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Abstract

Existing techniques for text detection can be broadly clas-
sified into two primary groups: segmentation-based and
regression-based methods. Segmentation models offer en-
hanced robustness to font variations but require intricate
post-processing, leading to high computational overhead.
Regression-based methods undertake instance-aware predic-
tion but face limitations in robustness and data efficiency due
to their reliance on high-level representations. In our aca-
demic pursuit, we propose SRFormer, a unified DETR-based
model with amalgamated Segmentation and Regression, aim-
ing at the synergistic harnessing of the inherent robustness in
segmentation representations, along with the straightforward
post-processing of instance-level regression. Our empirical
analysis indicates that favorable segmentation predictions can
be obtained at the initial decoder layers. In light of this, we
constrain the incorporation of segmentation branches to the
first few decoder layers and employ progressive regression re-
finement in subsequent layers, achieving performance gains
while minimizing computational load from the mask. Fur-
thermore, we propose a Mask-informed Query Enhancement
module. We take the segmentation result as a natural soft-
ROI to pool and extract robust pixel representations, which
are then employed to enhance and diversify instance queries.
Extensive experimentation across multiple benchmarks has
yielded compelling findings, highlighting our method’s ex-
ceptional robustness, superior training and data efficiency, as
well as its state-of-the-art performance. Our code is available
at https://github.com/retsuh-bqw/SRFormer-Text-Det.

1. Introduction
Scene text detection and recognition have made many strides
in recent years, garnering increasing attention within both
the research community and industries, thanks to their wide
range of practical applications, such as autonomous driv-
ing and document intelligence. Despite being a thoroughly
investigated area, text detection remains a challenging en-
deavor within the realm of existing methodologies, partic-
ularly when confronted with complex scenarios involving
overlapping, irregularly shaped, and stylized text instances.

Previous work on detecting texts can be roughly divided
into two streams: regression- and segmentation-based meth-
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ods. Regression-based methods offer notable advantages, in-
cluding computational efficiency and adaptability to texts of
varying sizes, making them suitable for real-time applica-
tions and the detection of both small and large text instances.
Additionally, their end-to-end learning approach simplifies
the pipeline, enabling post-processing with geometric calcu-
lations. However, these methods may exhibit slightly lower
localization precision compared to segmentation-based ap-
proaches, particularly in the context of irregular or curved
text instances (Zhao et al. 2019). They may also strug-
gle when text contrasts poorly with the surrounding back-
ground, making them vulnerable in complex environments.

Segmentation-based models also have their own advan-
tages and limitations. While they can provide pixel-level lo-
calization and are more robust in addressing variations in
text appearance, such as diverse font styles, sizes, and orien-
tations, they require intricate post-processing to extract com-
plete text instances from the binary masks, involving further
algorithmic intervention, which is not amenable to GPU par-
allel processing (Gu, Bai, and Kong 2022). This impedes
their ability to achieve stable and fast detection.

Can we harness the strength of both regression- and
segmentation-based methods, while mitigating their draw-
backs by combining these two methods into one unified
model? DEtection TRansformers (DETR), a recent popu-
lar method in object detection, present a suitable frame-
work for the integration of these two representations (Li
et al. 2023). While DETR variants have demonstrated no-
table success (Zhang et al. 2022; Ye et al. 2023b,a), there re-
mains discernible scope for further enhancement of the per-
formance across various text detection benchmarks. Further-
more, most DETR models adhere to the regression-based
paradigm, thereby necessitating prolonged training itera-
tions and substantial datasets to attain optimal performance.

To address the aforementioned issues, we propose SR-
Former, a new DETR-based model with separated decoder
chunks: the segmentation chunk bootstraps models to learn
more robust pixel-level representations, helps the model bet-
ter separate between text and non-text regions, and pro-
vides positional prior for finer-grained regression; the re-
gression chunk directs the queries to capture high-level se-
mantic features and provides further refinement of localiza-
tion results with minimal post-processing. Rather than utiliz-
ing the segmentation mask directly as the ultimate prediction
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output, which necessitates accurate prediction and complex
post-processing procedures, we introduce a Mask-informed
Query Enhancement module that leverages masks as inher-
ent indicators of Regions of Interest (ROI) to extract dis-
tinctive features in localized regions, further enhancing and
diversifying queries for improved optimization. Utilizing the
proposed module alongside supervision signals for both seg-
mentation and regression empowers our model to harness
the distinct advantages of each component while alleviating
their inherent constraints. Our contributions are three folds:

• We incorporate regression and segmentation into a uni-
fied DETR model, which creates new state-of-the-art per-
formance across several scene text detection benchmarks
by leveraging the distinct characteristics from both sides.

