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Abstract

Deepfake technology has given rise to a spectrum of novel
and compelling applications. Unfortunately, the widespread
proliferation of high-fidelity fake videos has led to pervasive
confusion and deception, shattering our faith that seeing is
believing. One aspect that has been overlooked so far is that
current deepfake detection approaches may easily fall into the
trap of overfitting, focusing only on forgery clues within one
or a few local regions. Moreover, existing works heavily rely
on neural networks to extract forgery features, lacking the-
oretical constraints guaranteeing that sufficient forgery clues
are extracted and superfluous features are eliminated. These
deficiencies culminate in unsatisfactory accuracy and limited
generalizability in real-life scenarios.

In this paper, we try to tackle these challenges through
three designs: (1) We present a novel framework to capture
broader forgery clues by extracting multiple non-overlapping
local representations and fusing them into a global semantic-
rich feature. (2) Based on the information bottleneck the-
ory, we derive Local Information Loss to guarantee the or-
thogonality of local representations while preserving com-
prehensive task-relevant information. (3) Further, to fuse
the local representations and remove task-irrelevant infor-
mation, we arrive at a Global Information Loss through the
theoretical analysis of mutual information. Empirically, our
method achieves state-of-the-art performance on five bench-
mark datasets. Our code is available at https://github.com/
QingyuLiu/Exposing-the-Deception, hoping to inspire re-
searchers.

1 Introduction
Fueled by the accessibility of large-scale video datasets and
the maturity of deepfake technologies (Nirkin, Keller, and
Hassner 2019; Li et al. 2019), one may effortlessly create
massive forgery videos beyond human discernibility. How-
ever, malicious usage of deepfake can have serious influ-
ences, ranging from identity theft and privacy violations
to large-scale financial frauds and dissemination of misin-
formation. For instance, in March 2022, hackers created a
fake video of the Ukrainian president Zelenskyy in which he
stands at a podium and addresses Ukrainian soldiers to lay
down their arms. Such events are far from isolated, and they
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Figure 1: Example visualization of four local salient features
obtained by our method. Each feature focuses on distinct
forgery regions with little overlap. We zoom in to show the
detailed differences for these regions between a real sample
and a fake sample. Our method can grasp broader forgery
clues including blending ghosts, consistent and symmetrical
skin tones, tooth details, and stitching seams.

highlight the risk of deepfake technology in misleading the
public and undermining trust. Consequently, accurate and
effective deepfake detection is essential for mitigating these
risks.

Fundamentally, deepfake detection amounts to recogniz-
ing forgery clues that distinguish real and synthetic images.
There emerge many studies for deepfake detection, which
can be roughly categorized into two main branches. One line
of work (Afchar et al. 2018; Dolhansky et al. 2020) employs
CNN networks to automatically learn the clues within ma-
nipulated images. Another line of work is dedicated to pon-
dering and exploring the differences between fake and real
images by incorporating human observation and understand-
ing. These approaches hone in on high-level semantic imper-
fections of counterfeits (Haliassos et al. 2021), as well as un-
derlying imperceptible patterns in artifacts (such as blending
ghost (Shiohara and Yamasaki 2022) and frequency domain
anomalies (Liu et al. 2021)).

After scrutinizing and experimenting with the implemen-
tations of state-of-the-art approaches, we obtain two empiri-
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cal insights: (1) Despite achieving a high AUC on the train-
ing dataset, current methods usually experience a substantial
decrease in AUC on unseen datasets. This may stem from
the fact that current methods tend to unintentionally learn
shortcuts for the training dataset, focusing only on one or a
few forgery clues. (2) Current works heavily rely on neural
networks to automatically extract forgery features, lacking
rigorous theoretical guarantees to capture sufficient label-
relevant information and to eliminate superfluous informa-
tion. Consequently, the extracted features may converge to
insufficient representations or trivial features, compromising
the accuracy of such methods.

Motivated by these, we advocate extracting broader
forgery clues for deepfake detection and seek to lay the
mathematical foundation for sufficient forgery feature ex-
traction. Specifically, we first adaptively extract multiple dis-
entangled local features focused on non-overlapping aspects
of the suspect image (as in Fig. 1). To ensure the orthogo-
nality of these local features while preserving comprehen-
sive task-relevant information, we utilize mutual informa-
tion to derive an information bottleneck objective, i.e., Lo-
cal Information Loss. Secondly, we fuse local features into
a global representation guided by Global Information Loss
that serves to eliminate task-irrelevant information.

