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Abstract

Nowadays, neural-network-based image- and video-quality
metrics perform better than traditional methods. However,
they also became more vulnerable to adversarial attacks that
increase metrics’ scores without improving visual quality.
The existing benchmarks of quality metrics compare their
performance in terms of correlation with subjective quality
and calculation time. Nonetheless, the adversarial robustness
of image-quality metrics is also an area worth researching.
This paper analyses modern metrics’ robustness to different
adversarial attacks. We adapted adversarial attacks from com-
puter vision tasks and compared attacks’ efficiency against 15
no-reference image- and video-quality metrics. Some metrics
showed high resistance to adversarial attacks, which makes
their usage in benchmarks safer than vulnerable metrics.
The benchmark accepts submissions of new metrics for re-
searchers who want to make their metrics more robust to at-
tacks or to find such metrics for their needs. The latest results
can be found online: https://videoprocessing.ai/benchmarks/
metrics-robustness.html.

Introduction
Nowadays, most new image- and video-quality metrics
(IQA/VQA) employ deep learning. For example, in the lat-
est NTIRE challenge on perceptual quality assessment (Gu
et al. 2022), all winning methods were based on neural net-
works. With the increased sizes of datasets and availabil-
ity of crowdsourced markup, deep-learning-based metrics
started to outperform traditional approaches in correlation
with subjective quality. However, learning-based methods,
including IQA/VQA metrics, are more vulnerable to adver-
sarial attacks. A simple metric like PSNR is more stable to
image modifications that aim to manipulate quality scores
(any changed pixel will decrease the score). In contrast, the
behaviour of deep metrics is much more complex. The ex-
isting benchmarks evaluate metrics’ correlation with subjec-
tive quality but do not consider their robustness. At the same
time, the possibility to manipulate IQA/VQA metrics scores
is already being exploited in different real-life scenarios. Be-
low are some examples of such scenarios and potential neg-
ative impacts from using non-robust IQA/VQA.
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Decrease of perceptual quality. Metrics-oriented opti-
mization modes are already being implemented in video en-
coders. libaom (Deng, Han, and Xu 2020) and LCEVC (V-
Nova 2023) have options that optimize bitstream for increas-
ing a VMAF score. Such tuning was designed to improve
the visual quality of the encoded video; however, as VMAF
is a learning-based metric, it may decrease perceptual qual-
ity (Zvezdakova et al. 2019; Siniukov et al. 2021). Using
unstable image quality metrics as a perceptual proxy in a
loss function may lead to incorrect restoration results (Ding
et al. 2021). For instance, LPIPS is widely used as a per-
ceptual metric, but optimizing its scores leads to increased
brightness (Kettunen, Härkönen, and Lehtinen 2019), which
is unwanted or even harmful (for example, when analyzing
medical images).

Cheating in benchmarks. The developers of image- and
video-processing methods can use metrics’ vulnerabilities
to achieve better competition results. For example, despite
LPIPS already being shown to be vulnerable to adversarial
attacks, it is still used as the main metric in some bench-
marks, e.g. to compare super-resolution methods (Zhang
et al. 2021). In some competitions that publish the results of
subjective comparisons and objective quality scores, we can
see the vast difference in these leaderboards. For instance,
the VMAF leaders in 2021 Subjective Video Codecs Com-
parisons differ from leaders by subjective quality (Compari-
son 2021).

Manipulating the results of image web search. Search en-
gines use not only keywords and descriptions but also image
quality measurement to rank image search results. For ex-
ample, the developers of Microsoft Bing used image quality
as one of the features to improve its output (Bing 2013). As
shown in MediaEval 2020 Pixel Privacy: Quality Camou-
flage for Social Images competition (MediaEval 2020), there
are a variety of ways to fool image quality estimators.