• Through the strategic incorporation of the segmenta-
tion map solely within the initial layers of the decoder,
the model gains the capacity to acquire robust pixel-
level features and mitigates the need for intricate post-
processing steps to ensure a stable and fast inference.

• In comparison to regression-based approaches, our pro-
posed method exhibits superior performance in terms of
training efficiency, data utilization, as well as improved
robustness across diverse data domains.

2. Related Work
2.1. Detection Transformers
DETR (DEtection TRansformer) (Carion et al. 2020) repre-
sents a pioneering model that introduced a fully end-to-end
transformer-based paradigm for object detection. By formu-
lating object detection as a set prediction task, it eliminates
the need for non-maximum suppression (NMS) and sub-
stantially reduces post-processing requirements. However,
DETR’s training convergence and feature resolution limita-
tions have hindered its competitiveness compared to tradi-
tional detectors. In response, Deformable DETR (Zhu et al.
2020) addresses these concerns by introducing sparse multi-
scale features to enhance efficiency. Additionally, other vari-
ants such as Conditional-DETR (Meng et al. 2021), Anchor-
DETR (Wang et al. 2022), and DAB-DETR (Liu et al.
2022) introduced improved positional priors to expedite
the training process. Furthermore, approaches like Group-
DETR (Chen et al. 2022) and DN-DETR (Li et al. 2022)
concentrate on label assignment strategies, significantly im-
proving matching stability, particularly during early training
stages. Our study primarily focuses on the transformer de-
coder part, aiming to enhance the quality of query represen-
tation and expedite the training convergence.

2.2. Segmentation-based Scene Text Detectors
Segmentation-based approaches commonly integrate pixel-
level prediction with subsequent post-processing algorithms
to obtain the bounding boxes or polygons corresponding to
the detected objects. CRAFT (Baek et al. 2019) utilizes a
weakly supervised approach to train character segmentation
models. PSENet (Wang et al. 2019a) first predicts the text
center region (text kernel) and then obtains the result of text

instance segmentation by progressive scale expansion algo-
rithm. DBNet (Liao et al. 2020) embeds differentiable bi-
narization into the network and predicts the corresponding
threshold map in addition to learning the binary segmen-
tation map of the text region. Learning low-level represen-
tations makes segmentation-based methods more robust to-
wards domain gaps and font variations. However, the total
inference time is considerably impacted by post-processing
operations on the CPU. Our proposed model seamlessly in-
tegrates the prowess of representation learning, while being
free from the need for intricate post-processing.

2.3. Regression-based Scene Text Detectors
Regression-based methods directly predict the polygon co-
ordinates or Bezier control points. EAST (Zhou et al. 2017)
represents an end-to-end anchor-free method that adopts
pixel-level regression techniques to handle multi-oriented
text instances. ABCNet (Liu et al. 2021) is the first to intro-
duce Bezier curve control points for arbitrary-shaped texts.
TESTR (Zhang et al. 2022) and DPText (Ye et al. 2023a) ex-
ploit the efficacy of the DETR architecture, wherein they uti-
lize learnable queries as inputs and employ a straightforward
MLP head to predict polygon coordinates. We preserve the
procedural simplicity inherent in the regression-based meth-
ods, while enhancing performance and robustness through a
judicious fusion of segmentation.

3. Methodology
3.1. Overview
Model Architecture. Fig.1 shows the overall structure of
SRFormer . We first leverage ResNet50 (He et al. 2016)
as the backbone. Upon updating the flattened features with
the transformer encoder, we combine the backbone and
updated features with a feature pyramid network module.
The fused features are then channeled into both the de-
coding stage and the mask prediction head, thereby serv-
ing as the foundational reference feature within the frame-
work. This interaction between query representations and
high-resolution backbone features addresses the informa-
tion bottleneck observed in the original DETR segmenta-
tion heads. Subsequently, we employ a two-stage approach,
where a shared group of decoder embeddings is initialized
by encoder output and fed into the decoder to gather richer
features through cross-attention mechanism. We set the first
few layers as the Segmentation&Regression Chunk to make
instance-wise mask prediction along with the point-wise co-
ordinate prediction, followed by Regression-only chunk per-
forming layer-by-layer refinement to get more precise poly-
gon control points. Several heads for mask, coordinate and
class score predictions, are adopted in a parallel manner.

