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Abstract

Lane detection is a critical task in autonomous driving, which
requires accurately predicting the complex topology of lanes
in various scenarios. While previous methods of lane detec-
tion have shown success, challenges still exist, especially in
scenarios where lane markings are absent. In this paper, we
analyze the role of global and local features in accurately de-
tecting lanes and propose a Hybrid Global-Local Perception
Network (HGLNet) to leverage them. Global and local fea-
tures play distinct roles in lane detection by respectively aid-
ing in the detection of lane instances and the localization of
corresponding lanes. HGLNet extracts global semantic con-
text by utilizing a global extraction head that aggregates infor-
mation about adaptive sampling points around lanes, achiev-
ing an optimal trade-off between performance and efficiency.
Moreover, we introduce a Multi-hierarchy feature aggrega-
tor (MFA) to capture feature hierarchies in both regional and
local ranges, elevating the representation of local features.
The proposed Hybrid architecture can simultaneously focus
on global and local features at different depth levels and ef-
ficiently integrate them to sense the global presence of lanes
and accurately regress their locations. Experimental results
demonstrate that our proposed method improves detection ac-
curacy in various challenging scenarios, outperforming the
state-of-the-art lane detection methods.

Introduction
Lane detection is a fundamental component of autonomous
driving systems. It requires the detector to accurately deter-
mine the shape of each lane line from a front-view image
obtained by a vehicle camera. The detection of lanes assists
the vehicle in accurately determining its present location and
the subsequent decision-making process.

Recently, deep-learning-based methods for lane detection
have shown promising results (Pan et al. 2018; Zheng et al.
2021, 2022). However, there are still some challenges in de-
tecting accurate lanes, such as faded lane lines, adverse illu-
mination or weather situations, occlusion of lane markings
by other objects like cars, or the absence of lane markings.

To address these challenges, we perform an extensive
analysis of contemporary approaches to lane detection and
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Figure 1: Illustrations of hard cases for lane detection. (a)
The case that lane is almost occupied by the cars. The global
features (the cyan rectangles) assist in determining the pres-
ence of lane lines at occluded areas. (b) Roads without lane
marking. (c) The lane line is blurred under night conditions,
subsequently requiring various hierarchical features, e.g.,
the local features (edges, colors), and an extended range of
region features (the orange squares), to precisely locate the
lane line. (d) The case that the extreme lighting blurs lane.

observe three significant characteristics of lane representa-
tion: globality, locality, and consistency. When the majority
of the lanes are invisible, utilizing the globality of lane
representation (cyan rectangles in Fig. 1) becomes neces-
sary for predicting the existence of the lanes by using all
available visible portions. The locality refers to the inherent
various features hierarchies of lanes, e.g., the straight edges
of lane markings, the same color, and regular shapes within
regions(orange squares in Fig. 1). It contributes to correcting
the position of lanes by enhancing and associating different
hierarchies of features. The consistency means that many
types of lanes are a smooth thin line, which is an a priori
shape that is crucial for lane prediction.

Fig. 1(a) illustrates that the majority of lane instances are
obscured by vehicles, but some are still discernible, thereby
necessitating the detector to incorporate global context to
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determine lanes. Detecting the absence of lanes, as shown in
Fig. 1(b), poses an even more arduous task since no lane in-
formation is present in the image. In such situations, the net-
work must furnish an ample supply of global semantic con-
text to recognize the existence of lanes. Nonetheless, there
is still a challenge in proficiently extracting global features
for lanes. Prior research either constructs a message-passing
mechanism to gather global context only from convolution
channels (Pan et al. 2018) or designs an anchor-based atten-
tion mechanism to compute global information from local
information (Tabelini et al. 2021a). These approaches have
demonstrated the significance of global features for lane de-
tection, but their global context information for the complete
feature map extraction is still insufficient, resulting in poor
performance in challenging scenarios.