To evaluate the effectiveness of our method, we con-
duct extensive experiments on five widely used benchmark
datasets, i.e., FaceForensics++ (Rossler et al. 2019), two ver-
sions of Celeb-DF (Li et al. 2020b), and two versions of
DFDC (Dolhansky et al. 2020). We also conduct ablation
studies to assess the efficacy of each key component in our
method. Our method achieves state-of-the-art performance
for both in-dataset (the training and test datasets are sam-
pled from the same domain) and cross-dataset (the training
and test datasets are two different datasets) settings. In sum-
mary, our contributions are as follows:
• We propose a novel framework for deepfake detection

that aims to obtain broader forgery clues.
• We mathematically formulate a mutual information ob-

jective to effectively extract disentangled task-relevant
local features. Additionally, we introduce another objec-
tive for aggregating the local features and eliminating su-
perfluous information. We provide a rigorous theoretical
analysis to show how these mutual information objec-
tives can be optimized.

• Empirically, our method achieves state-of-the-art perfor-
mance on five benchmark datasets. Interesting and new
insights are also presented (e.g., most deepfake detection
approaches tend to focus on only a few specific regions
around the face swap boundaries).

2 Related Work
Fueled by the maturity of deep learning models and large-
scale labeled datasets, deep learning has found its applica-
tions in various fields (Zhang et al. 2023; Wei et al. 2023;
Liu et al. 2022; Chiou et al. 2020; Liu et al. 2023; Song,
Chen, and Jiang 2023), especially for deepfake. The ease of
access and misuse of deepfake technology has led to the ma-
terialization of severe risks, and developing deepfake detec-

tion to counteract such threats is all the more pertinent and
urgent. Deepfake detection (Ying et al. 2023; Ba et al. 2023;
Hua et al. 2023; Wu et al. 2023; Pan et al. 2023; Shuai et al.
2023) faces a significant challenge posed by the sophistica-
tion of deepfake technology that can create highly realistic
content that is barely distinguishable from real ones.

A large body of literature (Dong et al. 2022b; Li et al.
2020a; Shiohara and Yamasaki 2022; Chen et al. 2022a;
Haliassos et al. 2021; Zhao et al. 2021a) focuses on se-
mantic facial feature clues of forgeries. ICT (Dong et al.
2022b) models identity differences in the inner and outer fa-
cial regions. Face X-ray (Li et al. 2020a) and SBIs (Shiohara
and Yamasaki 2022) find the blending boundaries of face
swap as evidence for forged images and build private aug-
mented datasets. Chen.et al. (Chen et al. 2022a) further ex-
pands upon blending-based forgeries, considering the eyes,
nose, mouth, and blending ratios. LipForensics (Haliassos
et al. 2021) observes the irregularities of mouth movements
in forgery videos. However, such methods only apply to the
detection of face swaps and semantic-guided forgery detec-
tion cannot be exhaustive vis-à-vis the rapid development of
deepfake techniques.

Another class of works (Frank et al. 2020; Liu et al. 2021;
Luo et al. 2021; Qian et al. 2020) proposes to take into fur-
ther consideration human understanding differences in the
frequency domain. Qian.et al. (Qian et al. 2020) employ fre-
quency as complementary evidence for detecting forgeries,
which can reveal either subtle forgery clues or compression
errors. Frank.et al. (Frank et al. 2020) and SPSL (Liu et al.
2021) search for ghost artifacts resulting from up-sampling
operations in generative networks. While such works in-
clude more features than pure semantically visual clues,
the additional features modelled tend to be domain-specific,
thereby failing to generalize well to cross-dataset scenarios.

Researchers have also engaged in multi-headed atten-
tion modules to correlate the low-level textural features and
high-level semantics at different regions for deepfake detec-
tion (Zhao et al. 2021a). Nevertheless, a challenge persists,
as there exists no concrete theoretical assurance that these
attention regions segmented based on the paradigm of hu-
man vision remain entirely task-relevant and independent.
Furthermore, the performance of such attention-based mod-
els is greatly affected by data scarcity.