Query Formulation. Derived from previous success, we
initialize decoder queries with encoder outputs for better
performance and faster training convergence. Instead of set-
ting the number of learnable parameters as the number of
proposals K. We only set 16 (i.e., number of polygon con-
trol points) groups of learnable embeddings to capture point-
wise feature and universal control point correlation. They
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Figure 1: The overview of the proposed SRFormer. We propose a two-step mechanism in the decoder: firstly, acquiring a coarse
positional prior with segmentation results, followed by iterative regression refinements in a layer-by-layer fashion. We aim to
optimize the intermediate representations and final predictions for improved performance in a concise framework.

are then equipped with top-k encoder queries qe ∈ RK×d to
provide instance-wise information:

qd = qe[Arg Top K(scls)] + qp (1)

where qd ∈ RK×16×d is the decoder embedding, scls
denotes the classification score predicted from encoder
queries, and qp ∈ R16×d is point-wise learnable embedding.
By combining instance-level and control point-level queries
to form a hierarchical representation, we can effectuate the
filtration of similar predictions through instance-level atten-
tion, and model global point-to-point relative relationships
through point-level attention.

In addition, to better utilize the bounding box output from
encoder, we sample 16 equidistant point uniformly along
the longer side of the box in a clock-wise manner as pro-
posed in (Ye et al. 2023a). These sampled points are subse-
quently employed as the initial polygon prediction. We use
sinusoidal positional encoding function PE(·) in conjunction
with a two-layer MLP scaling network MLP(·) to enable pre-
cise positional representation for each control point:

qpos = MLP(PE(pxy)) ∈ RK×16×d (2)

where pxy ∈ RK×16×2 represents the coordinate of all poly-
gon control points.

3.2. Segmentation & Regression Chunk
Mask prediction. As demonstrated in Fig. 1, we only per-
form text instance segmentation at initial layers of decoder,
based on the experimental findings that instance segmen-
tation masks show favorable results in first few layers and
can hardly be refined layer-by-layer even with improved
query representations in deeper decoder layers. With this
implementation, we can also reduce the computation cost
in the decoder with minimal performance drop. To perform
mask prediction, we build the pixel embedding map fused
from backbone and encoder features. Given the hierarchi-
cal nature of the queries in the decoder, it becomes im-
perative to aggregate point-level queries for text instance-
level prediction. We show a closer look of our mask head in

Fig. 2. Specifically, we first use a 1D Conv with large kernel
sizes (k = 9 in our default setting) to capture inter-point ge-
ometry knowledge, followed by a 1× 1 Conv layer to learn
point-level aggregation weights. Then we adopt weighted
summation of queries along the control point dimension
to adaptively formulate mask embedding. Finally, we dot-
product each mask embedding qm with the pixel embedding
map F 1/8 to obtain instance masks m̂:

m̂ = F(qm) · P(F 1/8) ∈ RK×H′×W ′
(3)

where F denotes a two-layer MLP and P is a convolutional
layer to make linear projection for semantic alignment.

Mask as regression prior. To bridge the gap of dense
representation of segmentation masks and polygon control
points, we first formulate dense anchor grids map G ∈
RH′×W ′×2 of the same resolution as segmentation masks:

G = meshgrid(linspace(
1

H ′ + 1
,

H ′

H ′ + 1
, H ′),

linspace(
1

W ′ + 1
,

W ′

W ′ + 1
,W ′))

(4)

where the linspace(start, end, num) function evenly gen-
erate num points in the closed interval [start, end]. Sub-
sequently, we perform Hadamard product between anchor
grids and normalized text segmentation results to obtain the
‘center of gravity’ for each text instance:

p̂a =

H′W ′∑
softmaxH′W ′(m̂/τ)⊙G (5)

p̂a ∈ RB×K×2 are anchor points for subsequent regression,
and τ is a scaling factor set to 0.3. The mask results are
normalized using the softmax function across the spatial di-
mension to ensure the output p̂ falls within the interval of
[0, 1]. Empirical analysis has demonstrated that text confined
to a small spatial area exhibits anchors that are noticeably
attracted to the central region of the image. A scaling fac-
tor is applied to enhance the discriminative contrast between
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Figure 2: A detailed structure of mask prediction head.

