls, using a recursive function. The addition of pri-
vacy measures will alter the rewards received by the agent
for each arm pull, potentially affecting the arm selection.
Nonetheless, as the number of attempts n increases, the
probability of T θ∗

ϵ
n falling within the given interval will ap-

proach the optimal result at the fastest rate.
We next provide the asymptotic distribution of T θ∗

ϵ
n under

the privacy mechanism and its convergence rate based on
the nonlinear central limit theorem (Chen, Feng, and Zhang

Algorithm 2: Convert-to-Laplace (ϵ)(CTL(ϵ))

On receiving a reward Zθ
i from the user:

return ML(Z
θ
i ) = Zθ

i + L, where L ∼ Laplace (κ/ϵ)
distribution;

2022; Chen et al. 2023). The proof and the corresponding
density function of Theorem 1 are given in the Appendix.
Theorem 1. Under the Laplace mechanism, if the hypothe-
sis (µL, µR) = (µ̄, µ), we have

T
θ∗
ϵ

n
L→ η1, η1 ∼ B

(
µ− µ̄

2
,
µ̄+ µ

2
, c

)
. (6)

The convergence rate of P (|T θ∗
ϵ

n −c| ≤ a) to P (|η1−c| ≤ a)
is O( 1

ϵ
√
n
) (i.e., regret in this bandit model is O

(
ϵ−1
√
n
)
).

If (µR, µL) = (µ̄, µ), we will get a similar conclusion.

Bernoulli Mechanism
In addition to the Laplace mechanism, the Bernoulli mecha-
nism is also commonly used in the LDP bandit model. This
technique converts bounded rewards, typically 0 or 1, into
Bernoulli responses (Gajane, Urvoy, and Kaufmann 2018).
In our study, we allow for rewards to take on any value
within the range of [0,1].

Meanwhile, Algorithm 1 receives the privacy response
from the curator, as governed by Algorithm 3 CTB(ϵ). Its
corresponding parameters in Equation (1) are as follows:

µϵ =
1

2
+ (2µ− 1)

eϵ − 1

2(eϵ + 1)
, (7)

σ2
ϵ =

1

4
− (2µ− 1)2

(eϵ − 1)2

4(eϵ + 1)2
. (8)

Through Equations (7) and (8), the mean µϵ and variance σ2
ϵ

of privacy response are affected by both the true mean µ and
the privacy budget ϵ. As the privacy budget ϵ approaches 0,
the mean and variance of data under the privacy protection
mechanism tend to 1

2 and 1
4 , respectively, making it diffi-

cult to distinguish the data even in a large sample. Since the
variance at this point is a finite quantity between (0, 1

4 ), the
impact of variance fluctuations can be ignored. According
to the density function of the limit distribution in the Ap-
pendix, as the difference between the arm L and arm R re-
wards d1 becomes smaller, the probability of the objective
utility falling into the same interval becomes smaller. The
impact of the Bernoulli mechanism on power will be more
worthy of exploration. Corollary 1 is derived based on The-
orem 1 and Curator 3.
Corollary 1. Under the Bernoulli mechanism, if the hypoth-
esis (µL, µR) = (µ̄ϵ, µϵ

), we can conclude that

T
θ∗
ϵ

n
L→ η2, η2 ∼ B

(
µ
ϵ
− µ̄ϵ

2
,
µ̄ϵ + µ

ϵ

2
, c

)
. (9)

As ϵ decreases, the probability of T θ∗
ϵ

n falling into the same
interval decreases at the rate of O( 1

eϵ+1 ). If (µR, µL) = (µ̄ϵ,

µ
ϵ
), we will obtain a similar conclusion.
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Algorithm 3: Convert-to-Bernoulli (ϵ)(CTB(ϵ))

On receiving a reward Zθ
i from the user:

return MB(Z
θ
i ) = an independent sample of Bernoulli

(
Zθ

i e
ϵ+1−Zθ

i

1+eϵ ) ;

Remark 1.1. The Bernoulli mechanism does not affect the
convergence rate of the asymptotically optimal distribution
but directly alters the asymptotically optimal distribution.
However, our model still conforms to the maximum like-
lihood framework under the Bernoulli mechanism, its supe-
riority remains unchanged.

