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Abstract

Depth uncertainty is a core challenge in 3D human pose
estimation, especially when the camera parameters are un-
known. Previous methods try to reduce the impact of depth
uncertainty by multi-view and/or multi-frame feature fusion
to utilize more spatial and temporal information. However,
they generally lead to marginal improvements and their per-
formance still cannot match the camera-parameter-required
methods. The reason is that their handcrafted fusion schemes
cannot fuse the features flexibly, e.g., the multi-view and/or
multi-frame features are fused separately. Moreover, the di-
verse and complicated fusion schemes make the principle for
developing effective fusion schemes unclear and also raises
an open problem that whether there exist more simple and el-
egant fusion schemes. To address these issues, this paper pro-
poses an extremely concise unified feature fusion transformer
(FusionFormer) with minimized handcrafted design for 3D
pose estimation. FusionFormer fuses both the multi-view and
multi-frame features in a unified fusion scheme, in which all
the features are accessible to each other and thus can be fused
flexibly. Experimental results on several mainstream datasets
demonstrate that FusionFormer achieves state-of-the-art per-
formance. To our best knowledge, this is the first camera-
parameter-free method to outperform the existing camera-
parameter-required methods, revealing the tremendous poten-
tial of camera-parameter-free models. These impressive ex-
perimental results together with our concise feature fusion
scheme resolve the above open problem. Another appealing
feature of FusionFormer we observe is that benefiting from
its effective fusion scheme, we can achieve impressive per-
formance with smaller model size and less FLOPs.

Introduction
3D human pose estimation (Wang et al. 2021) is a fun-
damental task in computer vision, which aims to estimate
3D locations of the keypoints on the human body from im-
ages or videos. Although great efforts have been made in
the last decade, it remains challenging due to the depth un-
certainty. Recent approaches (Zheng et al. 2021; Liu et al.
2021; Iskakov et al. 2019; Zhang et al. 2021b) try to reduce
depth uncertainty by leveraging the clues contained in the
features from multiple views and frames. Promising results
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have been reported in the literature. To be precise, the multi-
frame methods, such as PoseFormer (Zheng et al. 2021)
and MHFormer (Li et al. 2022), take advantage of Trans-
former’s strong capability in long-range relationship mod-
elling to extract robust features and reduce the impact of the
inaccuracies in 2D pose estimation. The multi-view meth-
ods (Iskakov et al. 2019; Ma et al. 2021; He et al. 2020)
fuse the features of the images from multiple views via geo-
metric constraints, which can be derived from the camera
parameters. There also exist some camera-parameter-free
methods (Gordon et al. 2022; Shuai, Wu, and Liu 2022).
They leverage Transformers to infer the camera parameters
explicitly or implicitly. Moreover, these camera-parameter-
free methods do not require image or voxel features for ge-
ometric alignment, which leads to significant computational
cost savings and enables these multi-view methods to jointly
learn from multiple frames instead of single frame as the
camera-parameter-required methods.

In this paper, we focus on the camera-parameter-free ap-
proaches as they are more practical in real applications.
However, we notice that the performance of these ap-
proaches (Ma et al. 2022; Gordon et al. 2022; Shuai, Wu,
and Liu 2022) can not match the camera-parameter-required
methods although they are able to learn from multiple
frames. We argue that this results from their complex hand-
crafted feature fusion schemes, which cannot fuse the fea-
tures flexibly. For instance, grouping keypoint feature fusion
scheme first groups the keypoints within the same limb and
then fuses the features separately for each group, which hin-
ders the cooperative interactions between limbs. The pair-
wise feature fusion scheme may suffer from a lack of global
perspective and the reference to other views. As a result,
common features may be repeatedly extracted while cetrain
informative features may be overlooked. Spatio-temporal
separated feature fusion scheme restricts the features from
communicating along either in the spatial or temporal di-
mension. Moreover, we find that the above handcrafted fu-
sion schemes have diverse and complex structures, which
make the principle for developing effective fusion scheme
unclear. They also raise an open problem that whether there
exist more simple, elegant yet effective fusion schemes.