3 Methodology
3.1 Overview
Presented with a suspect image, we aim to judge its authen-
ticity by extracting forgery clues that could distinguish be-
tween genuine and synthetic images. Technically, deepfake
detection can be viewed as a binary classification problem.

Early methods (Afchar et al. 2018; Dolhansky et al. 2020)
directly utilize deep neural networks to automatically learn
differences between genuine and synthetic images. Recent
works (Shiohara and Yamasaki 2022; Haliassos et al. 2021;
Liu et al. 2021) try to draw inspiration from human under-
standing and explore human-perceivable forgery clues. Un-
fortunately, current approaches tend to unintentionally learn
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Figure 2: Method overview. In the data preparation phase, we first extract frame-level facial bounding boxes from raw videos.
For deepfake detection, our method consists of three modules. i) We first employ local information blocks fi to extract multiple
disentangled local features zi corresponding to different forgery regions. We introduce local information loss to ensure that
zi has comprehensive forgery-related information and is orthogonal to zj . ii) We fuse all zi into a global feature G under the
guidance of a Global Information Loss. iii) Finally, G is passed to the classification module to output the prediction result. We
design our Local and Global Information Loss based on information bottleneck theory.

shortcuts1, which actually makes approaches focus only on
one or a few forgery regions. This overfitting issue manifests
as the limited generalizability of state-of-the-art methods,
namely significant accuracy decreases when applied to un-
seen datasets. Furthermore, due to the lack of rigorous theo-
retical constraints, neural networks of current methods may
converge to trivial features or insufficient representations.

Motivated by these, we propose to broaden our extrac-
tion of forgery clues by adaptively extracting multiple non-
overlapping local features. We also establish a theoretical
foundation to ensure the orthogonality and sufficiency of
extracted features. Overall, our approach consists of two
key components: the local disentanglement module and the
global aggregation module. The local disentanglement mod-
ule serves to extract the non-overlapping local features while
the global aggregation module is designed to aggregate them
into a global representation.

The pipeline of our proposed approach is shown in Fig. 2,
which can be summarized as follows. (1) For image prepro-
cessing, we extract face regions using a popular pre-trained
backbone network. (2) Given the preprocessed image as an
input, we design the local disentanglement module to extract
multiple local features. The local disentanglement module
comprises n local information blocks {fi}ni=1, each extract-
ing a local feature zi. fi consists of feature extraction back-
bone networks such as ResNet (He et al. 2016). To ensure
that local features contain comprehensive information re-
lated to the task and zi is orthogonal to zj(i ̸= j), we derive

1Shortcuts are decision rules optimized for benchmark perfor-
mance but incapable of transferring to more challenging testing
conditions due to a domain gap.

the Local Information Loss LLIL. (3) Thereafter, we design
the global aggregation module to fuse local features. Specif-
ically, we first concatenate all local features to a joint local
representation Z =

⊕n
i zi. Then, a fusion layer fg serves to

fuse and compress Z to obtain our final global representa-
tion G for classification. To guide this global representation
extraction, we design a Global Information Loss LGIL that
facilitates the retaining of sufficient task-related information
and the elimination of superfluous information in Z .

In what follows, we elaborate on the details of the lo-
cal disentanglement and global aggregation modules one by
one.

3.2 Local Disentanglement Module
In this section, we provide the key derivation of Local Infor-
mation Loss within the local disentanglement module.

Given an input image x with n (n ≥ 2) associated lo-
cal feature representations zi, our Local Information Loss
objective seeks to ensure two fundamental properties within
the joint local representation Z =

⊕n
i zi, i.e., comprehen-

siveness and orthogonality. Comprehensiveness mandates
the inclusion of maximal task-relevant information within
Z , while orthogonality necessitates that the individual lo-
cal features zi remain non-overlapping. To facilitate under-
standing, Fig. 3 shows the information relationship when
n = 2.