the response values pertaining to text and non-text regions
to mitigate the potential influence of non-textual areas, char-
acterized by lower response values yet encompassing larger
pixel extents, on the final anchor outcome. Given that most
text instances are regular convex geometries, their center of
gravity coincides with the geometric center, making it a suit-
able reference point for regression purposes.

Discussion. In addition, our approach differs from
MaskDINO (Li et al. 2023) for obtaining positional pri-
ors from instance masks. MaskDINO employs the boundary
rectangles of connected regions within binary segmentation
maps, which can prove inaccurate in text detection tasks,
particularly during initial training stages. Instance segmen-
tation masks are obtained by computing the representational
similarity between query and pixel embeddings, potentially
leading to multiple responses surpassing a given threshold.
This limitation becomes more pronounced in text detection,
primarily due to the abundance of visually akin instances,
especially in scenarios featuring high text density, such as
documents. Our methodology inherently does not necessi-
tate highly precise mask predictions.

3.3. Mask-informed Query Enhancement
Previous work (Liu et al. 2022) revealed that cross-attention
mechanism in the decoder can be treated as soft ROI pool-
ing where the ROI is implicitly encoded in the positional
embedding. We heuristically adopt instance mask as a kind
of soft ROI to extract instance-level features from encoder
features and add the feature directly to the original query
representation, working as a supplementary of point-level
features extracted through cross-attention. Specifically, we
build instance-level ROI indicator r̂ ∈ RK×H′×W ′

from
mask prediction of all scales by:

r̂ = softmaxK(m̂)⊙ m̃ (6)

we introduce the semantic segmentation mask m̃ to achieve
two objectives: firstly, to softly filter out non-textual regions
within m̂, and secondly, to incorporate supplementary su-
pervision as proposed in (Long et al. 2022). The ROI for
each instance is softly excluded from each other, thereby
augmenting the differentiation among query representations
and facilitating model optimization. Subsequently, we ex-
tract instance-level and global text features from multi-scale
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Figure 3: The Mask-informed Query Enhancement (MQE)
module extracts multi-level pixel features guided by instance
and global ROI indicators, which are derived from instance
and semantic segmentation masks respectively.

encoder features normalized by the spatial-wise summation
of ROI indicators to craft the final output I ∈ RK×d for
query enhancement:

I = MHA(

∑L ∑H′W ′
(r̂l ⊙ F l)

α · L
) +

∑H′W ′
(Γ(m̃)⊙ F 1)

β
(7)

where F l represents encoder features of level l, the nor-
malization factors α, β are formulated as

∑H′W ′
r̂ and∑H′W ′

Γ(m̃) respectively, Γ denotes a simple interpolation
function to perform spatial alignment and MHA(·) represents
a multi-head attention module to capture inter-instance rela-
tions. After applying linear projection to align with the orig-
inal queries, we integrate the output of the MQE module
directly into the query tensor. Enhanced queries are then di-
rected into the subsequent decoder layers.

3.4. End-to-End Optimization
Matching. The primary objective of the matching process
is to ascertain an optimal permutation σ : [Ŷ ] −→ [Y ] of N
elements that minimize the matching cost between the set
predictions Ŷ and ground truths Y :

argmin
σ

N∑
n=1

C(Ŷ (σ(n)), Y (n)) (8)

where N is the number of ground truth instances per im-
age. We use Hungarian matching to solve the correspond-
ing bipartite matching problem. Regarding the cost function
design, we use GIOU loss and L1 loss for bounding boxes
along with a variation of focal loss for classification scores
within the context of encoder output:

Cenc =λclsFL(ŝσ(n)enc ) + λcoord∥b̂σ(n) − bngt∥

+ λgiouGIOU(b̂σ(n), bngt)
(9)

where λcls, λcoord, and λgiou are hyper-parameters to bal-
ance different cost proportions, b̂σ(n) = (xc, yc, w, h) is the
bounding box prediction, ŝσ(n) is the classification score