To address the above issues, this paper proposes a concise
unified Fusion Transformer (FusionFormer) with minimized
handcrafted design for 3D pose estimation. FusionFormer
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first encodes 2D pose estimation results into pose features,
and then leverages transformer encoder to jointly fuse multi-
view and multi-frame features into the global feature. Thus,
all the features are accessible to each other and thus can
be fused flexibly. Subsequently, Transformer decoder is
adopted to estimate 3D human pose under each view by in-
tegrating the global features with the view-specific features
individually. The extensive experimental results demonstrate
that our method outperforms the state-of-the-art methods
with a large margin. To the best of our knowledge, Fusion-
Former1 is the first camera-parameter-free method to sur-
pass existing camera-parameter-required methods benefit-
ing from our effective fusion scheme, revealing the tremen-
dous potential of camera-parameter-free models. Further-
more, the experimental results demonstrate that when using
2D ground truth as input, our method achieves extremely
high accuracy with MPJPE error less than 10mm. This im-
plies that with more accurate 2D pose estimation techniques
our method can be further reinforced in the future. The im-
pressive experimental results together with our concise fea-
ture fusion scheme resolve the above open problem. Our
main contributions are summarized as follows:
1. We propose a concise unified feature fusion transformer

(FusionFormer) for 3D pose estimation, which enables
the features to be fused from different frames and views.

2. Experiments on several datasets demonstrate that Fusion-
Former outperforms all the state-of-the-art methods, with
an accurracy improvement more than 23%. This demon-
strates that the impact of depth uncertainty is effectively
reduced by FusionFormer, revealing the tremendous po-
tential of camera-parameter-free methods.

3. To the best of our knowledge, FusionFormer is the first
camera-parameter-free method that surpasses existing
camera-parameter-required methods benefiting from our
effective fusion scheme.

4. The success of FusionFormer verifies the existence of
concise yet effective 3D pose estimation approaches,
which can inspire the researchers in developing more ad-
vanced approaches in the future.

Related Work
Monocular 3D Pose Estimation
Recovering 3D pose information from a single view is an ill-
posed problem. Therefore, single-view methods usually in-
troduce the prior knowledge of the human body to constrain
the location of keypoints, reducing the depth uncertainty.
Common constraints include reprojection, e.g., Occlusion-
aware Network (OA-Net) (Cheng et al. 2019), relationship
between adjacent keypoints or within the same limb, e.g.,
SemGCN (Zhao et al. 2019), HDFormer (Chen et al. 2023)
and SRNet (Zeng et al. 2020), human body symmetry, e.g.,
PoseGrammar (Fang et al. 2018), bone length invariance,
e.g., MotioNet (Shi et al. 2020), temporal consistency, e.g.,
VideoPose3D (Pavllo et al. 2019), and temporal motion con-
straints, e.g., UGCN and GASTNet (Liu et al. 2021).

1Code and Supplementary materials are available at:
https://github.com/DoUntilFalse/FusionFormer

Before the Transformer was introduced into 3D Human
Pose Estimation, monocular methods used various hand-
crafted schemes to encode prior knowledge. However, in
these methods, the keypoint features can only be fused along
a pre-designed graph, which limits the exploration of rela-
tionships between two non-adjacent keypoints in the graph.

PoseFormer (Zheng et al. 2021) proposes the first
Transformer-based method, and reveals the powerful po-
tential of the Transformer in 3D pose estimation. Inspired
by MDN (Li and Lee 2019) and other Multi-Hypothsis
methods (Jahangiri and Yuille 2017; Liu et al. 2023), MH-
Former (Li et al. 2022) proposes a multi-hypothesis trans-
former, which first generates multiple possible 3D poses and
then fuses the final 3D pose to reduce depth uncertainty.

Multi-view 3D Pose Estimation
Camera-parameter-required Approaches. Multi-view
methods with camera parameters model the position re-
lationships between cameras to construct epipolar geom-
etry constraints, reducing depth uncertainty and the im-
pact of occlusion. Learnable Triangulation of Human Pose
(LToHP) (Iskakov et al. 2019), CanonFusion (Remelli et al.
2020) and other studies (Li et al. 2019; Günel et al. 2019)
propose various triangulation methods to determine the
3D keypoint positions. DeepFuse (Huang et al. 2020) and
CrossFusion (Qiu et al. 2019) reproject the 2D feature
into 3D voxel space. AdaFuse (Zhang et al. 2021b) and
Epipolar Transformer (He et al. 2020) leverage epipolar
line to fuse multi-view features. TransFusion (Ma et al.
2021), MvP (Zhang et al. 2021a) and MTF-Transformer+
(MTF+) (Shuai, Wu, and Liu 2022) feed camera parameters
into their position encoding to guide the model in modeling
the relationships between views.