In the terminology of mutual information theory, the rela-
tionship between labels y and Z is expressed as:

I(y;Z) = I(y; z1, · · · , zn) = H(y)−H(y | Z), (1)

where I(∗) is mutual information and H(∗) is entropy.
I(y;Z) expresses the amount of predictive information (i.e.,
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current task-related information) contained in Z . H(y | Z)
and H(y) represent the required and whole information re-
lated to the task, respectively. The comprehensiveness ob-
jective of information in Z is given by:

max I(y;Z). (2)

The orthogonality condition between two probability dis-
tributions is equivalent to them having zero mutual informa-
tion. As such, we can disentangle local feature representa-
tions by minimizing the mutual information between them,
i.e., min

∑n
i̸=j I(zi; zj). According to the definition of in-

teraction information (McGill 1954), I(zi; zj) can be further
decomposed into:

I(zi; zj) = I(zi; zj ; y)︸ ︷︷ ︸
target

+ I(zi; zj | y)︸ ︷︷ ︸
superfluous

,
(3)

where I(zi; zj ; y) represents the amount of label informa-
tion retained within both zi and zj , while I(zi; zj | y) is
extraneous (superfluous) information encoded within both
zi and zj , which is irrelevant to the task. For the orthog-
onality of local features, we are primarily concerned with
label-related (target) information. As for the elimination of
superfluous information, we formulate an objective inspired
by the information bottleneck, namely Global Information
Loss (which will be discussed later in the following section).
We first focus on the target term in Eq. 3, i.e.,:

min

n∑
i̸=j

I(zi; zj ; y). (4)

By applying the chain rule for mutual information,
I(y;Z) =

∑n
i=1 I(zi; y | z1, · · · , zi−1), we can rewrite

Eq. 2 as:

max I(y;Z) ≤ max

n∑
i̸=j

I(zi; y | Z \ zi) + I(zi; zj ; y), (5)

where Z \ zi ≡ z1 ⊕ · · · ⊕ zi−1 ⊕ zi+1 ⊕ · · · ⊕ zn. Over-
all, the comprehensiveness and orthogonality constraints for
local feature extraction can be achieved by simultaneously
optimizing Eq. 5 and Eq. 4. It is worth noting that these op-
timization objectives are in conflict with I(zi; zj ; y). After
resolving these conflicting constraints, the local objective is
eventually:

max

n∑
i=1

I(zi; y | Z \ zi). (6)

Intuitively, the local objective corresponds to the red regions
illustrated in Fig. 3a. By optimizing Eq. 6, our goal is to
ideally cover all task-relevant information with disentangled
local features.

However, directly estimating Eq. 6 is intractable in gen-
eral. Earlier works (Poole et al. 2019) have pointed out major
difficulties in mutual information estimation, primarily due
to the curse of dimensionality (the amount of samples for ac-
curately estimating mutual information scales exponentially
with the embedding dimension). In light of this, we optimize
Eq. 6 via a variational approach instead of explicitly estimat-
ing the mutual information. We have the following theorem
(detailed proof is in supplementary files):

(a) Optimizing local features

(b) Optimizing the global feature

Figure 3: Information content of feature representations

Theorem: Eq. 6 has a lower bound due to:
n∑

i=1

I(zi; y | Z \ zi) ≥
n∑

i=1

DKL

[
Pz∥Pz\zi

]
, (7)

where PZ\zi = p (y | Z \ zi) ,PZ = p (y | Z) represent the
predicted distributions. DKL denotes the Kullback-Leibler
(KL) divergence.

Given the above analytical derivations, we can thus for-
mulate the Local Information Loss as:

LLIL = min
θ

exp

(
−

n∑
i=1

DKL

[
Pz∥Pz\zi

])
, (8)

where θ denotes the model parameters in our local disen-
tanglement module. Here, since the KL-divergence is not
bounded above, i.e. DKL ∈ [0,∞), we take the exponen-
tial of its negative value to transform the objective from
maximization to minimization. The transformed objective is
bounded within (0, 1] which is numerically advantageous.
Upon optimizing for this objective, local features are con-
strained to be mutually orthogonal while simultaneously ap-
proaching the maximal covering of all task-related informa-
tion. In this way, our method uncovers more forgery clues
and disentangles forgery regions adaptively, thus obtaining
feature representations with richer task-related information.

3.3 Global Aggregation Module
Following the local disentanglement module, the concate-
nated local features Z encompass comprehensive but not
purified information related to the task. Thus, we pass Z
through our global aggregation module, which plays the role
of an information bottleneck2 to eliminate the superfluous

2The concept of information bottlenecks is proposed in (Tishby,
Pereira, and Bialek 2000) which attributes the robustness of a ma-
chine learning model to its ability to distill superfluous noises while
retaining only useful information.
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information and obtain a global representation G. The infor-
mation bottleneck objective can be formulated as:

LIB = H(G)− I(y;G), (9)

where H(G) denotes the total information content in G.
Once again, estimating LIB is an intractable problem in
practice due to the curse of dimensionality. Minimizing su-
perfluous information will therefore be delegated to the net-
work operations and is not explicitly supervised.