Gaussian Mechanism
When measuring the privacy sensitivity of data queries us-
ing L2-sensitivity, the Gaussian privacy mechanism is often
employed. Prior to introducing the Gaussian mechanism, we
present the relaxed Local Differential Privacy (LDP) bandit
model (Dwork, Roth et al. 2014).
Definition 2. ((ϵ, δ)-LDP Bandit Model). D is the finite re-
ward domain. For ϵ > 0, the bandit model is said to be (ϵ, δ)-
LDP if
i ) a randomized mapping M : D → R on D ⊂ Rk if for
any neighboring x, x′ in D and a measurable subset S of R,
we have

P{M(x) ∈ S} ≤ eϵP {M (x′) ∈ S}+ δ.

ii ) ϑϵ
i+1 ∈ σ(ϑϵ

j ,M(Zθϵ
j ) : 1 ≤ j ≤ i) for any time i.

In the relaxed LDP bandit model, the new privacy param-
eter δ represents the probability that privacy protection will
fail. When the probability is 1-δ, we have the same level of
protection as ϵ-LDP, but when the probability is δ, there is
no guarantee of protection. As a result, it is common to re-
quire δ to be very small, often less than 1

n2 , where n is the
size of the data set. The Gaussian mechanism is a form of
relaxed LDP bandit model.

The curator mechanism with Gaussian privacy is de-
scribed in Algorithm 4. Meanwhile, Algorithm 1 receives
rewards from CTG(ϵ, δ). Its corresponding parameters in
Equation (1) are as follows:

µ̄ϵ = µ̄, µ
ϵ
= µ, σ2

ϵ = σ2 + σ2
g . (10)

Herein, σ2
g = 2κ2 ln(1.25/δ)

ϵ2 . Obviously, our strategy {θ∗ϵ } is
impacted by both the privacy budget ϵ and the failure proba-
bility δ. Leveraging Theorem 1 and Algorithm 4, we estab-
lish Corollary 2.
Corollary 2. Under the Gaussian mechanism, if the hypoth-
esis (µL, µR) = (µ̄, µ), we can conclude that

T
θ∗
ϵ

n
L→ η1, η1 ∼ B

(
µ− µ̄

2
,
µ̄+ µ

2
, c

)
. (11)

The convergence rate of P (|T θ∗
ϵ

n − c| ≤ a) to P (|η1 − c| ≤
a) is O(

√
ln(1/δ)

ϵ
√
n

). If (µR, µL) = (µ̄, µ), we will obtain a
similar conclusion.

Algorithm 4: Convert-to-Gaussian(ϵ, δ)(CTG(ϵ, δ))

On receiving a reward Zθ
i from the user:

return MG(Z
θ
i ) = Zθ

i + G, G ∼ N(0, 2κ2 ln(1.25/δ)
ϵ2 )

distribution;

Hypothesis Test
A motivated example of sequential hypothesis testing as the
responsible bandit model is presented in this section. Agents
consider not only the best arm based on user preference, but
also the gap d1 = µ̄ϵ − µ

ϵ
between the best and subopti-

mal arms in order to develop strategies and manage risks. In
other words we would like to conduct the hypothesis test:

H0 : µ̄ϵ − µ
ϵ
≥ d0; H1 : µ̄ϵ − µ

ϵ
< d0. (12)

Without loss of generality, we assume that the sum of the
average rewards for arm L and arm R, µ̄ϵ + µ

ϵ
= d > 0,

is a constant. The constant d signifies our focus on under-
standing how the distance between the two arms affects the
distribution (i.e., the concentration of information). In other
words, as the total rewards of the arms reach a certain level,
the agent becomes more concerned about the differences in
arm rewards to manage risk. Each corresponds to a left or
right margin:

HL0 : µ̄ϵ ≥ (d+ d0)/2; HL1 : µ̄ϵ < (d+ d0)/2;

HR0 : µ
ϵ
≤ (d− d0)/2; HR1 : µ

ϵ
> (d− d0)/2.

The agent can naturally utilize traditional statistical tests
based on the normal distribution (Fisher 1992) :

1
√
n1

n1∑
i=1

WL
i,ϵ − µ̄ϵ

σϵ
and

1
√
n2

n2∑
i=1

WR
i,ϵ − µ

ϵ

σϵ
. (13)

In this hypothesis testing, we typically select arm L for the
first n1 trials to obtain rewards {WL

i,ϵ, i = 1, 2, · · · , n1} and
arm R for the remaining n2 = n − n1 trials obtain rewards
{WR

i,ϵ, i = 1, 2, · · · , n2}. However, the test statistics do not
take the strategy or sample performance into account and
do not use prior information (Chen, Yan, and Zhang 2023).
Under the privacy mechanism, the naive approach exhibits
lower statistical power and requires more samples.