Camera-parameter-free Approaches. Multi-PPT (Ma
et al. 2022) employs Transformer to extract human fea-
tures from images in multiple views, and then feeds them
into a shared Transformer encoder for feature fusion to
obtain 3D human poses. Recently, some methods attempt
to utilize both multi-frame and multi-view feature fusion
to boost the performance. FLEX (Gordon et al. 2022) de-
signs a viewpoint-independent skeleton representation that
uses skeleton lengths and angles to represent the human
body and leverage the prior knowledge of invariant skele-
ton lengths. Notice that hierarchical keypoints representa-
tion leads to error accumulation, resulting in large errors
at the end-point keypoints, such as wrist and ankle. MTF-
Transformer (MTF) (Shuai, Wu, and Liu 2022) fuses key-
point features, multi-view features and multi-frame features
separately to obtain more spatial and temporal information.

Method
In this section, we present our unified feature fusion trans-
former, dubbed FusionFormer, which jointly fuses features
from multiple frames and views to estimate 3D human poses
accurately. As shown in Figure 1, FusionFormer consists of
four modules, i.e., 2D pose estimator, pose feature extractor,
unified feature fusion scheme, and 3D pose regression head.
We would like to point out that our feature fusion scheme
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Figure 1: The architecture of FusionFormer. FusionFormer decompose the 3D Human pose estimation into four stage: 2D
Pose estimation, Feature Extraction, Feature Fusion and 3D Pose Regression Head. FusionFormer unifies spatial and temporal
feature fusion to further exploit the powerful modeling capabilities of Transformer.

can be integrated with existing techniques for other three
modules flexibly and therefore we only provide a brief in-
troduction to the formal expressions of these three modules.

2D Pose Estimator and Feature Extractor
A general 2D pose estimator, which estimates the poses in
the images I obtained from V views with T frames in each
view, can be formulated as the following function

F2D : RT×V×H×W×3 → RT×V×J×2,

where J are the number of keypoints for one person, H and
W are height and width of each image. We denote the esti-
mation result as P2D, that is

P2D = F2D(I) ∈ RT×V×J×2.

Feature extractor takes the 2D poses P2D as input and
maps it into a high-dimensional space to obtain the feature
Fembed ∈ RT×V×J×CJ , that is

Fembed = Embed(P),

where CJ is the number of channels of each keypoint.
Subsequently, the feature extractor employs several lay-

ers to extract the relationships between keypoints, resulting
in the pose feature F (0)

pose ∈ RT×V×CP with CP being the
number of channels of each pose, which aggregates the fea-
tures of all J keypoints. That is,

F (0)
pose = Epose(Fembed).

Unified Feature Fusion Scheme
We argue that the features from multiple views and frames
should be accessible from each other in the feature fusion
process to reduce the impact of depth uncertainty. Therefore,
we propose a unified feature fusion scheme, which is com-
posed of several Encoder-Decoder blocks. The encoder is
used to fuse all the features of V T images to obtain a global
feature Fglobal. The decoder integrates the global features
with the view-specific features individually to provide more

informative features for 3D human pose under each view.
The impact of depth uncertainty can be reduced as our fused
features have the global perspective. The details of our en-
coders and decoders are presented below.

Encoder. Before being fed into the encoder, the feature
F (0)

pose needs to be reshaped and position encoding needs
to be added. To perform feature communication and fusion
across both spatial and temporal dimensions with Trans-
former, we treat F (0)

pose as V ∗ T tokens. Common position
encodings include cosine position encoding, learnable posi-
tion encoding and MLP-based position encoding. We note
that cosine position encoding (Vaswani et al. 2017) assumes
that there is correlation among tokens that decreases with
distance, which may not hold true in multi-view and multi-
frame feature fusion. Moreover, MLP-based position encod-
ing is mainly suitable for scenarios where the number of to-
kens changes dynamically. When the number of tokens is
fixed, it will degrade to a learnable position encoding. There-
fore, inspired by ViT (Dosovitskiy et al. 2021), we adopt
a simple learnable position encoding. After position encod-
ing were added, Layer Normalization are applied. The whole
process can be formulated as

F (0)
enc = LN(f(F (0)

pose) + PE enc),

where f reshapes the feature into V ∗ T tokens, PE enc ∈
R(V ∗T )×CP is the learnable position encoding and LN is
Layer Normalization.