Therefore, to ensure that G has sufficient label informa-
tion, we employ a variational approach once again. Since
G is a representation learnt from Z , the task-relevant in-
formation in G is upper-bounded by that in Z , denoted as
I(y;G) ≤ I(y;Z). By minimizing the label information
difference between local features and the global feature, we
optimize G for the sufficiency of label information:

min I(y;Z)− I(y;G). (10)

We make use of the following theorem from (Tian et al.
2021):

min I(y;Z)− I(y;G) ⇐⇒ min[DKL[PZ∥PG]]]. (11)

Finally, we arrive at the Global Information Loss:

LGIL = min
ϕ

EG∼Eϕ(G|Z) [DKL[PZ∥PG]] , (12)

where ϕ denotes the model parameters of the global aggre-
gation module.

Overall Objective The overall objective for our frame-
work consists of a cross-entropy classification loss, Local
Information Loss, and Global Information Loss:

L = LCE + αLLIL + βLGIL, (13)

where α and β are hyperparameters for the model.

4 Evaluation
In this section, we conduct extensive experiments on five
large-scale deepfake datasets to evaluate the proposed
method, including setup, comparison with state-of-the-art
methods, ablation study, and visualization results. See the
supplementary file for more experimental results.

4.1 Experimental Setup
Datasets. Following existing deepfake detection ap-
proaches (Chen et al. 2022a; Bai et al. 2023), we evalu-
ate our model on five public datasets, namely FaceForen-
sics++ (FF++) (Rossler et al. 2019), two versions of Celeb-
DF (Li et al. 2020b) and two versions of DeepFake Detection
Challenge (DFDC) (Dolhansky et al. 2020) datasets. FF++
dataset, which is the most widely used dataset, utilizes four
forgery-generation methods for producing 4,000 forgery
videos, i.e., DeepFakes (DF), Face2Face (FF), FaceSwap
(FS), and NeuralTextures (NT). FF++ has three compres-
sion versions and we use the high-quality level (C23) one
for training. Celeb-DF dataset contains two versions, termed
Celeb-DF-V1 (CD1) and Celeb-DF-V2 (CD2). CD1 con-
sists of 408 pristine videos and 795 manipulated videos,
while CD2 contains 590 real videos and 5,639 DeepFake
videos. DFDC dataset includes DFDC-Preview (DFDC-P)

and DFDC. DFDC-P as the preview of DFDC consists of
5,214 videos. DFDC, as one of the most large-scale face
swap datasets, contains more than 110,000 videos sourced
from 3,426 actors.

Implementation details. In data pre-processing, we use
the state-of-the-art face extractor RetinaFace (Deng et al.
2020) and oversample pristine videos to balance training
datasets. For the model architecture, we employ four local
information blocks (LIBs) using pre-trained ResNet-34 (He
et al. 2016) as the backbone. For training, we use the method
in (Liebel and Körner 2018) to determine α and β in Eq. 13,
to automatically balance the weights for these loss terms.

Evaluation metrics. We utilize the Accuracy (ACC),
Area Under Receiver Operating Characteristic Curve
(AUC), and log-loss score for empirical evaluation. (1)
ACC. We employ the accuracy rate as one of the metrics
in our evaluations, which is commonly used in deepfake de-
tection tasks. (2) AUC. Considering the imbalance of pris-
tine and manipulated videos in the datasets, we use AUC
as the predominant evaluation metric. (3) Logloss. This is
the evaluation metric designated for the Deepfake Detection
Challenge. We evaluate the log-loss score to benchmark our
method against winning teams. By default, we use frame-
level metrics. Since our method uses a single frame as input,
we also compute video-level AUC (as in (Haliassos et al.
2021)) for a more comprehensive comparison with video-
level detection methods.

4.2 Comparison with Existing Methods
In this section, we benchmark our method against state-of-
the-art deepfake detection methods for in-dataset and cross-
dataset settings.