Another common problem in lane detection is lane line
blurring, i.e., missing feature representation in part of the
region. As shown in Fig. 1(c), the lane is blurred at night
with adverse illumination, while in Fig. 1(d), the lane is
hard to recognize due to the extreme lighting condition.
FOLOLine (Qu et al. 2021) has demonstrated that accurate
lane localization can be achieved through the regression
of keypoints to create local features, highlighting the
importance of local modeling. However, it did not compre-
hensively investigate the multi-hierarchical characteristics
of local features, leaving ample room for improving the
accuracy of lane detection in challenging scenarios.

Besides, the robustness of the model to adverse scenarios
is facilitated by the effective integration of both local and
global features. CLRNet (Zheng et al. 2022) introduces
the ROIGather model that gathers both global and local
features simultaneously at the same level during the param-
eter refinement process. Nevertheless, global features are
commonly associated with high-level semantics while local
features are generally represented in low-level features.
Consequently, the method may fail to capture either global
or local features entirely at the same level.

In this paper, we propose a novel Hybrid Global-Local
Perception Network (HGLNet), which focuses on global and
local features in parallel and fully integrates them. Specifi-
cally, our proposed Hybrid architecture extracts global con-
text and models local features concurrently via two heads.
To obtain the higher-level global semantic context for lanes
while maintaining efficiency, we designed the global ex-
traction head. The global extraction head selectively attends
to a small set of key sampling points around a lane and
feeds the sampling sequence into self-attention layers to ef-
ficiently obtain the global context for lane detection. Ad-
ditionally, to address the issue of accurately detecting the
position of occluded and blurred lane lines, we introduce
a Multi-hierarchy feature aggregator (MFA), which explic-
itly and efficiently models feature hierarchies in the regional
and local ranges. Our proposed method achieves state-of-
the-art results on three lane detection benchmarks, i.e., CU-
Lane (Pan et al. 2018), Tusimple (TuSimple 2020), and
LLAMAS (Behrendt and Soussan 2019). In summary, our
main contributions are:
• We demonstrate how global and local features play a sig-

nificant role in lane detection, and we propose a novel

approach called Hybrid Global-Local Perception Net-
work (HGLNet) that effectively extracts the global se-
mantic context and models the local features while fully
utilizing them for lane detection.

• Our proposed global extraction head combines adaptive
sampling points with the capacity to focus critical fea-
tures of the attention mechanism to model global rela-
tionships, achieving a superior trade-off between perfor-
mance and efficiency.

• Our proposal involves the explicit modeling of object hi-
erarchies at both regional and local ranges using MFA.
This model facilitates accurate regression of lane loca-
tions and can be integrated into other networks.

Related Work
Lane Detection Methods
Deep-learning-based lane detection methods have shown
promising prospects and can be divided into five cate-
gories: segmentation-based, keypoint-based, curve-based,
row-anchor-based, and line-anchor-based methods.
Segmentation-based methods. These methods treat lane
detection as a per-pixel classification problem, with each
pixel classified as either lane area or background (Pan et al.
2018; Zheng et al. 2021; Lu et al. 2021; Ding et al. 2020).
To distinguish lanes instance, SCNN (Pan et al. 2018) ob-
tains global features from a message-passing mechanism
that helps each pixel get long-range information to com-
plete the invisible parts of lanes. Nevertheless, the method
is slow for real-time applications. LaneNet (Neven et al.
2018) adopts a different way of lane representation by cast-
ing lane detection as an instance segmentation problem.
RESA (Zheng et al. 2021) optimizes the efficiency of the
message-passing mechanism, and the accuracy is improved.
However, these methods are ineffective and time-consuming
since they perform pixel-wise prediction on the whole image
and ignore specific local features.
Keypoint-based methods. Inspired by human pose estima-
tion, some works consider lane detection as a keypoint esti-
mation and regression problem. FOLOLane (Qu et al. 2021)
proposes a bottom-up lane detection method, which esti-
mates the presence and offset of local lane keypoints through
the network to generate the final lane lines. GANet (Wang
et al. 2022) proposes a feature enhancement module for lane
line perception to enhance the local keypoints association
of lane lines and improve the local continuity of lane lines.
Despite their ability to associate local features effectively,
keypoint-based methods overlook the global semantic con-
text of feature maps, causing difficulty in detecting the exis-
tence of lanes in challenging scenarios.
Curve-based methods. Different from keypoints regres-
sion, Curve-based methods model the lane lines with curved
polynomial parameters and regress these parameters to
detect lanes. PolyLaneNet (Tabelini et al. 2021b) uses
polynomial curves as lane representation which results in
high efficiency. LSTR (Liu et al. 2021b) studies the shape
characteristics of lane lines and employs the geometry
constraints of lanes to enhance detection performance.
Although curve-based methods regress fewer parameters
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Figure 2: The overall architecture of HGLNet. An image is fed into the backbone to get the feature maps. The lane prior head
generates the lane prior from multi-scale visual features generated by FPN (Lin et al. 2017), and MFA explicitly models local
features. The global extraction head feeds sparse space samples across multiple feature layers into self-attention to get the
global semantic features. Finally, both features are concatenated and then passed through FFN layers to predict the presence of
lanes and accurately regress their positions.