Our study highlights the necessity of measuring the adver-
sarial robustness of contemporary metrics for the research
community. There are different ways to cheat on IQA/VQA
metrics, such as increasing or decreasing their scores. In our
study, we focus on analyzing metrics’ resistance to attacks
that increase estimated quality scores, as this kind of attack
has already appeared in many real-life cases. Also, by choos-
ing to investigate metrics’ stability to scores increasing, we
do not limit the generability of the results. We believe that
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the existing image- and video-quality metrics benchmarks
must be supplemented with metrics’ robustness analysis. In
this paper, we first attempt to do this and apply several types
of adversarial attacks to a number of quality metrics. Our
contributions are as follows: a new benchmark methodol-
ogy, a leaderboard published online 1, and an analysis of
currently obtained results. We published our code 2 for gen-
erating adversarial attacks and a list of open datasets used in
this study, so the developers of IQA/VQA methods can mea-
sure the stability of their methods to attacks. For those who
want their approach published on our website, the bench-
mark accepts new submissions of quality metrics. Try our
benchmark using pip install robustness-benchmark.

Related Work
Depending on the availability of the undistorted image,
IQA/VQA metrics can be divided into three types: no-
reference (NR), full-reference (FR) or reduced-reference
(RR). NR metrics have the broadest applications but gen-
erally show lower correlations with subjective quality than
FR and RR metrics. However, recent results show that new
NR metrics outperformed many existing FR methods, so we
mainly focused on NR metric evaluation in this paper. The
performance of IQA/VQA metrics is traditionally evaluated
using subjective tests that measure the correlation of met-
ric scores with perceptual ones. The most well-known com-
parisons were published within NTIRE Workshop (Gu et al.
2022), and two benchmarks currently accept new submis-
sions: MSU Video Quality Metrics Benchmark (Antsiferova
et al. 2022) and UGC-VQA (Tu et al. 2021). These stud-
ies show how well the compared metrics estimate subjective
quality but do not reflect their robustness to adversarial at-
tacks.

There are different ways to measure the robustness of neu-
ral network-based methods. It can be done via theoretical es-
timations, e.g. Lipschitz regularity. However, this approach
has many limitations, including the number of parameters in
the evaluated network. A more universal approach is based
on applying adversarial attacks. This area is widely studied
for computer vision models. However, not all methods can
be adapted to attack quality metrics.

The first methods for measuring the robustness of
IQA/VQA metrics were based on creating a specific situ-
ation in which the metric potentially fails. Ciaramello and
Reibman (2011a) first conducted such analysis and proposed
a method to reveal the potential vulnerabilities of an objec-
tive quality model based on the generation of image or video
pairs with the intent to cause misclassification errors (Brill
et al. 2004) by this model. Misclassification errors include
false ordering (FO, the objective model rates a pair opposite
to humans), false differentiation (FD, the objective model
rates a pair as different but humans do not), and false tie
(FT, humans order a pair as different, but the objective model
does not). H. Liu and A. Reibman (2016) introduced a soft-

1https://videoprocessing.ai/benchmarks/metrics-robustness.
html

2https://github.com/msu-video-group/MSU Metrics
Robustness Benchmark

Benchmark # attacks /
# metrics

Metrics
type

Test
datasets

Ciaramello and
Reibman (2011a) 5 / 4 FR 10 images

Ciaramello and
Reibman (2011b) 5 / 9 NR, FR 473 images

Liu and
Reibman (2016) 5 / 11 NR, FR 60 images

Shumitskaya
et al. (2022) 1 / 7 NR 20 videos

Zhang et al. (2022) 1 / 4 NR 12 images
Ghildyal and
Liu (2023) 6 / 5 FR 12,227

images

Ours 9 / 15 NR, FR
3000

images,
1 video

Table 1: Comparisons of image- and video-quality metrics’
stability to adversarial attacks.

ware called “STIQE” that automatically explores an image-
quality metric’s performance. It allows users to execute tests
and then generate reports to determine how well the metric
performs. Testing consists of applying several varying dis-
tortions to images and checking whether the metric score
rises monotonically as the degree of the applied distortion.

Nowadays, metrics’ adversarial robustness is primarily
estimated by adapting attacks designed for computer vi-
sion tasks to image quality metrics. A more detailed de-
scription of existing attacks against metrics that we used
in our study is given in the section “List of adversarial at-
tacks”. There are two recently published attacks that we aim
to add to the benchmark shortly: a new CNN-based gener-
ative attack FACPA (Shumitskaya, Antsiferova, and Vatolin
2023), attack with human-in-the-loop by Zhang et al. (Zhang
et al. 2022) and spatial attack that was adapted for metrics
(Ghildyal and Liu 2023).