F (0)
enc is then fed into L layers of Transformer Encoder to

obtain the global feature F (0)
global, i.e.,

F (0)
global = Encoder(F (0)

enc).

To clarify, when referring to the Transformer Encoder
or Decoder in this paper, we adopt the vanilla Trans-
former (Vaswani et al. 2017), and we will not elaborate on
its specific structure.
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As we know, Transformer Encoder is composed of two
key modules: a self-attention module and an MLP mod-
ule. The self-attention module is employed for feature fu-
sion among tokens to obtain the global feature, whereas the
MLP module serves for inter-channel feature communica-
tion. One advantage of flattening features across V views
and T frames into a sequence is that direct communica-
tion can be performed between any feature pair from the
V ∗T features. Consequently, the attention matrix is sized of
V T ×V T instead of two matrices sized of V ×V and T ×T
as previous approaches. We would like to point out that as
1) V in the typical datasets (Ionescu et al. 2013) is no larger
than 4; 2) our Frames T = 27 and Blocks B = 2 are signif-
icantly smaller than the baselines (e.g., T = 81 and B = 8
in PoseFormer (Zheng et al. 2021), T = 351 and B = 3 in
MHFormer (Li et al. 2022)), our computation and memory
cost is comparable with the baselines.

Moreover, this design endows each unit pair with an inde-
pendent attention weight, leading to more effective and flexi-
ble feature fusion compared to the separated fusion methods
that rely on shared weights for every view in multi-frame
feature fusion or every frame in multi-view feature fusion.

In contrast to pairwise multi-view feature fusion methods,
where attention weights are normalized separately, a uni-
form normalization for our attention weights is performed
in the self-attention module. This allows for different sums
of attention weights across the views, therefore, we allow
different views to have different importance weights in the
fused feature. In pairwise methods, the sum of attention
weights for every pair of views remains constant due to the
separate normalization, regardless of their importance.

In practice, the relationships between the V views of-
ten differ greatly due to factors such as occlusion (Ghafoor
and Mahmood 2022), camera position, body orientation, and
other factors, making it difficult to manually summarize
them. This also explains why previous handcrafted struc-
tures struggle to achieve optimal results.

Decoder. As our goal is to predict the 3D pose in V views,
we try to maintain the diversity between features from differ-
ent views, so we partition the features F (0)

pose along the views
and then feed them separately into the decoder. Therefore,
multi-view feature fusion is only performed in the encoder.
To be precise, the features are first partitioned and normal-
ized together with the positional encoding as follows:

{F (0)
dec}v = LN({F (0)

pose}v + PEdec).

Then global features are integrated with the above view-
specific features {F (0)

dec}v individually in our decoder with L
layers to provide more informative features for 3D human
pose under each view. That is

{F (0)
fused}v = Decoder(F (0)

global, {F
(0)
dec}v).

After these operations, the features for each view are con-
catenated into F (0)

fused ∈ RV×T .

Encoder-Decoder Block. The aforementioned Encoder-
Decoder is treated as a single block. As shown in Figure

1, FusionFormer contains B blocks with shared parameters,
where the output F (b)

fused of the b-th block serves as the input
of the subsequent block. Finally, the output of this stage is
obtained as F (B)

fused.

3D Pose Regression Head and Loss Function
To maximize the capabilities of our feature fusion network,
we employ a simple 3D pose regression head to extract the
3D poses of the center frame (the T+1

2 -th frame) from each
view separately following MTF-Transformer. We adopt a
Conv1d layer to perform the weighted summation of all
frames, aggregating information from all frames to obtain
features Fagg ∈ RV×CP that are used for 3D pose regres-
sion, i.e.,

Fagg = Conv1d(F (B)
pose).

Afterward, Fagg is fed into two linear layers to obtain the 3D
poses of the center frame for each view, denoted as P3D ∈
RV×J×3, i.e.,

P3D = Linear(Relu(Linear(Fagg))).