Due to the challenges in using traditional normal tests for
statistical inference under the LDP mechanism, Equation (1)
is introduced as a test statistic within the bandit framework.
In reality, since agents are unaware of the specific privacy-
preserving methods applied to the data, we refrain from
making explicit assumptions about the privacy mechanisms.
This sequential test statistic enables a more comprehensive
exploration of its asymptotic distribution in a broader prob-
ability space, exhibiting increased concentration under the
null hypothesis and reduced concentration under the alter-
native hypothesis, as demonstrated in Corollary 3.

Corollary 3. Under the LDP mechanism, if (µL, µR) =
(µ̄ϵ, µϵ

), then we have

T
θ∗
ϵ

n
L→ σdηn, ηn ∼ B (αn, βn, γn) , (14)
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where βn = d/2σd, γn = c/σd, αn = −d1/2 −
√
n(d1 −

d0)/2σϵ, σd =
√

1 + (d1 − d0)2/4σ2
ϵ . In particular, for any

a ∈ R, let c = d/2, we have

lim
n→∞

P

(∣∣∣∣Tn
θ∗
ϵ − d

2

∣∣∣∣ ≤ a

)
= Φ

(
−αn +

a

σd

)
−e

2aαn
σd Φ

(
−αn −

a

σd

)
. (15)

When assuming H0 has a true value of µ̄ϵ − µ
ϵ
= d0,

the parameter σd = 1 and T
θ∗
ϵ

n follows the spike distribution
B(−d0

2 , d
2 ,

d
2 ). Hence, we can reject the null hypothesis by

the occurrence of event{∣∣∣∣T θ∗
ϵ

n −
d

2

∣∣∣∣ > zα
2

}
,

where zα
2

is the upper αth of the distribution B(−d0

2 , 0, 0).
The related statistical efficiency can be calculated by

1− α = Φ

(
d0
2

+ zα
2

)
− e

−d0zα
2 Φ

(
d0
2
− zα

2

)
. (16)

When the distance between the two arms, µ̄ϵ − µ
ϵ
= d1 >

d0, the first parameter

αn = −d1
2
−
√
n(d1 − d0)

2σϵ
< −d1

2
. (17)

This is because, even though αn is currently dependent on σϵ

and µϵ, the rate of change of αn under the Gaussian mecha-
nism and Laplace mechanism converges with the same con-
vergence rates as the maximization probability (O( ln(1/δ)

ϵ
√
n

)

and O( 1
ϵ
√
n
), respectively). Meanwhile, the Bernoulli mech-

anism does not alter the relative magnitude of rewards. The
above inequality holds true under LDP mechanism. The
Bandit distribution will be steeper and the information will
be more concentrated as αn increases that is shown in Ap-
pendix, leading to a greater statistical efficiency.

When H1 is true with a value of µ̄ϵ − µ
ϵ
= d1 < d0, the

associated statistical power is calculated as follows:

1− β1 = lim
n→∞

P

(
|T θ∗

ϵ
n −

d

2
| > zα

2
|H1

)
= 1−

Φ

(
−αn +

zα/2

σd

)
+ e

2αnzα/2
σd Φ

(
−αn −

zα/2

σd

)
. (18)

Similar to Inequality (17), we can deduce that the parame-
ter αn > 0. When αn is positive, the statistic follows a bi-
modal distribution, as shown in the Appendix, significantly
increasing the tail probability. This substantial reduction in
noise interference makes it a much better alternative to as-
sumption testing using a normal distribution.

Within this responsible bandit learning framework, hy-
pothesis testing is conducted in a way that harnesses both
prior information and the learning nature of the bandit pro-
cess to enhance the test’s power and convergence rate. More-
over, the statistical attributes of parameter testing are lever-
aged to offer clear insights into the statistical inference out-
comes across various hypotheses and sample sizes. This be-
comes particularly crucial within the realm of privacy frame-
works.

