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Abstract

Omnidirectional images have attracted significant attention
in recent years due to the rapid development of virtual re-
ality technologies. Equirectangular projection (ERP), a naive
form to store and transfer omnidirectional images, however, is
challenging for existing two-dimensional (2D) image super-
resolution (SR) methods due to its inhomogeneous distributed
sampling density and distortion across latitude. In this pa-
per, we make one of the first attempts to design a spheri-
cal pseudo-cylindrical representation, which not only allows
pixels at different latitudes to adaptively adopt the best dis-
tinct sampling density but also is model-agnostic to most off-
the-shelf SR methods, enhancing their performances. Specif-
ically, we start by upsampling each latitude of the input ERP
image and design a computationally tractable optimization al-
gorithm to adaptively obtain a (sub)-optimal sampling density
for each latitude of the ERP image. Addressing the distor-
tion of ERP, we introduce a new viewport-based training loss
based on the original 3D sphere format of the omnidirectional
image, which inherently lacks distortion. Finally, we present
a simple yet effective recursive progressive omnidirectional
SR network to showcase the feasibility of our idea. The ex-
perimental results on public datasets demonstrate the effec-
tiveness of the proposed method as well as the consistently
superior performance of our method over most state-of-the-
art methods both quantitatively and qualitatively.

Introduction
Omnidirectional images also referred to as 360◦ images,
provide 360◦ × 180◦ field-of-view (FoV), and enable an ex-
cellent immersive experience. Recent years have garnered
significant attention in many real-world applications, includ-
ing robotics (Su and Grauman 2021; Scaramuzza 2007),
computer vision (Khasanova and Frossard 2017; Ozcinar,
Rana, and Smolic 2019), virtual reality (VR) and augmented
reality (AR) (Su and Grauman 2019; Deng et al. 2021) and
gaming (Tateno, Navab, and Tombari 2018). In general, the
original omnidirectional image format, i.e., the 3D sphere,
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Figure 1: (a) Illustration of the inhomogeneous distributed
sampling density and distortion issues of an ERP image. (b)
Concept of the proposed spherical pseudo-cylindrical repre-
sentation to address the above issues.

must be transformed into a 2D planar representation to fa-
cilitate storage and transmission. Equirectangular projection
(ERP) is the most popular projection form, in which the
latitude and the longitude of the original spherical image
are mapped to the horizontal and vertical grid coordinates.
As a result, the distributed sampling density in the ERP is
inhomogeneous and distorted across latitude (as shown in
Fig. 1(a)), making it unfriendly to subsequent visual com-
munication applications. Additionally, when considering the
trade-off between resolution and ease of storage and trans-
mission, omnidirectional images usually have low resolu-
tions (Elbamby et al. 2018; Deng et al. 2021).

Image super-resolution (SR) is a technique that aims to
recover high-resolution (HR) image from its correspond-
ing degraded low-resolution (LR) version with algorithms
alone, without the need for any hardware device. It plays
an important and fundamental role in many computer vi-
sion tasks (Haris, Shakhnarovich, and Ukita 2018; Zhang
et al. 2021; Xia et al. 2022; Cao et al. 2016; Cai et al. 2023;
Lyu et al. 2023). Due to their superior feature represen-
tation capabilities, convolutional neural networks (CNNs)
have achieved remarkable success in SR and many archi-
tectures have been presented so far, for example, residual
learning (Kim, Lee, and Lee 2016; Nie et al. 2020), dense
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connections (Zhang et al. 2020; Song et al. 2020), UNet-
like architectures with skip connections (Hu et al. 2019; Pra-
japati et al. 2021), dilated convolutions (Yang et al. 2017;
Zhang et al. 2017), generative models (Ledig et al. 2017; Li
et al. 2022) and other kinds of CNNs (Tai et al. 2017; Lu
et al. 2021; Gao et al. 2022). Very recently, Transformer-
based SR methods (Liang et al. 2021; Chu et al. 2021) have
been proposed to fully utilize the advantages of Transform-
ers in establishing long-range dependencies. However, di-
rectly applying these methods to omnidirectional images
yields unsatisfactory performance, as they do not consider
the inhomogeneous distributed sampling density and distor-
tion across latitude in the ERP (Deng et al. 2021).