Methods External Data Total-Text CTW1500 ICDAR19-ArT
P R F1 P R F1 P R F1

Segmentation-based Methods

TextSnake (Long et al. 2018) Synth800K 82.7 74.5 78.4 67.9 85.3 75.6 - - -
PAN (Wang et al. 2019b) Synth800K 89.3 81.0 85.0 86.4 81.2 83.7 61.1 79.4 69.1
CRAFT (Baek et al. 2019) Synth800K+IC13 87.6 79.9 83.6 86.0 81.1 83.5 77.2 68.9 72.9
DB (Liao et al. 2020) Synth800K 87.1 82.5 84.7 86.9 80.2 83.4 - - -
I3CL (Du et al. 2022) Synth800K(+MLT17+LSVT) 89.2 83.7 86.3 87.4 84.5 85.9 82.7 71.3 76.6

Regression-based Methods

ABCNet v2 (Liu et al. 2021) Synth150K+MLT17 90.2 84.1 87.0 85.6 83.8 84.7 - - -
FSG (Tang et al. 2022) Synth800K 90.7 85.7 88.1 88.1 82.4 85.2 - - -
TESTR(polygon) (Zhang et al. 2022) Synth150K+MLT17 93.4 81.4 86.9 92.0 82.6 87.1 - - -
SwinTextSpotter (Huang et al. 2022) Synth150K+MLT17+IC13+IC15 - - 88.0 - - 88.0 - - -
TextBPN++ (Zhang et al. 2023) Synth800K+MLT17 91.8 85.3 88.5 87.3 83.8 85.5 81.1 71.1 75.8
DPText (Ye et al. 2023a) Synth150K+MLT17(+LSVT) 91.3 86.3 88.7 91.7 86.2 88.8 83.0 73.7 78.1

Ours-SRFormer (#1Seg) Synth150K+MLT17(+LSVT) 92.2 86.6 89.3 91.6 87.7 89.6 86.2 73.1 79.1
Ours-SRFormer (#2Seg) Synth150K+MLT17(+LSVT) 92.2 87.9 90.0 89.4 89.6 89.5 86.2 73.4 79.3
Ours-SRFormer (#3Seg) Synth150K+MLT17(+LSVT) 91.5 87.9 89.7 89.4 89.8 89.6 86.1 73.5 79.3

Table 1: Quantitative detection results on several benchmarks. “P”, “R” and “F1” denote Precision (%), Recall (%) and F1-score
(%), respectively. The backbone network is all ResNet50, except for SwinTextSpotter (SwinT), PAN (ResNet18), CRAFT and
TextSnake (VGG16). We use #Seg to denote the number of decoder layers assigned to the Segmentation&Regression chunk.

for text instances and FL is defined as the difference be-
tween the positive and negative term: FL(x) = −α(1 −
x)γ log(x) + (1 − α)xγ log(1 − x). The cost function for
decoder output is formulated as:

Cdec =λclsFL(ŝσ(n)dec ) + λcoordΣ
16
i=1∥p̂

σ(n)
i − pni ∥

+ λmaskDice(m̂σ(n),mn
gt)

(10)

where m̂σ(n) is the mask prediction for text instances, p̂σ(n)i
denotes coordination prediction of the i-th control point and
λcls, λcoord, and λgiou are balancing factors. It is worth not-
ing that Dice loss is exclusively incorporated within the lay-
ers of Segmentation & Regression chunk.

Loss function. We leverage the focal loss with α =
0.25, γ = 2 for instance classification. Dice loss in corpora-
tion with BCE loss are exploited to supervise both instance
and semantic mask predictions. In addition, L1 distance loss
is used for regressed polygon control points:

L =λclsLcls(ŝ
σ(n)
dec , sngt) + λmaskLmask(m̂

σ(n),mn
gt)

+ λmaskLmask(m̃,ΣNmn
gt) + λregLreg(p̂

σ(n), pngt)
(11)

where λcls, λmask and λreg are balancing factors.