In-dataset performance In in-dataset evaluations, we
train and test methods on FF++ (C23), CD2, and DFDC,
respectively. Tab. 1 presents in-dataset comparison results.
Considering that most current deepfake detection methods
have not yet released their codes, we directly cited their re-
sults in the corresponding original papers. From Tab. 1, we
observe that our method is capable of consistently outper-
forming existing methods on all three benchmarks. For ex-
ample, the AUC of our method is 0.939 on DFDC while the
state-of-the-art detection method Chugh.et al. (Chugh et al.
2020) is 0.907. The Logloss of our method is also outper-
formed by the champion team in DFDC.

Cross-dataset Performance and Model Generalizabil-
ity The cross-dataset setting is more challenging than the
in-dataset setting for deepfake detection. To evaluate the
generalization abilities of the methods on unseen datasets,
we train the models on the FF++ (C23) dataset and test
them on CD1, CD2, DFDC-P, and DFDC datasets. Since our
method uses a single frame as input, in addition to frame-
level comparisons, we also compute the average AUC over
frames in a video for comparison with video-level meth-
ods. Tab. 2 and Tab. 3 demonstrate cross-dataset compar-
ison results in terms of frame-level and video-level AUC,
respectively. Our first insight is that state-of-the-art deep-
fake detection methods still suffer from relatively low AUC
on unseen datasets, which reveals that such methods are
prone to overfitting the training dataset. The second insight
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FF++(C23) Celeb-DF-V2 DFDC
Method AUC↑ Method AUC↑ Method AUC↑ LogLoss↓
Xception (Rossler et al. 2019) 0.963 DeepfakeUCL (Fung et al. 2021) 0.905 Selim Seferbekov∗ 0.882 0.4279
Xception-ELA 0.948 SBIs (Shiohara and Yamasaki 2022) 0.937 NTechLab∗ 0.880 0.4345
SPSL (Masi et al. 2020) 0.943 Agarwal et al. 2020 0.990 Eighteen Years Old∗ 0.886 0.4347
Face X-ray (Li et al. 2020a) 0.874 Wu et al. 2023 0.998 WM∗ 0.883 0.4284
TD-3DCNN (Zhang et al. 2021) 0.722 TD-3DCNN 0.888 TD-3DCNN 0.790 0.3670
F3-Net (Qian et al. 2020) 0.981 Xception 0.985 Chugh et al. 2020 0.907 -
FInfer (Hu et al. 2022) 0.957 FInfer 0.933 FInfer 0.829 -
Ours (ResNet34) 0.983 Ours (ResNet34) 0.999 Ours (ResNet34) 0.939 0.3379

Table 1: In-dataset comparison results on FF++, Celeb-DF-V2, and DFDC. We train and test models on the same dataset,
reporting the frame-level AUC and LogLoss. ∗ is the method of winning the top four teams in DFDC. The bold and underline
mark the best and second performances, respectively.

Method Training
dataset CD1 CD2 DFDC-P DFDC

Xception (Rossler et al. 2019) FF++ 0.750∗ 0.778∗ 0.698∗ 0.636∗

DSP-FWA (Li and Lyu 2018) FF++ 0.785∗ 0.814∗ 0.595∗ -
Meso4 (Afchar et al. 2018) FF++ 0.422∗ 0.536∗ 0.594∗ -
F3-Net (Qian et al. 2020) FF++ - 0.712∗ 0.729∗ 0.646∗

Face X-ray (Li et al. 2020a) PD 0.806 0.742∗ 0.809 -
Multi-Attention (Zhao et al. 2021a) FF++ - 0.674 - 0.680∗

OST (Chen et al. 2022b) FF++ 0.748 - 0.833 -
HCIL (Gu et al. 2022a) FF++ - 0.790 0.692 -
LiSiam (Wang, Sun, and Tang 2022) FF++ 0.811 0.782 - -
RECCE (Cao et al. 2022) FF++ - 0.687 - 0.691
ICT (Dong et al. 2022b) PD 0.814 0.857 - -
DCL (Sun et al. 2022) FF++ - 0.823 0.767 -
IID (Huang et al. 2023) FF++ - 0.838 0.812 -