To address the above issues, two methods have been
proposed. The first one utilizes priors of sphere-to-plane
mapping, such as the LAU-Net (Deng et al. 2021), which
not only mitigates the issues of ERP but also is model-
agnostic to most existing methods. However, the ability of
this method is limited by the intrinsic characteristics of
ERP (Yoon et al. 2022). Additionally, it uses loss functions
designed for 2D planar image SR, significantly impacting its
performance for omnidirectional image SR by not consider-
ing the sampling issues of ERP. The other method designs
spherical convolution for omnidirectional images, as see in
SphereSR (Yoon et al. 2022), where a new kernel weight
is proposed to adapt to the inhomogeneous distributed sam-
pling density and distortion across latitude in ERP. While
achieving impressive performance in omnidirectional image
super-resolution, this method suffers from high computa-
tional costs due to the repeated switching between spherical
and 2D planar coordinates. Additionally, it limits the amor-
tization cost of convolution, as intermediate representations
with different latitudes cannot be shared across 2D planar
images since they are projected to different planes.

From the above discussions, one question arises imme-
diately: Is there a simple yet effective method that can ad-
dress the issues of ERP by fully utilizing the advantages of
the above two methods and avoiding their weaknesses, and
that can also be directly applied to most off-the-shelf SR
network architectures? Motivated by the above questions, as
shown in Fig. 1(b), this paper first introduces a novel latitude
adaptive pseudo-cylindrical representation (LAPR) by de-
signing a computationally tractable optimization algorithm
to adaptively optimize the sampling density for each lati-
tude of the ERP image. Then, a new viewport-based loss
is proposed based on the original 3D sphere format of the
omnidirectional image by transferring the final recovered
HR ERP image back to the original 3D sphere format to
avoid the distortion of ERP. Finally, we design an end-to-end
recursive Transformer network based on CNN and Trans-
former to demonstrate the feasibility of the proposed idea.
We conduct extensive comparisons with recently proposed
state-of-the-art (SOTA) methods on benchmark omnidirec-
tional datasets. The experimental results demonstrate that
our method achieves SOTA performance.

Briefly, the contributions of this paper include:
• We propose a novel LAPR for the omnidirectional im-

age by designing a computationally tractable optimiza-
tion algorithm to adaptively obtain the optimal configura-

tion of an ERP image. This approach not only addresses
the sampling issues of ERP images but also can be easily
applied to existing SR methods, directly improving their
performance for omnidirectional images.
• We also proposes a new viewport-based training loss

introduced into the field of omnidirectional image SR,
which successfully avoids the distortion of ERP images,
as it is defined on the original 3D sphere format of the
omnidirectional image.
• We design a simple yet effective recursive omnidirec-

tional backbone, which not only achieves SOTA perfor-
mance but is also much more efficient in memory usage
by recursively unfolding CNN and Transformer.