Recently, a new study on the adversarial robustness of
full-reference metrics was published (Ghildyal and Liu
2023). The authors showed that six full-reference metrics
are susceptible to imperceptible perturbations generated via
common adversarial attacks such as FGSM (Goodfellow,
Shlens, and Szegedy 2015), PGD (Madry et al. 2017), and
the One-pixel attack (Su, Vargas, and Sakurai 2019). They
also showed that adversarial perturbations crafted for LPIPS
metric (Zhang et al. 2018) using stAdv attack can be trans-
ferred to other metrics. As a result, they concluded that more
accurate learning-based metrics are less robust to adversar-
ial attacks than traditional ones. We summarised the existing
research on IQA/VQA metrics’ robustness to adversarial at-
tacks in Table 1.

Benchmark
List of Metrics
In this paper, we focused on the evaluation of only no-
reference metrics for several reasons: firstly, there exists a
similar evaluation of full-reference metrics (Ghildyal and

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

701



Liu 2023); secondly, no-reference metrics have a more com-
prehensive range of applications and are more vulnerable to
attacks; thirdly, these metrics are mostly learning-based. We
considered state-of-the-art metrics according to other bench-
marks and various other no-reference metrics. All tested
metrics assess image quality, except for VSFA (Li, Jiang,
and Jiang 2019) and MDTVSFA (Li, Jiang, and Jiang 2021),
which are designed for videos.

RankIQA (Liu, Van De Weijer, and Bagdanov 2017) pre-
trains a model on a large dataset with synthetic distortions to
compare pairs of images, then fine-tunes it on a small realis-
tic dataset. MetaIQA (Zhu et al. 2020) introduces a quality
prior model pre-trained on several dozens of specific dis-
tortions and fine-tuned on a smaller target dataset, similar
to RankIQA. WSP (Su and Korhonen 2020) is concerned
with Global Average Pooling feature aggregation used by
most existing methods and replaces it with Weighted Spa-
tial Pooling to distinguish important locations. CLIP-IQA
(Wang, Chan, and Loy 2023) predicts the quality perception
and image-provoked abstract emotions by feeding hetero-
geneous text prompts and the image to the CLIP network.
PAQ-2-PIQ (Ying et al. 2020) introduces a large subjec-
tive picture quality database of about 40,000 images, trains a
CNN with ResNet-18 backbone to predict patch quality and
combines the predictions with RoI pooling. HyperIQA (Su
et al. 2020) focuses on real-life IQA and proposes a hyper-
convolutional network that predicts the weights of fully con-
nected layers. MANIQA (Yang et al. 2022) assesses qual-
ity of GAN-based distortions. The model uses vision trans-
former features processed by proposed network modules to
enhance global and local interactions. The final score predic-
tion utilizes patch weighting. TReS (Golestaneh, Dadsetan,
and Kitani 2022) proposes to compute local features with
CNN and non-local features with self-attention, introduces
a per-batch loss for correct ranking and a self-supervision
loss between reference and flipped images. FPR (Chen et al.
2022) hallucinates pseudo-reference features from the dis-
torted image using mutual learning on reference and dis-
torted images with triplet loss. Attention maps are predicted
to aggregate scores over patches. VSFA (Li, Jiang, and
Jiang 2019) estimates video quality using ResNet-50 fea-
tures for content awareness and differentiable temporal ag-
gregation, which consists of gated recurrent units with min
pooling. MDTVSFA (Li, Jiang, and Jiang 2021) enhances
VSFA with explicit mapping between predicted and dataset-
specific scores, supported by multi-dataset training. NIMA
(Talebi and Milanfar 2018) predicts a distribution of scores
instead of regressing a single value and considers both tech-
nical and aesthetic image scores. It is trained on the Aes-
thetic Visual Analysis database using squared earth mover’s
distance as a loss. LINEARITY (Li, Jiang, and Jiang 2020)
invents the norm-in-norm loss, which shows ten times faster
convergence than MSE or MAE with ResNet architecture.
SPAQ (Fang et al. 2020) collects a database of 11,125 smart-
phone photos, proposes a ResNet-50 baseline model and
three modified versions incorporating EXIF data (MT-E),
subjective image attributes (MT-A) and scene labels (MT-
S). KonCept512 (Hosu et al. 2020) collects KonIQ-10k, a
diverse crowdsourced database of 10,073 images and trains

a model with InceptionResNetV2 backbone.
We also used MSE, PSNR and SSIM (Wang et al. 2004)

as proxy metrics to estimate image quality degradation af-
ter attacks. The choice is motivated by their structure (full-
reference and not learning-based), which makes them more
stable to adversarial attacks.