and make use of the lane line continuity prior property
which makes them fast, they lack the ability to detect lane
lines with complicated topology.
Row-anchor-based methods. Row-anchor-based methods
are defined as the identification and classification of certain
on-row positions in the image. The first row-anchor-based
method was proposed by UFLD (Qin, Wang, and Li 2020),
which acquires global context features through a fully con-
nected network. CondLaneNet (Liu et al. 2021a) presents a
lane detection approach that integrates conditional convolu-
tion and row anchor-based formulation and addresses com-
plex topology lane concerns through RIM. Despite the sim-
plicity and speed of these methods, combining global and
local features proves to be a difficult challenge, which re-
sults in poor overall performance.
Line-anchor-based methods. Building upon region an-
chors in Faster R-CNN (Ren et al. 2015), Line-CNN (Li
et al. 2019) introduces a novel line anchor representation
optimized for lane detection. To further improve detection
accuracy, LaneATT (Tabelini et al. 2021a) combines local
features with global features generated by a simplified atten-
tion module. CLRNet (Zheng et al. 2022) proposes a cross-
layer refinement mechanism to utilize low-level and high-
level features. Although these methods achieve high accu-
racy in predicting lanes by estimating offsets to line anchors,
their performance heavily relies on the position of line an-
chors and lacks global information. To address this limita-
tion, we propose HGLNet, which employs line anchor pri-
ors to adapt lane continuity property and introduces a global
extraction head to extract global semantic context.

Deformable Attention Module
Compared with CNN, the attention mechanism is global in-
stead of a two-dimensional locality structure and has much
less image-specific inductive bias (Wen, Wang, and Hu
2023). In recent studies, researchers have proposed various
attention mechanisms to broaden the boundaries of applica-
tions in computer vision (Dosovitskiy et al. 2020; Liu et al.
2021c). As a pioneer in applying Transformer to object de-
tection, DETR (Carion et al. 2020) presents a new method

that views object detection as a direct set prediction prob-
lem. However, slow convergence and high computational
complexities arise because the multi-head attention mod-
ule exhibits a quadratic complexity growth in relation to the
feature map size. To overcome this limitation, Deformable
DETR (Zhu et al. 2020) proposes the deformable attention
module, which only attends to a small set of key sampling
points around a reference, merging the benefits of sparse
spatial sampling of deformable convolution with the rela-
tion modeling capabilities of transformers. The deformable
attention module can be extended naturally for multi-scale
feature maps. Inspired by PersFormer (Chen et al. 2022),
we constructed a global extraction head that acquires global
features by employing adaptive sampling from the resized
multi-scale feature maps and the attention mechanism. This
adaptive sampling strategy effectively restricts feature ag-
gregation to the region near the slender lane structure, which
significantly minimizes computational costs.