Related Work
2D-SR Methods: SRCNN (Dong et al. 2014), which is pio-
neering work in applying CNN to single image SR, uses only
a three-layer CNN to represent the mapping between low-
resolution (LR) and high-resolution (HR) images. Based on
the SRCNN, many deeper and wider CNN-based SR meth-
ods have been proposed. For example, by introducing resid-
ual learning into a deeper network, Kim et al. propose the
VDSR (Kim, Lee, and Lee 2016). Lim et al. propose the
EDSR (Lim et al. 2017) by removing unnecessary mod-
ules in conventional residual networks. Guo et al. propose
DRN (Guo et al. 2020) by learning an additional dual re-
gression mapping to estimate the down-sampling kernel.
Later, attention mechanism is introduced into SR to guide
the CNN to selectively focus on some features where there
is more information. For example, Niu et al. propose the
HAN (Niu et al. 2020) by integrating a layer attention mod-
ule and a channel-spatial attention module into the resid-
ual blocks. Mei et al. design a novel non-local sparse at-
tention with dynamic sparse attention pattern and propose
the NLSN (Mei, Fan, and Zhou 2021). Zhang et al. design a
highly efficient long-range attention block by simply cas-
cading two shift-conv with a group-wise multi-scale self-
attention module and propose the ELAN (Zhang et al. 2022).
Recently, inspired by the significant success of Transformer
in natural language processing for its advantages in model-
ing long-range context (Vaswani et al. 2017), it is also in-
troduced into SR (Chen et al. 2021; Liang et al. 2021; Chu
et al. 2021), such as the SwinIR (Liang et al. 2021) and the
Swin2SR (Chu et al. 2021). However, without taking into ac-
count the inhomogeneous distributed sampling density and
distortion across latitude in the ERP, all of these existing
2D-SR methods yield unsatisfactory performance for omni-
directional image SR (Deng et al. 2021; Yoon et al. 2022).
360◦-SR Methods: Since the sampling issue and distortion
in omnidirectional images are caused by the transformation
between the original spherical image and the 2D planar im-
age, researchers try to address such issues from two aspects.
On the one hand, some researchers focus on addressing them
by fully utilizing priors of sphere-to-plane mapping. For ex-
ample, Ozcinar et al. define a novel training loss by introduc-
ing the weighted-to-spherically uniform structural similarity
to tackle the distortion issue of ERP images and propose the
360-SS (Ozcinar, Rana, and Smolic 2019). Deng et al. pro-
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pose LAU-Net (Deng et al. 2021) by designing a latitude
adaptive upscaling network. This network can dynamically
upscale different latitude bands with varying upscaling fac-
tors, using a smaller upscaling factor for areas near the pole
and a larger upscaling factor for areas around the equator of
an ERP image. Although such method can mitigate the sam-
pling issues of the ERP, it can not address them successfully
because the method is based on the transformed format, i.e.,
ERP, which is limited by the intrinsic characteristics of the
ERP. Even worse, such method still uses the loss functions
designed for 2D planar image SR, which seriously affects its
performance for omnidirectional image SR because of not
considering the sampling issues of the ERP. On the other
hand, other researchers focus on the original spherical im-
age and propose spherical CNN. For example, Coors et al.
propose Spherenet (Coors, Condurache, and Geiger 2018)
by designing a CNN filter based on its spatial location on
a sphere to address the distortion issue of the ERP image.
Yoon et al. apply convolution to the spherical structure con-
structed based on the subdivision of the icosahedron and
propose SphereSR (Yoon et al. 2022). While this method
has achieved superior results, it cannot be directly applied
to existing 2D-SR architectures. This limitation arises be-
cause intermediate representations, extracted using spherical
CNN with different latitudes, cannot be shared across 2D
planar images. Additionally, it suffers from high computa-
tional costs due to the repeated switching between spherical
and 2D planar coordinates.

Method

Figure 2: The overall framework of the proposed method
mainly consists of three parts: latitude adaptive pseudo-
cylindrical representation, viewport-based training loss, and
recursive omnidirectional network.

To address the issues discussed above, this paper proposes

a new method by designing a novel representation with opti-
mized hyperparameter settings for the sphere-to-plane map-
ping and by defining a novel viewport-based training loss.
The overall framework is shown in Fig. 2. Specifically, we
first propose a latitude adaptive pseudo-cylindrical represen-
tation (LAPR) based on the sinusoidal projection since it sat-
isfies all the three major projection requirements: equal-area,
conformal and equidistant 1. However, when we directly ap-
ply sinusoidal projection for image SR, it only achieves a
relatively small improvement compared to ERP, as it down-
samples each row of the input low-resolution (LR) ERP im-
age and loses some important information for SR. Thus, we
propose our LAPR by firstly upsampling each row of the
input LR ERP image and then designing a computation-
ally tractable optimization algorithm to adaptively obtain a
(sub)-optimal configuration of the latitude representation for
ERP. Then, we propose our novel viewport-based loss, relay-
ing on the original 3D sphere format of the omnidirectional
image. This effectively mitigates the distortion of ERP by
defining loss on the 3D sphere rather than ERP. Finally, we
design a simple yet effective recursive progressive backbone
to demonstrate the feasibility of the proposed idea. Addi-
tionally, we discuss the significant differences between our
method and the two 360◦-SR methods.