List of Adversarial Attacks
In all attacks, we define the loss function as J(θ, I) =
1− score(I)/range and minimize it by making small steps
along the gradient direction in image space, which increases
the attacked metric score. range is computed as the dif-
ference between maximum and minimum metric values on
the dataset and serves to normalize the gradient magnitude
across different metrics.

FGSM-based attacks are performed for each image. The
pixel difference is limited by ε. FGSM (Goodfellow, Shlens,
and Szegedy 2015) is a basic approach that makes one
gradient step: Iadv = I − ε · sign(∇IJ(θ, I)). I-FGSM
(Kurakin, Goodfellow, and Bengio 2018) is a more com-
putationally expensive method that uses T iterations and
clips the image on each step: Iadvt+1 = ClipI,ε{Iadvt −
α · sign(∇IJ(θ, I

adv
t ))}, where t = 0, 1, . . . T − 1, I0 is

the input image I , and α is the perturbation intensity. The
clipped pixel value at position (x, y) and channel c satis-
fies |Iadvt (x, y, c) − I(x, y, c)| < ε . PGD (Madry et al.
2017) is identical to I-FGSM except for the random initial-
ization in the ε-vicinity of the original image; due to its sim-
ilarity to I-FGSM, we didn’t include it in the experiments.
MI-FGSM (Dong et al. 2018) uses gradient momentum:
Iadvt+1 = ClipI,ε{Iadvt − α · sign(gt)}, t = 0, 1, . . . T − 1,
gt = ∇IJ(θ, Iadvt ) + ν · gt−1, g−1 = 0, where ν con-
trols the momentum preservation. AMI-FGSM (Sang et al.
2022) is identical to MI-FGSM, except the pixel difference
limit ε is set to 1/NIQE(I) by computing the NIQE (Mit-
tal, Soundararajan, and Bovik 2012) no-reference metric.

Universal Adversarial Perturbation (UAP)-based at-
tacks generate adversarial perturbation for an attacked met-
ric, which is the same for all images and videos. When UAP
is generated, the attack process consists of the mere addi-
tion of an image with UAP. The outcome is the image with
an increased target metric score. We used three methods to
train UAPs. Cumulative-UAP is obtained by averaging non-
universal perturbation on the training dataset. Non-universal
perturbations are generated using one step of gradient de-
scent. Optimized-UAP is obtained by training UAP weights
using batch training with Adam optimizer and loss func-
tion defined as target metric with opposite sign. Generative-
UAP is obtained by auxiliary U-Net generator training. The
network is trained to generate a UAP from random noise
with uniform distribution. The Adam optimizer is used for
training, and the loss function is defined as the target metric
with the opposite sign. Once the network is trained, a gener-
ated UAP is saved and further used to attack new images.

Perceptual-aware attacks use other image quality met-
rics to control attack imperceptibility to the human eye. Ko-
rhonen et al. (Korhonen and You 2022) proposes a method
for generating adversarial images for NR quality metrics
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with perturbations located in textured regions. They use
gradient descent with additional elementwise multiplication
of gradients by a spatial activity map. The spatial activity
map of an image is calculated using horizontal and vertical
3×3 Sobel filters. MADC (Wang and Simoncelli 2008) is a
method for comparing two image- or video-quality metrics
by constructing a pair of examples that maximize or mini-
mize the score of one metric while keeping the other fixed. In
our study, we fixed MSE while maximizing an attacked met-
ric. The projected gradient descent step and binary search
are performed on each iteration. Let g1 be the gradient with
direction to increase the attacked metric and g2 the gradient
of MSE on some iteration. The projected gradient is then
calculated as pg = g1 − g2T ·g1

g2T ·g2 · g2. After projected gra-
dient descent, the binary search to guarantee a fixed MSE
is performed (with 0.04 precision). The binary search is the
process that consists of small steps along the MSE gradient:
if the precision is bigger than 0.04, then steps are taken along
the direction of reducing MSE and vice versa.