Method
The Lane Representation
Unlike conventional object detection methods that employ
a rectangular bounding box to capture an object, the line
anchor (Li et al. 2019) is appropriate for the representation
of the lane line. Lane lines are characterized by slender
shapes with well-defined shape priors, thus a predefined
lane prior can help the detector better localize lanes. We
denote the line anchor with prior information as a Lane
Prior. Following (Tabelini et al. 2021a) and (Zheng et al.
2022), the lane is represented by a sequence of 2D points.
Specifically, the y-coordinate of the points making up the
lane boundary is uniformly sampled along the vertical
image directly using the following formula: yi = i ∗ HI

N−1 ,
where HI denotes image height. Given that the y-coordinate
is fixed, a lane prior is uniquely defined by its x-coordinate,
which corresponds to the associated yi. We determine the
final predicted lane’s positional coordinates by adding the
predicted horizontal offset to the lane prior’s x coordinate.
Fig. 3 illustrates the process of obtaining the final predicted
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Figure 3: Illustration of the lane representation and global
adaptive sampling. The predicted lane is obtained by adding
prior lane and offsets, and global features are extracted from
adaptive sampling points around the lane.

lane, which involves predicting the lane prior and its corre-
sponding N offsets. The final predicted lane is represented
as a sequence of points, P = {(xp

1, y
p
1), · · · , (x

p
N , ypN )}.

Each lane prior consists of three parts: front and rear back-
ground probability, length, and starting point coordinate
with the angle between the x-axis of the lane prior.

Global and Local Hybrid Architecture
Motivation. Object detection typically involves both the
classification and localization of objects within an image
or video sequence. Localization expects more local features
to accurately regress the bounding box (Wang et al. 2022),
while a broader global semantic context is preferred for
object classification (Zhuang et al. 2023). Previous studies
have highlighted the significance of integrating both global
and local features in lane detection. LaneATT (Tabelini et al.
2021a) calculates the attention between individual feature
vectors and combines them to gather both global and local
information. However, this method fails to effectively ex-
tract the crucial global semantic context from the feature
map. In our work, we employ a multi-head mechanism that
focuses on global and local features individually.

Lane Prior Head Structure. Inspired by CLRNet (Zheng
et al. 2022), the lane prior head utilizes a feature pyrami-
dal hierarchy (FPN) for cross-layer refinement of the lane
prior. Specifically, the features extracted by the backbone are
transmitted to the FPN neck to derive three levels of feature
maps. FPN output layers are set to 3 based on considera-
tions of inference cost in multiple experiments. Then, we
employ MFA to enhance each layer of features, resulting in
{F0,F1,F2}, all of them with Cp channels. MFA is utilized
to further reinforce the association between features within
a local range at each level of the feature map. The detec-
tor then learns the lane prior in a top-down manner, starting
from the highest layer F2, and acquires the parameters of
the final lane prior (including the start point coordinates x
and y, as well as the angle θ) at the lowest layer F0. Each
final lane prior i will possess a corresponding feature vector
apri
i ∈ RCp , carrying local feature information.

Global Extraction Head Structure. Both depth-
based (Yu et al. 2018) and transformer-based meth-
ods (Vaswani et al. 2017) contribute to exploring global

semantics. However, the ability of depth-based networks
to extract adaptable global features from slender lanes is
limited due to the fixed geometric structure and sample
points in the convolution kernel. Additionally, the substan-
tial computational burden imposed by transformer-based
methods is unsuitable for deployment on autonomous
driving chips. Inspired by Deformable DETR (Zhu et al.
2020), we designed a global extraction head that combines
adaptive sampling points with the capacity to focus on the
essential features of the attention to enable adaptive global
feature extraction from slender objects, i.e., lanes.