LAPR
For an omnidirectional image x ∈ RH×W represented in
ERP with height H and width W , its plane-to-sphere coor-
dinate conversion can be computed by:

θi =

(
0.5− i+ 0.5

H

)
× π, (0 ≤ i < H), (1)

φj =

(
j + 0.5

W
− 0.5

)
× 2π, (0 ≤ j < W ), (2)

where θ and φ, respectively, denote the latitude and the
longitude. We also define our representation in a 2D im-
age domain Ω = {0, . . . ,H − 1} × {Wnew

0 , . . . ,Wnew
W−1},

which is parameterized by {Wnew
i }W−1i=0 , where Wnew

i ∈
{µ1 ∗W, . . . , µW−1 ∗W} denotes the width of the i-th row
and µi the magnification of each row. To avoid informa-
tion loss caused by performing down sampling, we define
our representation by up sampling each row of the origi-
nal LR image. Therefore, µi is defined as a positive integer
greater than 1, and bicubic interpolation is adopted as the
up sampling filter if necessary. Sampling image by interpo-
lation may increase the incidences of other forms of distor-
tion. Generally speaking, distortion (such as aliasing) caused
by sampling can be mitigated by the subsequent convolution
operation, which has been validated by the results without
similar distortion. By varying Wnew

i , our representation can
achieve precise control over the sampling density of each
row, and the beginning point of each row Bi is defined by:

Bi = b(max(Wnew
i )−Wnew

i )/2c, (3)

1Equal-area, conformal, and equidistant map projections pre-
serve relative scales of things and stuff, local angles, and great-
circle distances between points, respectively, on the sphere.
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where b·c denotes the floor function. We call this data struc-
ture the parametric pseudo-cylindrical representation be-
cause it can generalize several pseudo-cylindrical map pro-
jections by specifying different magnifications µi for dif-
ferent rows. For example, the map projection would be the
standard ERP when µi = 1, the sinusoidal projection when
µi = cos(θi) and Eq. 2 is replaced by:

φj =

(
j −Bi + 0.5

Wnew
i

− 0.5

)
× 2π, (4)

for j = {Bi, . . . , Bi +Wi − 1} as the longitude mapping.
By selecting different combinations of magnification µi

for each row and the plane-to-sphere mapping, our LAPR
not only includes a broad class of pseudo-cylindrical map
projections as special cases but also opens the door to other
novel representations that may be more suitable for omnidi-
rectional image SR. Unless stated otherwise, in the remain-
der of the paper, we use Eq. 1 and Eq. 4 as the plane-to-
sphere coordinate conversion.

Generally, different omnidirectional images possess dif-
ferent pseudo-cylindrical representations for optimal SR
performance. To obtain the best optimization parameters, we
propose a computationally tractable optimization algorithm.
Specifically, we start by reducing the pseudo-cylindrical rep-
resentation to a tiled representation (Yu, Lakshman, and
Girod 2015) to further simplify and propose our LAPR. In
this LAPR, the neighboring rows with the same magnifica-
tion µi can be viewed as a tile and the tiled representation
z for the original input x can be defined as {zt}T−1t=0 , where
zt ∈ RHt×Wnew

t denotes the t-th tile and T = H/Ht de-
notes the total number of tiles. Then, we formulate the op-
timization problem of the pseudo-cylindrical representation
parameters as:

min
{Wnew

t }

1

|Ψ |
∑
x∈Ψ

F(x,ISR(x), {Wnew
t })

s.t. Wnew
t ∈ {Wnew

0 , . . . ,W
new

L−1}, 0 ≤ t < T,

Wnew
t = Wnew

T−1−t, 0 ≤ t ≤ Thalf ,
Wnew
t ≤Wnew

t′ , for t ≤ t′ and 0 ≤ t, t′ ≤ Thalf ,
(5)

where x denotes the given image; F(·) denotes a quantitative
measure function for the SR performance; ISR(·) denotes
an existing pre-trained public 2D-SR method;W

new

t = (t+
1) bW/Lc, where L is the number levels of quantized width
W of the ERP image and it is set such that L � W to
reduce the search space of the possible widths. As shown in
Fig. 1 (b), we make the proposed LAPR symmetrical along
the equator to double the search speed, and thus Thalf =
b(T−1)/2c−1. Finally, the tractable optimization algorithm
is proposed (Please see the supplementary for details).