We adopt Mean Per Joint Position Error (Wang et al. 2021)
as our loss function and denote it as MPJPE. MPJPE first
aligns the root (central hip) of predicted 3D pose and
the ground truth, and then calculates the averaged Eu-
clidean Distance between each joints. We adopt the averaged
MPJPE over V views as the final loss function, i.e.,

L =
1

V ∗ J

V∑
v=1

J∑
j=1

∥∥pv,j − pgtv,j
∥∥ ,

where pv,j ∈ P3D represents the predicted 3d poses after
alignment, and pgtv,j represents the ground truth.

Remark. We adopt PoseFormer as the feature extractor in
the main experiments. Note that FusionFormer achieves im-
pressive results even with a 2-layer FCN (Table 7). It verifies
that FusionFormer is not a simple extension of PoseFormer.

Experiments
Experiment Setting
Dataset. Human3.6M is the most widely used 3D human
pose estimation dataset, containing over 3 million frames
of images synchronized captured from four cameras. To-
talCapture dataset utilizes 8 completely synchronized cam-
eras to collect 4 types of actions (rom, acting, walking, and
freestyle) from 5 subjects (S1, S2, and S3 as Seen sub-
jects and S4 and S5 as Unseen subjects). HumanEva (≈
50K frames) and MPI-INF-3DHP (≈ 500K frames) are two
much smaller datasets. HumanEva contains 3 calibrated rgb
video sequences from 4 subjects performing 6 common ac-
tions. MPI-INF-3DHP consists of both constrained indoor
and complex outdoor scenes captured from 14 cameras.

Evaluation Metrics. Mean Per Joint Position Error
(MPJPE) and Procrustes-aligned MPJPE (P-MPJPE) (Wang
et al. 2021) are used as the evaluation metrics.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

903



Method Dir. Disc. Eat. Greet Phone Photo Pose Purch. Sit. Smoke Wait Walk Avg.
Monocular methods

MDN* (T = 1) 43.8 48.6 49.1 49.8 57.6 61.5 45.9 48.3 62.0 54.8 50.6 43.4 52.7
SRNet* (T = 243) 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 46.1 42.6 31.5 44.8
UGCN* (T = 96) 40.2 42.5 42.6 41.1 46.7 56.7 41.4 42.3 56.2 46.3 42.2 31.7 44.5
PoseFormer* (T = 81) 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 45.5 43.3 31.8 44.3
MHFormer* (T = 351) 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 43.7 41.1 29.8 43.0
OA-Net* (T = 128) 38.3 41.3 46.1 40.1 41.6 51.9 41.8 40.9 51.5 42.2 44.6 33.7 42.9

Multi-view methods with camera parameters
CanonFusion (T = 1) 27.3 32.1 25.0 26.5 29.3 35.4 28.8 31.6 36.4 31.2 29.9 33.7 30.2
Epipolar (T = 1) 25.7 27.7 23.7 24.8 26.9 31.4 24.9 26.5 28.8 28.2 26.4 28.3 26.9
CrossFusion (T = 1) 24.0 26.7 23.2 24.3 24.8 22.8 24.1 28.6 32.1 31.0 25.6 28.0 26.2
TransFusion (T = 1) 24.4 26.4 23.4 21.1 25.2 23.2 24.7 33.8 29.8 26.8 24.2 26.1 25.8
LToHP (T = 1) 19.9 20.0 18.9 18.5 20.5 19.4 18.4 22.1 22.5 21.2 20.8 22.1 20.8
AdaFuse (T = 1) 17.8 19.5 17.6 20.7 19.3 16.8 18.9 20.2 25.7 19.2 20.5 20.5 19.5
MvP (T = 1) - - - - - - - - - - - - 18.6
MTF+* (T = 27) 23.4 25.2 23.1 24.4 27.4 28.5 22.8 25.2 28.7 25.9 23.6 22.6 25.8