Methodology
Datasets This study incorporated pre-trained quality met-
rics as a part of our evaluation benchmark. We did not per-
form metrics fine-tuning on any data. We used six datasets
summarised in Table 2. These datasets are widely used in
the computer vision field. We chose them to cover a diverse
range of real-life scenarios, including images and video,
with varying resolutions from 299× 299 up to 1920× 1080
(FullHD). All datasets have an open license that allows them
to be used in this work. Our analysis categorized the adver-
sarial attacks into trainable and non-trainable attacks. Three
datasets were used to train adversarial attacks, and three
were used for testing. We trained UAP attacks using each
training dataset, resulting in three versions of each attack.
These versions were subsequently evaluated on the desig-
nated testing datasets, and the results for different versions
were averaged among each UAP-attack type and amplitude.
Non-trainable attacks were directly evaluated on the testing
datasets. We have analyzed the efficiency and generaliza-
tion capabilities of both trainable and non-trainable adver-
sarial attacks across various data domains while also con-
sidering the influence of training data on metric robustness.
NIPS 2017: Adversarial Learning Development Set (2017)
was also used to train metrics’ domain transformations (de-
scribed further in “Evaluation metrics”).

Implementation Details We used public source code for
all metrics without additional pretraining and selected the
default parameters to avoid overfitting. The training and
evaluation of attacks on the metrics were fully automated.
We employed the CI/CD tools within a GitLab repository
for our measurement procedures. We established a sophis-
ticated end-to-end pipeline from the attacked metrics’ orig-
inal repositories to the resulting robustness scores to make
the results entirely verifiable and reproducible. The pipeline
scheme, the list of used attack’s hyper-parameters and the
hyperparameter choice justification are presented in the sup-
plementary materials (Antsiferova et al. 2023). UAP-based
attacks (UAP, cumulative UAP and generative UAP) were

averaged with three different amplitudes (0.2, 0.4 and 0.8).
Quality metrics implementations were obtained from of-

ficial repositories. We only modified interfaces to meet our
requirements and used default parameters provided by the
authors. Links to original repositories and a list of applied
patches (where it was needed to enable gradients) are pro-
vided in supplementary materials (Antsiferova et al. 2023).

Calculations were performed on two computers with the
following characteristics:
• 4 x GeForce RTX 3090 GPU, an Intel(R) Xeon(R) Gold

6226R CPU @ 2.90GHz
• 4 x NVIDIA RTX A6000 GPU, AMD EPYC 7532 32-

Core Processor @ 2.40GHz
All calculations took a total of about 2000 GPU hours. The
values of parameters (ϵ, number of iterations, etc.) for the at-
tacks are listed in the supplementary materials (Antsiferova
et al. 2023).

Evaluation Metrics Before calculating metrics’ robust-
ness scores, metric values are transformed with min-max
scaling so that the values before the attack lie in the range
[0,1]. To compensate for the nonlinear dependence between
metrics (Zhang et al. 2022), we converted all metrics to the
same domain before comparison. MDTVSFA (Li, Jiang, and
Jiang 2021) was used as the primary domain, as it shows the
best correlations with MOS among tested metrics accord-
ing to the MSU Video Quality Metrics benchmark results.
We employed the 1-Dimensional Neural Optimal Trans-
port (Korotin, Selikhanovych, and Burnaev 2023) method
to build the nonlinear transformation between the distribu-
tions of all metrics to one general shape. We also present the
results without the nonlinear transformation in the supple-
mentary materials (Antsiferova et al. 2023).

Absolute and Relative gain. Absolute gain is calculated
as the average difference between the metric values before
and after the attack. Relative gain is the average ratio of the
difference between the metric values before and after the at-
tack to the metric value before the attack plus 1 (1 is added
to avoid division problems, as values before the attack are
scaled to [0,1]).

Abs.gain = 1
n

∑n
i=1 (f(x

′
i)− f(xi)) ,

Rel.gain = 1
n

∑n
i=1

f(x′
i)−f(xi)

f(xi)+1 ,
(1)

where n is the number of images, xi is the clear image, x′
i

— it’s attacked counterpart, and f(.) is the IQA metric func-
tion.
Robustness score (Zhang et al. 2022) Rscore is defined as
the average ratio of maximum allowable change in quality
prediction to actual change over all attacked images in a log-
arithmic scale:

Rscore =
1

n

n∑
i=1

log10

(
max{β1 − f(x′

i), f(xi)− β2}
|f(x′

i)− f(xi)|

)
.