Firstly, a 1 × 1 convolution is applied to active fea-
ture map levels generated by the backbone, and the feature
maps are resized to the same size 30 × 30 to save mem-
ory. Let

{
xl
}L
l=1

be the input feature map levels, where
xl ∈ RCg×Hg×Wg . To each layer, we assign K reference
points and define pq ∈ [0, 1]2 as the normalized coordi-
nates of the reference point for each query element q. The
sampling offset of each reference point at each layer can be
computed as follows:

d =
(
Rl

(
pq

)
+△pmlqk

)
(1)

where △pmlqk indexes the sampling offset of the kth sam-
pling point in the lth feature level and the mth attention
head. The function Rl

(
pq

)
re-scales the normalized coor-

dinates pq to the input feature map of the lth level. Subse-
quently, we compute the global features as follows:

Aglob = φ

(
M∑

m=1

Wm

[
L∑

l=1

K∑
k=1

AmlqkW
′
mϕ
(
xl; d

)])
(2)

where W ′
m ∈ RCv×Cg and Wm ∈ RCg×Cv are of learn-

able weights (Cv = Cg/M ). Amlqk denotes the attention
weight of each reference point. The function ϕ(·; ·) de-
notes a bilinear interpolation to calculate the interpolated
feature for each reference point with sampling offset d. φ
denotes a fully connected layer, which is used to activate
the information obtained by sampling. The matrix Aglob =[
aglob
0 , ...,aglob

Np−1

]T
contains the global feature vectors, and

Np denotes the number of lane priors. Since lanes have a
slender structure and occupy only a small image area, the
global extraction head only focuses on a limited number of
reference points around a lane line, as shown in Fig. 3.

Multi-Hierarchy Feature Aggregator
Motivation. Lanes typically have multiple hierarchies of
characteristics. Recent studies (Wang et al. 2018; Li et al.
2023) have shown that the local hierarchy range exhibits
characteristic features, such as edges and colors, that span
several pixels. In contrast, the regional range is identified
using a tens-of-pixel window size. Lane markings may be-
come partially obscured or blurred. To achieve precise po-
sition detection, the lane detector should increase the detec-
tion window size to include adjacent pixels in the case of
partial occlusion (Chen et al. 2021). Conversely, for blurred
lane markings, local features (e.g., lane edges) should be em-
phasized. As a result, we propose a Multi-hierarchy feature
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aggregator (MFA) module to explicitly and efficiently model
feature hierarchies in the regional and local ranges.
MFA structure. The illustration of the MFA structure is
shown in Fig. 4(a). Dilated Convolution (Yu and Koltun
2015) efficiently expands the receptive field while minimiz-
ing the number of parameters. A greater receptive field can
capture more context information and enhance the hierar-
chy of regional range. Let Fn be the input feature map and
the operation is F ′

n = SiLU [D (Fn)], where D is the di-
lated convolution operation and SiLU denotes SiLU activa-
tion function. In order to perceive vital information in the
context, we then feed Fn and F ′

n into the Context-aware At-
tention, shown in Fig. 4(b), which integrates two different re-
ceptive fields obtained using the dilated convolution and typ-
ical convolution, respectively. This integration is achieved
by employing the long-range dependencies method intro-
duced in the non-local (Wang et al. 2018) operation to ef-
fectively exploit both local and regional information. The
formula for Context-aware Attention is as follows:

F ′′
n = ConAttn (θ (Fn (xi)) , ϕ (F ′

n (xj)) , g (F
′
n (xj)))

(3)
where ConAttn indexes that the Context-aware Attention
and the resulting F ′′

n is obtained from the weighted sum of
Fn. Fn (xi) indexes the value at position i of feature map
Fn, and F ′

n (xj) indexes the value at position j of F ′
n. θ, ϕ,

and g denote 1 × 1 convolution operations, which are the
weight matrices to be learned.