Multi-view methods without camera parameters
Multi-PPT (T = 1) 21.8 26.5 21.0 22.4 23.7 23.1 23.2 27.9 30.7 26.7 23.3 25.3 24.4
FLEX* (T = 27) - - - - - - - - - - - - 31.7
MTF* (T = 27) 23.1 25.4 24.7 24.5 27.9 28.3 23.9 24.6 30.7 25.8 24.2 22.8 26.2
MTF† (T = 27) 17.6 21.3 15.0 18.6 17.6 23.9 16.5 16.9 17.5 18.5 17.0 15.4 18.7
Ours*(T=27) 22.2 25.3 22.9 23.6 26.0 27.0 22.4 23.9 30.4 25.6 22.8 22.3 25.4
Ours† (T = 27) 15.7 15.6 13.0 15.9 13.9 15.6 14.9 15.5 15.5 14.3 15.2 14.6 15.1
FLEX‡ (T = 27) - - - - - - - - - - - - 22.9
MTF‡ (T = 27) 15.5 17.1 13.7 15.5 14.0 16.2 15.8 16.5 15.8 14.5 14.5 14.3 15.3
Ours‡ (T = 27) 7.84 8.04 7.39 8.33 7.13 9.02 8.00 8.19 7.57 7.37 7.83 7.26 7.90

Table 1: Results on Human3.6M. MPJPE is adopted as the evaluation metric. We adopt CPN (*) and ViTPose (†) as the 2D
pose estimator for fair comparison. T is the number of frames. We adopt 2DGT (‡) as input to explore the theoretical upper
bound of the model. Due to space constraints, we only report detailed results for partial actions.

2D Pose Estimator. We employ two off-the-shelf 2D pose
estimators CPN (Chen et al. 2018) and ViTPose (Xu et al.
2022) on Human3.6M for fair comparison with 2D-to-3D
methods and images-to-3D methods, respectively. Detailed
considerations are given in Main Results section. Following
MTF-Transformer, we employ ResNet101 (He et al. 2015)
as the 2D pose estimator on TotalCapture dataset.

Feature Extractor. We choose PoseFormer as the pose
feature extractor, denoted as EP , for the main experiment.
To show the flexibility of FusionFormer in integrating with
feature extractors, we propose 2 baselines, i.e. EFC and ET .
EFC is a 3-layer FCN. ET is a 2-layer FCN followed by 2
vanilla Transformer layers with learnable position encoding.

More detailed configuration, e.g., dataset partitioning and
learning rate, is postponed to the supplementary materials.

Main Results
We report the general comparison results on Human3.6M
and TotalCapture and the generalization ability evaluation
results on two small datasets HumanEva and MPI-INF-
3DHP. Moreover, to show the superiority of FusionFormer
further, we give more comparison results with the previ-
ous state-of-the-art method MTF-Transformer on extra as-
pects, including scalability, computational efficiency and vi-
sual analysis. Finally, we reveal the reasons behind the supe-
riority of FusionFormer by designing a camera extrinsic pa-
rameter regression task as well as visualizing attention maps.

Human3.6M. Note that 2D-to-3D methods use CPN as
the 2D pose estimator, whereas image-to-3D methods usu-
ally adopt advanced structures, e.g., Transformer, to achieve
higher accuracy. For fair comparison, we report the results
of FusionFormer with CPN or ViTPose as the pose es-
timator. We replace 2D pose estimation with 2D ground
truth (2DGT) to explore the theoretical upper bound of our
method. All the results are given in Table 1.

We can observe that FusionFormer outperforms both the
2D-to-3D and image-to-3D methods with large margins,
i.e., 25.3mm v.s. 26.2mm (MTF-Transformer) and 31.7mm
(FLEX) with CPN, 15.1mm v.s. 18.6mm (MvP) and 24.4mm
(PPT) with Transformer-based structures.

Notably, Table 1 demonstrates that FusionFormer with
CPN outperforms some camera-parameter-required meth-
ods (e.g., MTF-Transformer+ and Cross-view Fusion) and
some methods with advanced Transformer based structures
(e.g., Epipolar Transformer and TransFusion). When ViT-
Pose is adopted, it can beat all the methods consistently.