Fig. 3 shows a comparison experiment between the rep-
resentative 2D-SR model EDSR (Lim et al. 2017) using and
without using the proposed LAPR. From the results, it can
be observed that EDSR using the proposed LAPR outper-
forms that without using it. This not only demonstrates the
effectiveness of the proposed LAPR but also shows that the
LAPR is model-agnostic and can be applied to most off-the-
shelf SR methods.

Figure 3: Comparison between existing methods with and
without using the proposed LAPR.

Viewport-based Training Loss
As discussed in introduction section, almost all the existing
training loss functions for omnidirectional image SR net-
works are designed for 2D planar image SR, which seriously
limits their performance for omnidirectional image SR since
they do not consider the distortion across the latitude of ERP
images. When humans view an omnidirectional image using
head-mounted displays, the ERP image is first transformed
into a 3D sphere by using the plane-to-sphere coordinates
defined in Eq. 1, Eq. 2. The visual content is then rendered
as a viewport (as shown in Fig. 1 (a)), depending on the hu-
man’s head position and the field-of-view (FoV) of the head-
mounted display (Zhou et al. 2021).

Inspired by this observation, we define our training loss
function based on the viewports of the omnidirectional im-
age, reflecting how an omnidirectional image is viewed (Sui
et al. 2021; Fang et al. 2022). Specifically, we first adopt
rectilinear projections (Ye, Alshina, and Boyce 2017) to
map the recovered HR image in ERP format back to the
3D sphere format and then sample 14 viewports uniformly
distributed over the sphere for each omnidirectional im-
age 2, which cover all spherical content. Each viewport
is a Hv × Wv rectangle, where Hv = dH3 e and Wv =

dW4 e, with a FoV of π
3 ×

π
2 . Given a training dataset

{Ii,jHRv
, Ii,jGTv

}N,14i=1,j=1, which has N recovered images Ii,jHRv

(each of them has 14 viewports) and the corresponding
ground truth images Ii,jGTv

(each of them has 14 viewports),
our viewport-based loss function is defined as:

LV BMAE(Θ) =
1

14

1

N

N∑
i=1

14∑
j=1

||Ii,jHRv
− Ii,jGTv

||1, (6)

where Θ denotes the parameter set of the proposed network.

Recursive Omnidirectional Backbone
As shown in Fig. 2, our network is a progressive archi-
tecture designed by gradually unfolding recursive block
(RB) constructed based on residual swin Transformer blocks
(RSTB) (Liang et al. 2021), convolution layers, and ReLU
layers. This progressive structure aims to recover the high-
resolution (HR) omnidirectional image progressively from
its low-resolution (LR) input. Specifically, we first repre-
sent the input LR omnidirectional image using the proposed

2The centers of the 14 viewports correspond to (0,−π
2
), (0, 0),

(0, π
2
), (0, π), (−π

4
,−π

2
), (−π

4
, 0), (−π

4
, π
2
), (−π

4
, π), (π

4
,−π

2
),

(π
4
, 0), (π

4
, π
2
), (π

4
, π), (π

2
, 0) and (−π

2
, 0), respectively.
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LAPR to address the sampling issue of the ERP image.
Then, it is input to the designed recursive network to extract
deep features. Finally, the deep features are transformed
back to the ERP form and then input into the upscale module
and the reconstructed module to output the final HR omni-
directional image.