Ours (ResNet-34) FF++ 0.818 0.864 0.851 0.721

Table 2: Cross-dataset comparison results (frame-level AUC) on Celeb-DF-V1 (CD1), Celeb-DF-V2 (CD2), DFDC-Preview
(DFDC-P), and DFDC. We train our method on FF++ (C23) and test it on other benchmark datasets. The ’PD’ means private
data. * is collected from (Dong et al. 2022b; Cao et al. 2022; Sun et al. 2022), and other results are directly cited from the
corresponding original paper. The bold and underline mark the best and second performances, respectively.

is that our method is more robust, with significant improve-
ment when tested on unseen datasets. This reflects that our
model has a better capability for uncovering forgery clues.
The improvements in generalizability can be attributed to
the information bottleneck in our framework design, where
our model demonstrates a better capacity for identifying dif-
ferent forms of deepfake artifacts instead of merely the in-
stances specific to the training dataset. Overall, our method
achieves state-of-the-art frame-level and video-level gen-
eralization performance. For frame-level comparisons, our
method attains 0.818 and 0.857 AUCs on CD1 and CD2 re-
spectively, outperforming the current state-of-the-art method
ICT. Our method also improves the AUC on DFDC-P
from 0.833 (OST) to 0.851, and on DFDC from 0.691
(RECCE) to 0.721. In contrast with video-level methods,
our method surpasses the current state-of-the-art technique,
AUNet, in terms of AUC with scores of 0.936, 0.902, and
0.754 on CD2, DFDC-P, and DFDC, respectively. Remark-
ably, despite employing solely traditional data augmenta-
tion techniques, our approach attains state-of-the-art perfor-

mance across all four benchmarks, surpassing models (such
as AUNet, SBIs, and ICT) trained on private augmented
datasets.

4.3 Ablation Study
In this section, we first study the effectiveness of our two
information losses, i.e., Local Information Loss LLIL and
Global Information Loss LGIL. We then explore the impact
of local feature quantity within the local information block.

Ablation Study on Information Losses We study the
effects of removing LLIL and LGIL in our method. We train
models on FF++ (C23) and test them on CD2. Tab. 4 demon-
strates the results of the ablation study on the proposed two
information losses. Clearly, we see that LLIL and LGIL

play key roles in performance improvement over in-dataset
and cross-dataset settings. The AUC improvement of using
the proposed losses is more critical in cross-dataset than in-
dataset settings. This empirical evidence suggests that incor-
porating the proposed losses may lead to extracting broader
clues. Quantitatively, LLIL and LGIL have a dominant con-
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Method Training
dataset CD2 DFDC-P DFDC

Xception (Rossler et al. 2019) FF++ 0.737∗ 0.679∗ 0.709∗

F3-Net (Qian et al. 2020) FF++ 0.757∗ - 0.709∗

PCL+I2G (Zhao et al. 2021b) PD 0.900 0.744 0.675
FST-Matching (Dong et al. 2022a) FF++ 0.894 - -
LipForensics (Haliassos et al. 2021) FF++ 0.824 - 0.735
FTCN (Zheng et al. 2021) FF++ 0.869 0.740 0.710∗

Luo.et al. (Luo et al. 2021) FF++ - 0.797 -
ResNet-34+ SBIs (Shiohara and Yamasaki 2022) PD 0.870 0.822 0.664
EFNB4+ SBIs (Shiohara and Yamasaki 2022) PD 0.932 0.862 0.724
RATF (Gu et al. 2022b) FF++ 0.765 0.691 -
Li.et al. (Li et al. 2022) FF++ 0.848 0.785 -
AltFreezing (Wang et al. 2023) FF++ 0.895 - -
AUNet (Bai et al. 2023) PD 0.928 0.862 0.738

Ours (ResNet-34) FF++ 0.936 0.902 0.754

Table 3: Cross-dataset comparison results (video-level AUC) on Celeb-DF-V2 (CD2), DFDC-Preview (DFDC-P), and DFDC.
We train our method on FF++ (C23) and test it on other benchmark datasets. The ’PD’ means private data. * is collected from
(Shiohara and Yamasaki 2022; Bai et al. 2023), and other results are directly cited from the corresponding original paper. The
bold and underline mark the best and second performances, respectively.