4. Experiment
Datasets and benchmarks. TotalText (Ch’ng and Chan
2017) features a diverse range of text instances, including
horizontal, multi-oriented, and curved text in natural scenes.
The dataset contains over 1,500 high-resolution images with
annotations, making it suitable for evaluating the robust-
ness of text detection models across different text layouts
and orientations. Rot.Total-Text constitutes a test set de-
rived from the Total-Text test set, as initially proposed in (Ye

et al. 2023a). We also integrate it to facilitate the develop-
ment of optimal performance models. CTW1500 (Liu et al.
2019) consists of 1,000 training images and 500 test images,
with various text instances exhibiting diverse orientations,
fonts, and perspectives. ICDAR19-ArT (Chng et al. 2019)
is a large arbitrary-shape scene text benchmark, which in-
cludes multiple languages. We also adopt the following ad-
ditional datasets for pre-training: SynthText150k (Liu et al.
2020) is synthesized by overlaying computer-generated text
on natural images. This approach allows for large-scale data
generation and fine-grained control over text characteristics,
such as size, font, and orientation. The dataset contains con-
tains 94,723 images with multi- oriented texts and 54,327
images with curved texts, providing a rich resource for pre-
training text detection models under various synthetic sce-
narios. MLT17 (Nayef et al. 2017) is introduced as part
of the ICDAR17 Robust Reading Competition, which is a
multi-language large-scale scene text dataset.

Implementation details. We adopt ResNet-50 (He et al.
2016) as the backbone, followed by a deformable trans-
former encoder with 8 heads and 4 sampling points to update
the features. We set the number of proposals to 100 and poly-
gon control point embedding to 16. Model pre-training is
made on a mixture of SynthText150K, MLT17 and TotalText
dataset for a total number of 300k iterations. The starting
learning rate is 1e-4 and decays to 1e-5 at the 240k iteration.
We fine-tune our model on TotalText and CTW1500 with
30k iteration with learning rates set to 1e-4 and 5e-5 respec-
tively, which is then divided by 10 at the 24k iteration. For
evaluation on ICDAR19-ArT dataset, we also incorporate
LSVT for pre-training, following (Sun et al. 2019). AdamW
with β1 = 0.9, β2 = 0.999 and weight decay of 10−4 is lever-
aged as the optimizer. The loss weights for classification,
mask prediction and ctrl-points regression are set to λcls=2,



#Seg Layer #Reg Layer P R F1 FPS

1 5 88.6 84.5 86.5 9.7
2 4 89.0 85.1 87.0 8.6
3 3 88.0 86.1 87.1 7.9

Table 2: Ablation results of several variations of SRFormer
with different decoder layers allocation.

AnchorReg MQE F1 Improv. Extra Param. FPS

85.5 - - 10.5
✓ 86.0 0.5 0.39M 10.5

✓ 86.7 1.2 2.95M 7.9
✓ ✓ 87.1 1.6 3.34M 7.9

Table 3: Ablations on test sets with SRFormer (#3Seg).
“AnchorReg” denotes the control point regression based on
mask-generated anchor points. “MQE” represents our pro-
posed Mask-guided Query Enhancement module.

λmask = λreg = 5, respectively. Various data augmentation
strategies, including random crop, random blur, brightness
adjustment, and color alteration, are employed in the train-
ing process. We adopt multi-scale training strategy with the
shortest edge ranging from 480 to 896, and the longest edge
kept within 1,600, following most of previous studies. For
evaluation, we resize the shorter side to 1,000 and keep the
longer side within 1,800. All training and evaluation are con-
ducted on a system with 8 NVIDIA 3090 graphics cards.

4.1. Comparison with SoTA Methods
Our proposed methodology is evaluated on three bench-
mark datasets, namely Total-Text, CTW1500, and ICDAR19
ArT. The obtained quantitative results are then systemati-
cally compared with those achieved by prior approaches,
as illustrated in Table 1. Our method consistently achieves
state-of-the-art performance across these datasets. We use
#Seg to denote the number of layers in the Segmentation &
Regression Chunk, where the total number of decoder lay-
ers stays 6. Compared to previous SoTA methods, for ex-
ample, SRFormer outperforms the state-of-the-art DPText
by +1.3%, +0.7% and +1.2% on TotalText, CTW1500 and
IDCAR19-ArT respectively. Additionally, SRFormer sur-
passes SoTA segmentation-based method I3CL by a notable
gap of +2.7%, +3.6% and +2.7% on three benchmarks.