Following previous works (Zhang et al. 2018; Deng et al.
2021; Cai et al. 2022), we also use one convolution layer to
extract the shallow feature (SF) F0 from the represented LR
omnidirectional image by our LAPR ILAPRLR :

F0 = fSF (ILAPRLR ), (7)

where fSF is the convolution operation. Then, the extracted
shallow feature is input to the proposed recursive network to
further extract deep features (DF) FDF :

FDF = fRB(fIN (F0, Fs−1)), (8)

where fIN is the convolution operation; fRB is the oper-
ation of the recursive block, which consists of S residual
swin Transformer blocks (RSTB) (Liang et al. 2021) and
four convolution layers and a ReLU layer. Motivated by the
previous work (Ren et al. 2019), we implement the above
progressive hybrid architecture by recursively unfolding it R
times, as shown in Fig. 2. Considering that the parameters of
our network mainly come from the recursive block, we adopt
it in a recursive manner instead of directly stacking the re-
cursive block to reduce the model size. Finally, the recovered
HR omnidirectional image IHR is obtained by mapping the
deep features back to ERP FDF and inputting them into an
upscale module and a reconstruction module as follows:

IHR = fRec(fUP (FDF )), (9)

where fUP and fRec denote the operation of the upscale
module and the reconstruction module, respectively.

Discussion
Below, we discuss the significant differences between our
method and the two kinds of 360◦-SR methods discussed in
the second paragraph of related work section.

Difference to the method based on priors of sphere-to-
plane mapping: (i) This method only uses the 2D planar
representation to mitigate the sampling issues of ERP, while
we design our representation by integrating ERP format and
sphere format into one model. Our approach fully utilizes
the advantages of ERP format, making it model-agnostic to
existing 2D-SR models, and also leverages the advantages
of the sphere format to avoiding sampling issues in ERP. (ii)
While this method still uses the loss functions designed for
2D planar image SR, it seriously affects its performance for
omnidirectional image SR because it does not considering
the sampling issues of ERP. In contrast, we design a novel
loss for omnidirectional images based on the viewport of a
3D sphere.

Difference to the method based on designing spherical
convolution: (i) This method needs to continuously switch
between spherical and 2D planar coordinate to enable the
proposed spherical convolution, resulting in high compu-
tational costs. In contrast, our method requires only one

switch. (ii) This method presents a challenge to existing 2D-
SR architectures as intermediate representations, obtained
through spherical convolution with varying latitudes, cannot
be effectively shared across 2D planar images. In contrast,
our method is model-agnostic and compatible with most off-
the-shelf SR models.

Experiments
Experiment Settings
Datasets: Following previous methods (Yoon et al. 2022),
we also choose ODI-SR (Deng et al. 2021) as our training
dataset, which contains 1200 training images, 100 validation
images, and 100 testing images. We use the ODI-SR and
SUN 360 Panorama (Xiao et al. 2012) as our test datasets.
Evaluation Metrics: To quantitatively compare the recov-
ered HR results of the proposed model with that of the SOTA
models, we use weighted-to-spherically-uniform PSNR
(WS-PSNR) (Sun, Lu, and Yu 2017) and weighted-to-
spherically-uniform SSIM (WS-SSIM) (Zhou et al. 2018).
These are two widely used metrics for quantitatively evalu-
ating the recovered omnidirectional image.
Implementation Details: Following previous works (Deng
et al. 2021; Yoon et al. 2022), we train our model for the
scales of×8 and×16, and all degraded datasets are obtained
using bicubic interpolation. To avoid boundary artifacts be-
tween neighboring tiles, following previous work (Deng
et al. 2021), an extra Ht

8 is added for neighboring tiles, where
Ht denotes the height of each tile. The proposed model is
trained by the ADAM optimizer (Kingma and Ba 2014) with
a fixed initial learning rate of 10−4. The whole process is im-
plemented in the PyTorch platform with 4 RTX3090 GPUs,
each with 24GB of memory (Please see the supplementary
for more details).