Moreover, Table 1 shows that when 2D pose estimation
results are replaced with 2DGT, the performance of Fu-
sionFormer is significantly boosted. Precisely, it achieves an
MPJPE of 7.91mm, far lower than other 2D-to-3D methods,
e.g., MTF-Transformer (15.3mm) and FLEX (22.9mm).
This implies that the accuracy of the 2D pose estimator has
become the main bottleneck in accurate 3D pose estima-
tion. It is also worth noting that the MPJPE of FusionFormer
with ViTPose is even lower than the theoretical upper bound
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Method
Seen Cameras(1,3,5,7) Unseen Cameras(2,4,6,8)

MeanSeen Subjects Unseen Subjects Mean Seen Subjects Unseen Subjects MeanW2 FS3 A3 W2 FS3 A3 W2 FS3 A3 W2 FS3 A3
CrossFusion(*)† 19.0 28.0 21.0 32.0 54.0 33.0 29.0 - - - - - - - -
CanonFusion(*)† 10.6 30.4 16.3 27.0 65.0 34.2 27.5 22.4 47.1 27.8 39.1 75.7 43.1 38.2 32.9
MTF+(Res101)† 10.7 26.5 16.7 27.4 49.4 34.1 25.1 13.9 29.2 18.1 29.2 49.5 35.6 27.0 26.1
FLEX(Res101) 33.2 81.0 34.2 38.3 124 59.5 49.4 109 152 105 114 176 123 125 87.4
MTF(Res101) 9.30 26.5 14.5 26.7 53.1 33.8 24.7 23.7 40.3 27.4 37.0 61.8 42.9 36.6 30.7
Ours(Res101) 5.50 15.0 5.68 18.1 37.6 20.6 15.0 22.1 35.4 23.4 23.2 42.6 28.4 28.3 21.7

Table 2: Comparison results on TotalCapture. MPJPE is adopted as the evaluation metric. We adopt Res101 (He et al. 2015) as
the 2D pose estimator for fair comparison. † marks methods that require camera parameters as input.

Datasets HumanEva MPI-INF-3DHP
Poseformer(T=27) 35.9 38.5
MTF-Transformer(T=3) 22.8 14.6
Ours(T=3) 15.4 5.4

Table 3: Generalization experiment. 2DGT are used as input.

of MTF-Transformer, i.e., 15.1mm v.s. 15.3mm, strongly
demonstrating the superiority of our feature fusion scheme.

Finally, to verify that the superiority of FusionFormer
comes from effective fuison scheme instead of 2D pose es-
timator ViTPose, we re-implement MTF-Transformer using
ViTPose as 2D pose estimator. The results verify that Fu-
sionFormer still achieves lower error (15.1mm v.s. 18.7mm).

TotalCapture. We report the results across seen/unseen
camera and seen/unseen subjects in Table 2. Due to the sig-
nificant variations in freestyle videos, the freestyle action
can be considered as an unseen action.

FusionFormer demonstrates better performance than
all camera-parameter-free methods and outperforms the
camera-parameter-required methods in the majority of sce-
narios, including the most challenging task with unseen
cameras and unseen subjects. We notice that FusionFormer
can not perform better than MTF-Transformer+, which is a
camera-parameter-required method. It must be pointed that
this is not a fair comparison, since with the given camera
parameters as input, it can be expected that the impact of
unseen cameras on camera-parameter-required methods is
negligible. Nevertheless, the significant superiority of Fu-
sionFormer’s over camera-parameter-required methods on
the most challenging tasks with both unseen cameras and
subjects demonstrates its impressive generalization ability.

Generalization across Datasets. We finetune a pretrained
model on Human3.6M for 10 epochs on HumanEva or MPI-
INF-3DHP, comparing our method’s generalization capabil-
ity with that of Poseformer and MTF-Transformer. All the
models are trained with the same setting, which are given
in the appendix. The results in Table 3 shows that Fusion-
Former outperforms the above two methods with a large
margin, which indicates that our feature fusion scheme ex-
tracts robust feature representation in pretraining.

Scalability and Computational Efficiency. We report the
results of MPJPE v.s. parameters/FLOPs in Figure 3 to show
the superiority of FusionFormer in scalability and computa-

Methods Axis Angle Trans.
PoseFormer 20◦ 11◦ 1.1m
MTF-Transformer 6◦ 5◦ 0.3m
Ours 4◦ 2◦ 0.2m

Table 4: Average error of Camera Extrinsic Parameter Re-
gression.

tional efficiency. We find that existing inflexible handcrafted
fusion schemes lead to a low performance upper bound in-
dicated with a dotted line in Figure 3(a), since some features
can not been fused directly. To be precise, as shown in Figure
3(a), MTF-Transformer achieves the optimal performance
at the model with 10M parameters, which is significantly
larger than our model with only 1.89M parameters. Figure
3(b) shows that the small model size of FusionFormer finally
leads to low computational complexity. Moreover, Figure 3
indicates that FusionFormer outperforms MTF-Transfromer
with equal parameters/FLOPS.