(2)
As metric values are scaled, we use β1 = 1 and β2 = 0.

Wasserstein score (Kantorovich 1960) Wscore and En-
ergy Distance score (Szekely 2002) Escore are used to eval-
uate the statistical differences between distributions of met-
ric values before and after the attack. Large positive values
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Training datasets
(for UAP attacks) Type Number

of samples Resolution Testing datasets Type Number
of samples Resolution

COCO (2014) Images 300,000 640× 480 NIPS (2017) Images 1,000 299× 299

Pascal VOC (2012) Image 11,530 500× 333
Derf’s collection

(2001) Video 24 (∼ 10k
frames) 1920× 1080

Vimeo-90k
Train set (2019)

Triplets of
images 2,001 448× 256

Vimeo 90k
Test set (2019)

Triplets of
images 11,346 448× 256

Table 2: Summary of the datasets used in our study.

of these scores correspond to a significant upward shift of
the metric’s predictions, values near zero indicate the ab-
sence of the metric’s response to the attack, and negative
ones show a decrease in the metric predictions and the in-
efficiency of the attack. These scores are defined as corre-
sponding distances between distributions multiplied by the
sign of the difference between the mean values before and
after the attack:

Wscore = W1(P̂ , Q̂) · sign(x̄Q̂ − x̄P̂ ),

W1(P̂ , Q̂) = infγ∈Γ(P̂ ,Q̂)

∫
R2 |x− y|dγ(x, y) =

=
∫∞
−∞ |F̂P̂ (x)− F̂Q̂(x)|dx;

(3)

Escore = E(P̂ , Q̂) · sign(x̄Q̂ − x̄P̂ ),

E(P̂ , Q̂) = (2 ·
∫∞
−∞(F̂P̂ (x)− F̂Q̂(x))

2dx)
1
2 ,

(4)

where P̂ and Q̂ are empirical distributions of metric values
before and after the attack, F̂P̂ (x) and F̂Q̂(x) are their
respective empirical Cumulative Distribution Functions,
and x̄P̂ and x̄Q̂ are their respective sample means.

Results
The main results of our study are aggregated across the dif-
ferent attack types, training and testing datasets. Tables and
figures for other robustness measures, by specific datasets
and attacks, are presented in the supplementary materials
(Antsiferova et al. 2023) and on the benchmark webpage.

Metrics that are robust to UAP-based attacks. Despite
the three types of implemented UAP-based attacks result-
ing in different attack efficiency, the most and least robust
metrics for these attacks are similar. MANIQA showed the
best robustness score for all amplitudes of Optimized UAP
and is within top-3 metrics robust to Generative UAP. This
metric uses ViT and applies attention mechanisms across
the channel and spatial dimensions, increasing interaction
among different regions of images globally and locally.
HYPER-IQA showed high resistance to all UAP attacks.
Besides FPR, the PAQ-2-PIQ showed the worst energy dis-
tance score. The robustness scores of analyzed attacks are
provided in Table 3 and illustrated in Fig. 1. Annotations
include only five best and five worst methods judged by ro-
bustness score for better visibility.

Metrics that are robust to iterative attacks. CLIP-IQA
shows the best robustness to most iterative attacks, followed
by RANK-IQA and MDTVSFA. RANK-IQA also offers the
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Cumulative UAP, amplitude=0.8
Default UAP, amplitude=0.8
Generative UAP, amplitude=0.8

Figure 1: Metrics’ robustness score for UAP-based adver-
sarial attacks and SSIM measured between original and at-
tacked images. The results are averaged for all test datasets.

best resistance to perceptually oriented MADC and Korho-
nen attacks. These attacks use approaches to reduce the vis-
ibility of distortions caused by an attack, which makes it
more difficult for them to succeed. The robustness score of
analyzed attacks is shown in Table 3 and illustrated in Fig. 2.
Annotations include only five best and five worst methods
judged by robustness score for better visibility.