Comparisons with State-of-the-art Methods
To validate the effectiveness and superior performance of the
proposed method, we compare our method with 10 SOTA
methods including 7 2D-SR methods: EDSR (Lim et al.
2017), HAN (Niu et al. 2020), DRN (Guo et al. 2020),
NLSN (Mei, Fan, and Zhou 2021), SwinIR (Liang et al.
2021), ELAN (Zhang et al. 2022) and Swin2SR (Conde et al.
2023) (Note that, for a fair comparison, all the compari-
son methods are retrained on the ODI-SR dataset using their
open-source codes with the same patch size as our method,
dubbed as 2D-SR-Re), 3 360◦-SR methods: 360-SS (Ozci-
nar, Rana, and Smolic 2019), LAU-Net (Deng et al. 2021)
and SphereSR (Yoon et al. 2022).
Quantitative Comparison: Table 1 reports the quantita-
tive comparisons between our method and 10 SOTA SISR
methods on two benchmark datasets for scale factor ×8 and
×16. The best results are represented in bold and the sec-
ond best in underlined. It can be found that, compared with
these methods, our method achieves the best results on mul-
tiple benchmarks for all scaling factors and surpasses all of
them in terms of WS-PSNR and WS-SSIM. In particular,
our method improves the WS-PSNR value by 0.32 dB and
0.34 dB on the ODI-SR dataset for scale factor ×8 and ×16
compares with that of the second best method, respectively.
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SR Methods
ODI-SR dataset SUN 360 dataset

×8 ×16 ×8 ×16
WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM

2D-SR-Re

EDSR 23.97 0.6483 22.24 0.6090 23.79 0.6472 21.83 0.5974
DRN 24.32 0.6571 22.52 0.6212 24.25 0.6602 22.11 0.6092
HAN 24.32 0.6620 22.53 0.6265 24.25 0.6681 22.12 0.6105
NLSN 24.33 0.6684 22.53 0.6285 24.26 0.6709 22.14 0.6182
SwinIR 24.34 0.6721 22.54 0.6288 24.27 0.6734 22.15 0.6273
ELAN 24.35 0.6756 22.56 0.6390 24.28 0.6788 22.16 0.6355

Swin2SR 24.37 0.6770 22.58 0.6395 24.29 0.6822 22.18 0.6380

360◦-SR

360-SS 24.14 0.6539 22.35 0.6102 24.19 0.6536 22.10 0.5947
LAU-Net 24.36 0.6602 22.52 0.6284 24.24 0.6708 22.05 0.6058
SphereSR 24.37 0.6777 22.51 0.6370 24.17 0.6820 21.95 0.6342

Ours 24.72 0.6886 22.90 0.6480 24.53 0.6855 22.37 0.6475

Table 1: Quantitative comparisons with state-of-the-art SR methods on two benchmark datasets for scale factor ×8 and ×16.
The bold/underlined font represent the best/second best result.

Figure 4: Visual comparisons with state-of-the-art SISR methods for 8× SR on the ODI-SR and the Sun 360 datasets. The
colors red and blue represent the best and the second best methods. Best viewed on screen.

Qualitative Comparison: In Fig. 4, we also visually illus-
trate the zoomed-in comparison results with SOTAs on sev-

eral images from the test datasets. From the results, we find
that the proposed method can consistently obtain sharper re-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

878



sults, recovering more high-frequency textures and details,
while most competing models suffer from some unpleasant
blurring artifacts. This successfully validates the effective-
ness and efficiencies of the proposed method.
Further Comparison: Table 2 shows the FLOPs, the num-

Model FLOPs Params Time WS-PSNR
SwinIR 900 G 11.5 M 0.982 s 22.54
ELAN 845 G 8.9 M 0.715 s 22.56

Swin2SR 952 G 12.3 M 1.041 s 22.58
360-SS 15 G 1.6 M 0.025 s 22.35

LAU-Net 685 G 9.4 M 0.443 s 22.52
SphereSR 587 G 8.7 M 0.401 s 22.51

Ours 372 G 7.8 M 0.312 s 22.90

Table 2: Computational complexity comparison on the ODI-
SR dataset for scale factor ×16.

ber of parameters, the running time and the WS-PSNR val-
ues comparisons between our method and SOTA methods
on the ODI-SR dataset for scale factor of 16. It can be found
that our method achieves the best performance with compet-
itive efficiency and computation cost.