4.2. Ablation Studies
All the ablation experiments are conducted on TotalText
without any pre-training. All models, unless specified oth-
erwise, are trained for 50K iterations.

Decoder layer number. In this study, we undertook an in-
vestigation into the impact of varying the number of lay-
ers assigned to Segmentation & Regression Chunk on the
final performance of the model. In general, placing greater
emphasis on segmentation learning tends to yield improved
recall rates, albeit at the potential cost of reduced preci-
sion, which can be attributed to the absence of a fine-
grained, layer-by-layer polygon refinement process in the
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Figure 4: Training convergence of DPText and ours.

Regression-only Chunk. We’ve also noticed that the de-
coder’s first layer achieves favorable segmentation results
that can hardly be further improved in subsequent layers,
which could partially explain the marginal performance gain
by simply adding more segmentation layers. It’s worth not-
ing that our method yields a competitive 87.1% F1-score
with only 50k iteration training solely on TotalText.

Regression from anchor points As listed in Table. 3,
leveraging the anchor prior provided by instance masks
brings about +0.5% performance improvement. The utiliza-
tion of mask-generated anchor points constitutes a valuable
positional prior, especially at early training stages, enabling
the model to learn geometric relationships and characteris-
tics between control points.

Mask-informed Query Enhancement Incorporating
MQE solely brings a notable +1.2% performance gain, as
shown in Table. 3 MQE module extracts distinctive pixel
features for different queries by utilizing existing instance
and semantic mask predictions, introducing less than 1M
parameters at each layer. We believe that MQE can be
treated as a cross-attention mechanism, where the mask
functions analogously to positional embedding, guiding the
model to extract richer features in a designated region.

4.3. Discussion
Training efficiency. Fig. 4 shows convergence curves,
showcasing the fluctuation of the evaluation F1-score with
increasing training iterations. When training from scratch
on TotalText and Rot.TotalText, The observed trend in the
figure reveals that our model consistently outperforms DP-
Text in all tests beyond the 5,000th iteration, within the con-
text of the 50k-iteration training schedule. In addition, we



test layer# Ours DPText Ours∗ DPText∗

layer 0 86.67 81.64 82.13(+26.96) 55.17
layer 1 88.95 86.67 84.32 76.87
layer 2 89.33 87.98 85.75 83.86

layer 5 89.96 88.72 86.23 85.64

Table 4: F1 scores (%) on TotalText when using different
decoder layers in the same model. ∗ denotes models trained
from scratch for 50k iterations.

Data Proportion DPText SRFormer (Ours)
P R F1 P R F1

10% Data 83.0 69.3 75.6 82.9 71.8 76.9
50% Data 86.7 77.7 82.0 87.4 81.4 84.3

Table 5: Evaluation performance (%) of DPText and our
model on TotalText dataset with fewer labeled images for
training provided.

extended the training schedule of DPText twofold and gen-
erated its corresponding convergence plot. Despite the dou-
bled training schedule, the performance of DPText still falls
short of our model on both datasets. These findings empha-
size the prospective advantages associated with the integra-
tion of segmentation, leading to enhanced convergence and
superior performance in contrast to approaches solely reliant
on regression methodologies.

Predictions at each decoder layer. We take a closer look
at the output of each decoder layer in SRFormer and DPText
to further reveal potential benefits brought by combined seg-
mentation and regression, as listed in Table. 4. In the context
of pretrained models, our method produces SoTA result of
88.95% F1-score with only two decoder layers, exceeding
the six-layer DPText. For models trained from scratch, this
gap is even more pronounced. The F1-scores of the predic-
tions made by first decoder layer (referred to as “layer 0” in
the table) exhibit a noteworthy gap of 26.96%.

We also conduct qualitative analysis to support our claim.
As shown is Fig. 5, while our model detects all the English
text in the image in the first layer, DPText, despite its capa-
bilities, detects only a singular occurrence of text in the first
layer and fails to detect the distorted text in the middle of the
image in the third layer. Achieving robust prediction perfor-
mance within the initial layers constitutes a cornerstone for
our model’s eventual attainment of SoTA outcomes. Profi-
cient discrimination between textual and non-textual in early
stages lies a strong groundwork. Subsequent focus is di-
rected towards progressive refinement of positional predic-
tions, as the model advances towards its optimal state.