Metrics’ robustness at different levels of perceptual
quality loss. As described in the Benchmark section, we
used SSIM, PSNR and MSE as simple proxies for estimating
perceptual quality loss of attacks in this study. Fig. 3 shows
an averaged robustness score depending on SSIM loss of at-
tacked images for all attacks. It shows that all metrics be-
come less robust to attacks when more quality degradation
is allowed. HYPER-IQA’s robustness is more independent
from SSIM loss among all metrics. Otherwise, PAQ-2-PIQ,
VSFA and FPR are becoming more vulnerable than other
metrics with increasing SSIM degradation. Results for other
proxy metrics (MSE and PSNR) are provided in the sup-
plementary materials (Antsiferova et al. 2023) and on the
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O-UAP G-UAP C-UAP FGSM I-FGSM MI-FGSM AMI-FGSM MADC Korhonen et al.

CLIP-IQA 0.632 0.397 0.067 0.398 0.836 0.821 0.819 0.823 0.812
META-IQA 0.183 -0.029 0.003 0.529 1.307 1.285 1.287 0.934 0.997
RANK-IQA 0.295 0.064 0.180 0.285 1.063 0.891 0.893 0.383 0.763

HYPER-IQA 0.072 -0.094 0.086 -0.406 1.366 1.387 1.396 0.848 1.329
KONCEPT 0.419 0.187 0.435 0.574 1.248 1.066 1.066 0.753 1.042

FPR 1.705 0.846 0.966 0.682 3.344 3.210 3.215 1.703 3.018
NIMA -0.024 0.046 0.018 0.258 1.203 1.147 1.148 0.959 1.041

WSP 0.784 0.155 0.012 0.405 1.260 1.251 1.257 0.760 0.894
MDTVSFA 0.756 0.359 0.005 0.185 1.011 0.983 0.983 0.914 0.805

LINEARITY 1.022 0.445 0.972 -0.220 1.284 1.218 1.224 0.816 1.204
VSFA 1.151 0.361 0.014 0.306 2.054 2.272 2.274 1.470 1.539

PAQ-2-PIQ 0.943 0.252 0.873 0.578 1.190 1.123 1.125 0.536 0.997
SPAQ 0.605 0.357 0.560 0.266 1.514 1.371 1.375 0.740 1.301
TRES 0.691 0.358 0.634 0.826 1.223 1.209 1.210 0.741 1.173

MANIQA -0.390 -0.174 -0.003 0.499 1.403 1.225 1.226 0.698 0.843

Table 3: Metrics’ robustness calculated using energy distance score measure to different types of attacks. The results are aver-
aged across test datasets. O-UAP stands for “Optimised-UAP”, G-UAP for “Generative-UAP”, C-UAP for “Cumulative-UAP”.
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Figure 2: Metrics’ robustness score for iterative adversarial
attacks and SSIM measured between original and attacked
images. The results are averaged for all test datasets.

benchmark webpage.
Overall metrics’ robustness comparison. Table 4 and

Fig. 4 show the general results of our study. First, we see
that iterative attacks are more efficient against all metrics.
However, metrics’ robustness is different for UAP and it-
erative attacks. We summarised the robustness of all attack
types in the table and compared them using various mea-
sures. According to absolute and relative gain, the leaders
are the same: MANIQA, NIMA and RANK-IQA, and they
also perform well based on other measures. META-IQA and
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Figure 3: Dependency of metrics’ robustness score of SSIM
loss for attacked images (all types of attacks).

MDTVSFA have high robustness scores. Energy measures
also show similar results. FPR is the least stable to adversar-
ial attacks, considering all tests and measures.