Ablation Study
LAPR: As shown in Table 3, to evaluate the effectiveness of
the proposed LAPR, we conduct a comparison experiment
between our method using different representations: original
ERP, sinusoidal projection and the proposed LAPR. It can be
observed that the highest WS-PSRN and WS-SSIM values
are obtained when the proposed LAPR is used.

Different Rep ERP Sinusoidal Our LAPR
WS-PSNR 24.48 24.56 24.72
WS-SSIM 0.6688 0.6791 0.6886

Table 3: Different input representations comparison on the
ODI-SR dataset for scale factor ×8.

To validate the LAPR is model-agnostic to existing 2D-
SR methods, as shown in Table 4, another comparison ex-
periment between the Top 3 2D-SR models: SwinIR (Liang
et al. 2021), ELAN (Zhang et al. 2022) and Swin2SR (Conde
et al. 2023), using and without using the proposed LAPR is
conducted. From the results, it can be observed that the val-
ues of all the three methods using the proposed LAPR out-
perform that of without using it. This not only validates the
effectiveness of the proposed LAPR but also shows that the
proposed LAPR is model-agnostic to most off-the-shelf SR
methods and can improve their performance.

2D Models SwinIR ELAN Swin2SR
w/o LAPR 24.34 24.35 24.37
w/ LAPR 24.48 24.50 24.52

Table 4: Comparison between exiting 2D-SR methods with
and without using the proposed LAPR on the ODI-SR
dataset for scale factor ×8.

Viewport-Based Loss: To investigate the effectiveness of
the proposed viewport-based loss, we conduct a comparison
experiment between the proposed method using the widely
used LMAE loss designed for 2D planar image SR network
and the proposed viewport-based loss LV BMAE . The corre-
sponding WS-PSRN values are shown in Table 5. It can be
found that our viewport-based loss achieves a better perfor-
mance, which demonstrated its effectiveness.

Loss function LMAE LV BMAE

WS-PSNR 22.80 22.90
WS-SSIM 0.6310 0.6480

Table 5: Influence of different training losses on the ODI-SR
dataset for scale factor ×16.

Recursive Network: To validate the superior performance
of our method mainly come from the proposed LAPR and
our viewport-based loss rather than the Transformer-based
backbone, we train another version of our method by replac-
ing the RSTB shown in Fig. 2 with 32-residual blocks simi-
lar to NLSA (Mei, Fan, and Zhou 2021), dubbed as Ours-C
(Note that, for a fair comparison, all the parameter settings
of residual blocks are the same as those in NLSA). As shown
in Table 6, Ours-C can still achieve superior performance
compared to previous SOTA methods, indirectly validating
the effectiveness of our LAPR and viewport-based loss.

Model Params (M) WS-PSNR WS-SSIM
SwinIR 11.5 24.34 0.6721
ELAN 8.9 24.35 0.6756

Swin2SR 12.3 24.37 0.6770
360-SS 1.6 24.14 0.6539

LAU-Net 9.4 24.36 0.6602
SphereSR 8.7 24.37 0.6777

Ours-C 7.5 24.62 0.6779

Table 6: Comparison on the ODI-SR dataset for scale ×8.

Conclusion
In this paper, we present a novel method for accurate
omnidirectional image super-resolution that effectively ad-
dresses sampling issues and distortion across the latitude
of ERP images. Specifically, we introduce a latitude adap-
tive pseudo-cylindrical representation for omnidirectional
images. This representations allows pixels at different lati-
tudes to adaptively adopt the best distinct sampling density.
This is achieved by employing the proposed computation-
ally tractable optimization algorithm to search for the opti-
mal width for each tile. Additionally, we propose a viewport-
based loss, which reflects how humans view omnidirectional
images, to mitigate the distortion of ERP. Finally, a recursive
progressive backbone is designed to demonstrate the feasi-
bility of our idea. Quantitative and qualitative evaluations on
different benchmark datasets demonstrate the effectiveness
of the proposed method, showcasing its the superior perfor-
mance over most SOTA methods.
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