Camera Extrinsic Parameter Regression. We conduct
an experiment to evaluate the ability of models to predict
camera position and orientation, which we refer to as Cam-
era Extrinsic Parameter Regression. We freeze the param-
eters of each pre-trained model, extract the last layer fea-
tures before the 3D pose regression head, and feed them into
a 3-layer FCN to regress the camera extrinsic parameters,
i.e., rotation axis, rotation angle, and translation. The re-
sults in Table 4 show that our method is more accurate than
MTF-Transformer and PoseFormer. We speculate that the
reason of why our method can accurately regress 3D human
poses would stem from our ability to encode the relation-
ships among cameras in feature fusion. All three methods
perform poorly in predicting camera translation, which we
attribute to the insensitivity of MPJPE to translation.

Visual Analysis. We visualize some results in Figure
2. It shows that FusionFormer performs well when self-
occlusion and uncommon poses are present. In contrast,
MTF-Transformer exhibits poor performance in such cases
due to its handcrafted feature fusion scheme, which is con-
sistent with our analysis in the introduction section.

Fusion Scheme Visualization. Figure 4 shows the atten-
tion matrix of FusionFormer to visualize our fusion scheme.
In each block, the horizontal and vertical axes stand for 27
frames from two views. Thus, the 4 blocks in the diagonal

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

905



Figure 2: Results of MTF-Transformer and FusionFormer on Human 3.6M.

Figure 3: Comparison of MPJPE between our FusionFormer
and MTF-Transformer over different model sizes.

Figure 4: Visualization of attention map for feature fusion
in FusionFormer decoder. The Attention map is divided into
4×4 blocks for better visualization. Each block contains the
relationship between all frames (T=27) from a pair of views.

present the attention values of feature fusion among multiple
frames in each view, while the diagonals in all 16 blocks are
the values for fusion among multiple views. The large values
out of the aforementioned 4 blocks and 16 diagonals stand
for the feature pairs fused by FusionFormer, which come
from different views and frames and are ignored by previ-
ous methods. Together with the superiority of FusionFormer,
these large values imply that the fusion across the features
from different views and frames is valuable and necessary.

Ablation Study
Frames and Views. The effects of frames and view num-
bers are shown in Table 5 and 6. They indicate that both tem-
poral and multi-view information are helpful in reducing the
impact of depth uncertainty. Additionally, more accurate 2D

Method MPJPE P-MPJPE
2DGT CPN 2DGT CPN

T = 81 8.77 25.7 4.64 20.8
T = 27 7.91 25.3 4.35 20.5
T = 9 7.32 26.2 3.43 21.3
T = 3 7.66 26.1 3.98 21.0
T = 1 8.87 27.3 4.93 21.7

Table 5: Ablation study for the number of frames T.

Method MPJPE P-MPJPE
2DGT CPN 2DGT CPN

V = 4 7.91 25.3 4.35 20.5
V = 2 13.1 30.8 8.26 24.9
V = 1 42.5 39.9 32.8 31.0

Table 6: Ablation study for the number of views V.

Method MPJPE P-MPJPE
2DGT CPN 2DGT CPN

EFC 9.00 27.5 4.90 21.9
ET 8.43 26.2 4.54 21.1
EP 7.91 25.3 4.35 20.5

Table 7: Ablation study for Feature Extractor.

inputs require less temporal information.

Feature Extractor. We evaluate the performance of Fu-
sionFormer with different feature extractors in Table 7. The
results indicate that more complex feature extractors can in-
deed extract more discriminative features. However, even
using just a few simple fully connected layers for feature
extraction, FusionFormer achieves impressive performance,
fully demonstrating the effectiveness of our scheme.

Conclusion
We propose a concise unified Feature Fusion Transformer
for 3D pose estimation to reduce the impact of depth un-
certainty, performing multi-view and multi-frame feature fu-
sion in one step. Empirical results show that the superiority
of our method with the accuracy improvement up to 23%.
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