Then, Channel Attention (CA) is used to transmit the spa-
tial attention feature map generated by Context-aware Atten-
tion. Inspired by (Hu, Shen, and Sun 2018), we squeeze the
feature map size by max-pooling and average-pooling, then
obtain the weights on each channel of the feature map by a
fully connected layer. The formula is defined as follows:

W c = σ (φ1 (AvgPch (F
′′
n )) + φ2 (MaxPch (F

′′
n ))) (4)

where AvgPch and MaxPch denote max-pooling and
average-pooling, respectively. φ1 and φ2 denote fully con-
nection layers and σ indicates the sigmoid function. The W c

is the channel-wise weights.
Then the channel-wise weights are applied to the feature

map F ′′
n via element-wise multiplication, helping to high-

light the features that contribute most to the representation
of slender objects (Wen, Wang, and Hu 2023), i.e., the lane
lines. Finally, the new features are concatenated with the
original features on the channel axis, and then the dimen-
sion is reduced to obtain F ′′′

n . The final aggregated feature is
computed as:

F ′′′
n = Φ(Fn ⊕ (W c ⊗ F ′′

n )) (5)

where ⊕ indexes the concatenate operation and the symbol
⊗ indexes the element-wise multiplication on each channel.
Φ indexes 1 × 1 convolution to reduce the dimensionality.
The size of F ′′′

n is consistent with Fn, and it reflects the
bonus of 3-D weights to Fn and strengthens the connection
between different receptive fields.

The total loss consists of classification loss and regression
loss:

Ltotal = λclsLcls + λregLreg + λauxLaux (6)

Context-aware 
Attention

F 

  Spatial weights

F 

 Channel 
weights

F

Dilated 
Conv

 Aggregate   g

11

nF nF 

nF 

F 
CA

(a) (b) 

softmax

Figure 4: Illustration of MFA module. (a) MFA has a
straightforward structure and learns the weights of the spa-
tial and channel directions of the feature map to form 3D
weights. (b) Context-aware Attention. The input is two dif-
ferent receptive field feature layers.

where Lcls is the focal loss between predictions and ground
truth. Lreg is the smooth-l1 loss for the start point coordi-
nate, angle, and lane length regression. Laux is the auxil-
iary segmentation loss following (Qin, Wang, and Li 2020),
which is only used in the training phase and has no cost in
inference. The weights λcls, λreg , λaux are determined by
experiments respectively.

Experimental
Datasets and Evaluation Metrics
We conduct experiments on three widely used benchmarks:
CULane (Pan et al. 2018), LLAMAS (Behrendt and Soussan
2019), and TuSimple (TuSimple 2020).
CULane: CULane is a large-scale lane detection dataset
with 88k training images and 34k testing images. The test
images are classified into nine scenarios: crowded, night, no
line, etc. These scenario tests can reflect the robustness of
the model. All the images have 1640× 590 pixels.
LLAMAS: LLAMAS is a large-scale highway lane detec-
tion dataset with over 100k images. Its test set’s label is not
public, so the testing result will be given after uploading re-
sults to their website. For CULane and LLAMAS, We adopt
the F1-measure as an evaluation metric, which is based on
Intersection-over-union (IoU). The F1 is defined as:

F1 =
2× Precision×Recall

Precision+Recall
(7)

where Precision = TP
TP+FP , Recall = TP

TP+FN . A pre-
dicted lane whose IoU is greater than 0.5 is judged as true
positive (TP), otherwise false positive (FP), or false nega-
tive (FN). To better compare the positioning performance of
the algorithms (Zheng et al. 2022), we use the mF1 met-
ric following COCO (Lin et al. 2014). The metric mF1 re-
ports the average F1 score across multiple IoU thresholds,
i.e., IoU threshold = 0.5, 0.55, · · · , 0.95. The mF1 is de-
fined as:

mF1 = (F1@50 + F1@55 + · · ·+ F1@95)/10 (8)
TuSimple: TuSimple is a highway dataset comprising 3, 626
training images and 2, 782 testing images. Its image resolu-
tion is 720× 1280. For the Tusimple dataset, the evaluation
formula is accuracy, which is formulated as follows:

Accuracy =

∑
clip Cclip∑
clip Sclip

(9)
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Method mF1 F1 Normal Crowd Dazzle Shadow No line Arrow Curve Cross Night FPS
SCNN(VGG16) 38.84 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10 7.5
RESA(ResNet-34) - 74.50 91.90 72.40 66.50 72.00 46.30 88.10 68.60 1896 69.80 45.5
RESA(ResNet-50) 47.86 75.30 92.10 73.10 69.20 72.80 47.70 88.30 70.30 1503 69.90 35.7
UFLD(ResNet-18) 38.94 68.40 87.70 66.00 58.40 62.80 40.20 81.00 57.90 1743 62.10 282
UFLD(ResNet-34) - 72.30 90.70 70.20 59.50 69.30 44.40 85.70 69.50 2037 66.70 170
LaneATT(ResNet-122) 51.48 77.02 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81 20
LaneAF(ERFNet) 48.60 75.63 91.10 73.32 69.71 75.81 50.62 86.86 65.02 1844 70.90 24
LaneAF(DLA-34) 50.42 77.41 91.80 75.61 71.78 79.12 51.38 86.88 72.70 1360 73.03 20
CLRNet(ResNet-18) 55.23 79.58 93.30 78.33 73.71 79.66 53.14 90.25 71.56 1321 75.11 119
CLRNet(DLA-34) 55.64 80.47 93.73 79.59 75.30 82.51 54.58 90.62 74.13 1155 75.37 94

HGLNet(ResNet-18) 55.83 80.65 93.48 78.31 75.13 81.75 53.74 89.98 73.27 959 75.06 116
HGLNet(ResNet-34) 56.07 81.23 93.76 78.89 75.29 82.21 54.95 90.43 74.95 1023 75.47 133
HGLNet(ResNet-101) 56.24 81.40 93.74 79.91 75.81 83.34 55.61 90.78 75.65 1240 76.01 58
HGLNet(DLA-34) 56.63 81.83 93.96 79.78 76.20 83.27 55.89 90.83 75.77 1208 76.44 104

Table 1: Comparison with popular methods on the CULane test set. The evaluation metric for all scenarios is F1 score with IoU
threshold=0.5. For the Cross scenario, only false positives are shown. FPS is measured based on the Pytorch framework.

Valid Test
Method mF1 F1 F1 Pre Rec

PolyLaneNet(Eff-B0) 48.82 90.20 88.40 88.87 87.93
LaneATT(ResNet-18) 69.22 94.64 93.46 96.92 90.24
LaneATT(ResNet-34) 69.63 94.96 93.74 96.79 90.88
LaneATT(ResNet-122) 70.80 95.17 93.54 96.82 90.47
HGLNet(ResNet-18) 71.46 96.74 95.99 96.72 95.27
HGLNet(DLA-34) 71.66 97.98 96.20 97.01 95.41

Table 2: Comparison with popular methods on LLAMAS.

where Cclip is the number of correct points and Sclip is the
number of ground truth points of an image. A predicted point
is considered correct only if it is within 20 pixels of the
ground truth point. We also calculate the F1 score for Tusim-
ple, and the predicted lane with accuracy greater than 85%
is considered a true positive.

Implementation Details
We adopt the ResNet (He et al. 2016) and DLA (Yu et al.
2018) as our pre-trained backbones. All input images are re-
sized to 320 × 800 during the training and testing phases.
Similar to (Qu et al. 2021; Zheng et al. 2022), we per-
form data augmentation using methods including random
affine transformation (translation, rotation, and scaling) and
random horizontal flips. In the training process, we use
AdamW (Loshchilov and Hutter 2017) optimizer with an
initial learning rate of 1e-3 and cosine decay learning rate
strategy (Loshchilov and Hutter 2016) with power set to 0.9.
For the lane prior head, we set the number of lane prior pro-
posals Np = 192, proposals’ feature dimension Cp = 64,
and the number of points of each lane prior N = 72. For
the global extraction head, the resized Hg,Wg are 10, 25,
respectively, the channel Cg = 192 and reference points
K = 4. The dilation rate in MHA is set as d = 2. The train-
ing numbers of epochs for CULane, Tusimple, and LLA-
MAS are 15, 80, and 20. Training and testing are both per-
formed on Pytorch with one Tesla-V100 GPU.