One-sided Wilcoxon signed-rank tests. To study the sta-
tistical difference in the results, we conducted one-sided
Wilcoxon tests on the values of absolute gains for all pairs
of metrics. A table with detailed test results for different
types of attacks can be found in the supplementary mate-
rials (Antsiferova et al. 2023). All metrics are statistically
superior to the FPR metric, which means that FPR can be
significantly increased under the influence of any of the con-
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Abs.gain ↓ Rel.gain ↓ Rscore ↑ Escore ↓ Wscore ↓
CLIP-IQA 0.256 (0.254, 0.258) 0.184 (0.182, 0.185) 0.702 (0.698, 0.707) 0.424 0.256
META-IQA 0.241 (0.238, 0.243) 0.182 (0.180, 0.184) 1.168 (1.161, 1.176) 0.324 0.241
RANK-IQA 0.184 (0.183, 0.186) 0.12 (0.119, 0.122) 0.843 (0.839, 0.848) 0.285 0.184
HYPER-IQA 0.232 (0.228, 0.235) 0.151 (0.149, 0.153) 0.740 (0.735, 0.745) 0.277 0.237
KONCEPT 0.328 (0.326, 0.330) 0.227 (0.225, 0.228) 0.584 (0.579, 0.589) 0.489 0.328
FPR 2.591 (2.568, 2.615) 1.730 (1.714, 1.746) -0.229(-0.234, -0.224) 1.409 2.591
NIMA 0.17 (0.168, 0.172) 0.115 (0.114, 0.117) 1.152 (1.146, 1.158) 0.239 0.170
WSP 0.380 (0.377, 0.384) 0.276 (0.273, 0.278) 0.893 (0.886, 0.901) 0.449 0.380
MDTVSFA 0.279 (0.277, 0.281) 0.186 (0.184, 0.187) 0.99 (0.983, 0.998) 0.447 0.279
LINEARITY 0.683 (0.679, 0.687) 0.447 (0.444, 0.450) 0.267 (0.263, 0.272) 0.780 0.683
VSFA 0.899 (0.891, 0.907) 0.611 (0.606, 0.617) 0.659 (0.650, 0.667) 0.739 0.899
PAQ-2-PIQ 0.521 (0.518, 0.524) 0.341 (0.338, 0.343) 0.449 (0.443, 0.454) 0.675 0.521
SPAQ 0.671 (0.665, 0.678) 0.536 (0.531, 0.542) 0.493 (0.488, 0.499) 0.637 0.671
TRES 0.433 (0.431, 0.435) 0.305 (0.304, 0.307) 0.320 (0.317, 0.323) 0.627 0.433
MANIQA 0.104 (0.101, 0.107) 0.078 (0.076, 0.08) 0.986 (0.979, 0.993) 0.207 0.175

Table 4: Metrics’ robustness to tested adversarial attacks according to different stability measures. The results for abs. gain,
rel. gain and R-score were averaged across different types of attacks and test datasets, so they are presented with confidence
intervals. The Escore and Wscore were calculated using the whole set of attacked results without averaging.
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Figure 4: Mean robustness score of compared metrics versus
SSIM averages for UAP-based and iterative attacks.

sidered attacks. MANIQA, on the contrary, turns out to be
one of the most stable metrics for all attacks on average, but
it is inferior to CLIP-IQA on FGSM-based attacks. Over-
all, the results of the Wilcoxon one-sided tests are consistent
with our evaluations of the obtained results.

Stable metrics feature analysis. To analyze the rela-
tionship of metrics’ architectures with robustness, we sum-
marised the main features of tested metrics in Table 1 of
the supplementary materials. A common feature of robust
metrics is the usage of the input image cropping or resiz-

ing. High stability to attacks was also shown by META-IQA,
which does not transform input images but uses a relatively
small backbone network that leverages prior knowledge of
various image distortions obtained during so-called meta-
learning.

Conclusion
This paper analyzed the robustness of 15 no-reference
image/video-quality metrics to different adversarial at-
tacks. Our analysis showed that all metrics are suscepti-
ble to adversarial attacks, but some are more robust than
others. MANIQA, META-IQA, NIMA, RANK-IQA and
MDTVSFA showed high resistance to adversarial attacks,
making their usage in practical applications safer than other
metrics. We published this comparison online and are ac-
cepting new metrics submissions. This benchmark can be
helpful for researchers and companies who want to make
their metrics more robust to potential attacks.

In this paper, we revealed ways of cheating on image qual-
ity measures, which can be considered to have a potential
negative social impact. However, as was discussed in the In-
troduction, the vulnerabilities of image- and video-quality
metrics are already being exploited in some real-life appli-
cations. At the same time, only a few studies have been pub-
lished. We open our findings to the research community to
increase the trustworthiness of image/video processing and
compression benchmarks. Limitations of our study are listed
in the supplementary materials (Antsiferova et al. 2023).
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