Our Method without Our Method
Multi-

Attention
Face-
x-ray XceptionMaskInput 

Image

N
T

FS
D

F
FF

Figure 4: Visual examples of our method on various types of forgery methods within FF++ (C23), i.e., Deepfakes (DF),
Face2Face (FF), FaceSwap (FS) and NeuralTextures (NT). Comparison between our method with and without LLIL, Multi-
Attentional, Face-x-ray, and Xception.

ID Loss FF++ (C23) CD2

LLIL LGIL ACC↑ AUC↑ ACC↑ AUC↑

1 - ! 94.26 0.979 78.79 0.840
2 ! - 94.28 0.977 76.96 0.827
3 - - 93.53 0.966 77.29 0.816
4 ! ! 94.98 0.983 80.70 0.864

Table 4: Ablation study of the proposed LLIL and LGIL for
our method. We show frame-level ACC (%) and AUC train-
ing on FF++ (C23) and testing on Celeb-DF-V2 (CD2). The
bold mark best performance.

tribution to our method, with AUC on FF++ improving from
0.966 (without both) to 0.983 (with both) and AUC on CD2

3 4 5 6 7
Number of LIB

0.970

0.975

0.980

AU
C

Faceforensics++
(In-dataset)
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94
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C 

(%
)

3 4 5 6 7
Number of LIB
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0.83
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C
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75
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C 

(%
)
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Figure 5: In-dataset and cross-dataset performance effects
within different numbers of LIBs. We train models on FF++
(C23) with 10 epochs and test them on Celeb-DF-V2.

from 0.816 to 0.864. The absence of either loss will bring
about a significant drop in model performance.

Ablation Study on local information block We first
investigate the effect of varying the number of local informa-
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tion blocks (LIB), i.e. local feature quantity. We train models
on FF++ (C23) and test them on CD2, and report the frame-
level AUC and ACC. The number of LIB is varied from
three to seven, while other hyper-parameters are fixed. Fig. 5
shows the results for different numbers of LIB. We observe
that both in-dataset and cross-dataset performance improve
with an increasing number of LIB increases. However, when
the number of LIBs becomes excessively high (n = 7), the
model’s generalization performance experiences a signifi-
cant decline. This aligns with our intuition, as gradually aug-
menting the number of LIBs enlarges the number of train-
able network parameters, directly affecting the in-dataset
performance. Simultaneously, this expansion results in a rise
in local feature quantity, contributing to the enhancement of
the model’s generalization performance. Nevertheless, as the
number of LIBs continues to rise, an overabundance of pa-
rameters induces model overfitting, ultimately diminishing
the model’s capacity for generalization.

4.4 Visualization
To further assess the model interpretability and the efficacy
of the Local Information Loss LLIL, we visualize four sam-
ples subjected to various forgery methods on FF++. We ap-
ply Grad-CAM (Selvaraju et al. 2017) for representation vi-
sualization. As shown in Fig. 4, our approach offers sev-
eral noteworthy insights. Firstly, it becomes evident that our
method excels in extracting more forgery clues. Other detec-
tion techniques fixate on specific regions, disregarding sub-
tle cues present elsewhere. This leads to confined regions of
focus for detection. The second insight reveals our method
focuses on different forgery regions with little overlap. It
provides evidence that the orthogonality within extracted lo-
cal representations. Specifically, our method identifies ma-
nipulated cues in the nose, cheek, forehead, and mouth, cor-
responding to z1 through z4 respectively. In contrast, results
without LLIL depict local representations possess an imbal-
anced capacity to signify forgery features. While some local
representations contain ample information (z′1), others offer
duplicated (z′3) or scanty (z′2 and z′4) forgery-related clues.

4.5 Limitations
Our method is a purely data driven approach relying on in-
formation theoretic constraints to search for forgery clues.
For some classes or forgeries, employing prior knowledge as
guidance could be more optimal. For future work, we seek to
incorporate heuristic guidance into our model, which could
further boost performance and interpretability.

5 Conclusion
In this paper, we propose an information bottleneck based
framework for deepfake detection, which aims to extract
broader forgery clues. In this context, we derive local infor-
mation losses to obtain task-related independent local fea-
tures. We further theoretically analyze the global informa-
tion objective to aggregate local features into a sufficient and
purified global representation for classification. Extensive
experiments demonstrate that our method achieves state-
of-the-art in-dataset and cross-dataset performance on five

benchmark datasets, indicating its potential as a reliable so-
lution for deepfake detection in various real-world scenarios.
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