Data efficiency. Segmentation-based techniques are com-
monly recognized for their superior data efficiency, demand-
ing a considerably smaller training dataset to attain satisfac-
tory generalization performance, which could be attributed
to learning pixel-level representations by engaging with low-
level features. Since our method utilizes a segmentation
technique, our method can show better data efficiency. To
reveal this property, we trained SRFormer and DPText with

DPText-layer0

DPText-layer2

DPText-layer1

SRFormer-layer0

Figure 5: Per-layer visualization results of DPtext and SR-
Former on a test image from TotalText.

(a) DPText (b) SRFormer (c) DBNet

Figure 6: Visualization results for three models trained only
on TotalText. The tested image is sampled from the test split
of TotalText dataset.

only 10% and 50% samples in the TotalText dataset for 30k
and 50k iterations, respectively. Table. 5 shows the result.
Using a limited training dataset comprising only 10% of
available samples, we achieved a F1-score of 76.9%, demon-
strating an improvement of approximately 1.9% in compar-
ison to DPText. Notably, upon increasing the training data
availability to 50%, the performance disparity further ex-
pands to 2.3%, and our proposed method exhibits a F1-score
of 84.3%, underscoring its superior efficacy.

Robustness. As listed in Table. 6, we evaluate the cross-
domain robustness inherent in two models by subjecting
them to training and testing regimens involving disparate
datasets. While TotalText addresses a more limited scope
within scenes and languages, MLT, in contrast, encompasses
a wide array of both domains. When trained on the combi-
nation of all, our model exhibits a relatively superior per-
formance. The exclusion of MLT data engenders an observ-
able decrement in the performance of DPText. In contrast,
our proposed model has an elevated level of robustness, ev-
idenced by a significant performance upswing of +13.18%
on MLT and +4.56% on TotalText, respectively. From an al-
ternative vantage point, this performance differential tends
to narrow when both models are only trained on synthetic
data, reflecting SRFormer’s capacity to cultivate real-world
generalization even with limited samples.

Furthermore, the qualitative analysis depicted in Figure
6 demonstrates that our model, in conjunction with the
segmentation-based approach DBNet, possesses a compara-
ble ability for generalization in detecting languages beyond
English when trained on a dataset primarily consisting of
English content.



Training Set DPText SRFormer (Ours)
MLT TT MLT TT

SynthText + TT + MLT 70.54 80.93 71.11 81.81
SynthText + TT 50.10 67.40 63.28 71.96
SynthText 41.14 48.71 42.87 51.52

Table 6: Evaluation F1-score (%) of DPText and SRFormer
on MLT17 and TotalText (TT) dataset.

Figure 7: Average time spent on the GPU (i.e., for inference)
and CPU (i.e., for post-processing) side per image. For SR-
Former and DPText, we keep the longer side of input image
within 1,800, while we resize the input to 1,600 for DBNet.

Inference time analysis. As mentioned in Sec , segmen-
tation methods inherently require complex post-processing
to obtain the final outputs from the identified segmenta-
tion map. While our method incorporates both segmenta-
tion and regression, the final output is determined by the re-
gression head, eliminating the need for the post-processing
step. Fig. 7 shows the required time for model inference
and post-processing. The segmentation method, DBNet, in-
curs significant post-processing time, resulting in four times
longer than model inference time and high variability per
image. In contrast, the regression method, DPText, and ours
demonstrate negligible post-processing time. Additionally,
it’s worth denoting that SRFormer#2L, featuring only two
decoding layers, exhibits a comparable inference cost to DP-
Text but achieves better performances (as listed in Table. 4).

5. Conclusion
We propose SRFormer, a DETR-based model with incorpo-
rated segmentation and regression. By introducing mask pre-
diction, we utilize it to provide a location prior for regression
and to extract distinctive information for decoder queries
from pixel features, enhancing robustness against textual
deformations and improving domain transferability. With-
out compromising the simplicity of post-processing inher-
ent to regression models, various experiments demonstrate
that our method yields notable improvements in training effi-
ciency, data utilization, and overall performance across vari-
ous benchmarks. While the efficacy of the proposed method
is substantiated within the context of text detection, we
believe its prospective effectiveness in divergent detection
tasks necessitating domain robustness and data efficiency.
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