Simulation Studies
The section will examine the performance of the proposed
test statistic T

θ∗
ϵ

n under the LDP mechanism. To test the
asymptotic distribution and corresponding critical value at
a significance level of T θ∗

ϵ
n , the following treatment is car-

ried out. For the Laplace and Gaussian mechanisms, it is
assumed that WL

i is drawn from random numbers gener-
ated within the interval [2µ̄ − 1, 1], following the distribu-
tion N(µ̄, 1), and WR

i is drawn from random numbers gen-
erated within the interval [0, 2µ], following the distribution
N(µ, 1). For the Bernoulli mechanism, it is assumed that
WL ∼ U(2µ̄−1, 1) and WR ∼ U(0, 2µ) to ensure rewards
are within the interval [0, 1]. Here, κ = 1, µ̄ = 0.9, 0.8, 0.7,
and µ = 0.1, 0.2, 0.3. The privacy budget and failure proba-
bility are set as ϵ = 0.5, 1, and δ = 0.02, assuming that σϵ

is known. Referring to the maximum probability achieved
by T

θ∗
ϵ

n under the Laplace mechanism when n > 2000, as
shown in Figure 3, we set n = 5000 to discuss the asymp-
totic distribution of T θ∗

ϵ
n under the LDP mechanism. With the

true distance of ∆µ = µ̄ − µ = 0.6 and d = 1, the critical
values and results of the asymptotic distribution at a signif-
icance level of α = 0.05 are presented in Table 1 and Fig-
ure 4. It can be observed that under the responsible strategy
of Lemma 1, T θ∗

ϵ
n can rapidly achieve maximum probability

coverage over the given interval centered at c.

d0 z1
α/2

significant level
Laplace Bernoulli Gaussian

ϵ = 1
0.8 1.64(1.81) 0.050 0.048 0.056
0.6 1.72(1.85) 0.054 0.046 0.056
0.4 1.80(1.88) 0.050 0.050 0.056

ϵ = 0.5
0.8 1.64(1.88) 0.052 0.048 0.062
0.6 1.72(1.90) 0.050 0.042 0.060
0.4 1.80(1.92) 0.060 0.046 0.052

1 The critical value under the corresponding Bernoulli
mechanism is in parentheses.

Table 1: The estimated proportions P (|T θ∗
ϵ

n − d
2 | > zα/2)

with µ̄−µ = d0 in privacy mechanisms after 500 replicates.

Figure 3: The rate at which the T
θ∗
ϵ

n achieves maximum
probability under the Laplace mechanism.
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Figure 4: The true density plot (blue line) and the estimated
density plot (red and green lines) of T θ∗

ϵ
n under the Laplace

mechanism.
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Figure 5: The power curve plots of the proposed test (blue
line) and the normal test (red line) at different upper ex-
pectations d1 < d0 under the alternative hypothesis and
ϵ = 1,∆µ = 0.8.

The calculation of the normal test statistic is obtained
by selecting arm L for the first n/2 trials and arm R for
the remaining n/2 trials, as illustrated in Equation (13).
When considering the alternative hypothesis, distinct val-
ues of d1, ϵ, and d are chosen for comparing the power of
the two tests. Leveraging the convergence rate of the em-
pirical distribution of T θ∗

ϵ
n under the Bernoulli, Laplace, and

Gaussian mechanisms, we repeat the procedure 500 times
with n = 100, 300, and 900, while setting the distance
∆µ = 0.8. In comparison with the power of the normality
test, the power of the proposed test under the Laplace mech-
anism is depicted in Figures 5-7. Results for the Bernoulli
and Gaussian mechanisms are presented in the Appendix. It
is evident from Figures 5-7 that the superiority of the pro-
posed test statistic persists as the distance and total sum be-
tween the two rewards vary. Furthermore, as more noise is
introduced, the advantage of our statistic becomes more pro-
nounced. And the superiority of the proposed test statistic re-
mains equally significant under the Bernoulli and Gaussian
mechanisms.
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Figure 6: The power curve plots of the proposed test (blue
line) and the normal test (red line) at different privacy bud-
gets ϵ under the d1 = 0.3 and ∆µ = 0.8.
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Figure 7: The power curve plots of the proposed test (blue
line) and the normal test (red line) at different values of d
under the d1 = 0.4, ϵ = 1, and ∆µ = 0.8.

Discussion
To address the issue that existing privacy-preserving ban-
dit algorithms cannot be responsible for real-time risk in
decision-making, we introduce the mean-volatility as a new
objective utility. We maximize the probability of this util-
ity falling within a given interval to take responsibility for
risk. By conducting optimal learning, the probability of T θ∗

ϵ
n

falling within a given interval has been maximized at the
fastest rate of O( 1

ϵ
√
n
). Utilizing the learned statistical quan-

tity for sequential testing also demonstrates higher power
compared to normal testing. In the future, researchers can
leverage these findings for practical applications, such as
developing optimal privacy-responsible bandit learning al-
gorithms for recommendation systems and clinical trial de-
signs.
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