Method F1 Acc FP FN
SCNN(VGG16) 95.97 96.53 6.17 1.80
RESA(ResNet-34) 96.93 96.82 3.63 2.48
UFLD(ResNet-34) 88.02 95.86 18.91 3.75
PolyLaneNet(Eff-B0) 90.62 93.36 9.42 9.33
LaneATT(ResNet-122) 96.06 96.10 5.64 2.17
CondLaneNet(ResNet-101) 97.24 96.54 2.01 3.50

HGLNet(ResNet-18) 97.72 96.89 3.38 1.55
HGLNet(ResNet-34) 97.71 96.68 1.93 2.65
HGLNet(ResNet-101) 97.82 96.74 1.81 2.57

Table 3: Comparison with popular methods on TuSimple.

Quantiative Results
Performance on CULane. As illustrated in Table 1, we
show the results of our method on the CULane test set and
compare them with other popular lane detection methods.
Our proposed method achieves state-of-the-art results on
CULane with an 81.83% F1 measure and 104 FPS. Our
HGLNet delivers superior performance and a higher effi-
ciency trade-off than the DLA34 version of CLRNet, achiev-
ing better performance and operating at 104 FPS as opposed
to 94 FPS. Notably, HGLNet has improved detection accu-
racy for several challenging scenarios, e.g., Shadow, No line,
and Night. The ResNet18 version of our method achieves
75.13% F1 on the Dazzle scenario, which is even higher than
getting 2.64 points higher than CLRNet (ResNet101) while
getting 4.41 points higher than CondLaneNet (ResNet18).
In particular, when using the same backbone, our method
improves over CLRNet in mF1 metrics. This indicates our
method regresses lanes with high localization accuracy.

We show the qualitative results for the four scenarios
on the CULane dataset in Fig. 5. In difficult scenes, the
segmentation-based methods, such as UFLD and RESA,
predict the lanes for each pixel, causing the predicted lane to
lose its own characteristics. By effectively extracting global
features, our method predicts smoother curved lines and
does not miss some lane instances. In low-light and crowded
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Figure 5: Visualization of different scenario results of UFLD, RESA, LaneATT, CLRNet, and our method on the CULane test
set: (a) Curve, (b) No line, (c) Crowded, (d) Night.

scenarios, HGLNet predicts the location of the lanes more
accurately. This result shows that our method can enhance
the local features of lanes by linking the feature hierarchy.
Performance on LLAMAS. The result on the LLAMAS is
shown in Table 2. Since the dataset test labels are confiden-
tial, we show both valid and test results to better demon-
strate the performance of the different methods. Our method
achieves a new state-of-the-art on LLAMAS test set with
a 96.20% F1 measure and outperforms PolyLaneNet and
LaneATT by 7.8% F1 and 2.66% F1 respectively, which
is a significant improvement. Meanwhile, our method has
the highest Precision and Recall score and outperforms
LaneATT by a 4.94% Recall score, which indicates that
our model effectively extracts global features to discriminate
lane information. Moreover, our method achieves a 71.66%
mF1 measure in the valid set, which further demonstrates
that our method can better locate the lane position precisely.
Performance on Tusimple. As shown in Table 3, the differ-
ence in performance between the different methods is tiny,
which indicates that the accuracy of the dataset seems to be
already saturated. Despite this, our method achieves a new
start-of-the-art with a 96.89% Accuracy score and surpasses
the previous SOTA with a 0.25% FN score. In the meantime,
different versions of our method all have lower FP and FN,
which firmly demonstrates that HGLNet can validly predict
the presence of lane lines even in complex scenarios.

Ablation Study
To verify the effectiveness of the proposed components, we
report the overall ablation studies in Table 4. All experi-
ments of the ablation study are based on the ResNet-18 ver-
sion of HGLNet. We gradually add MFA and Hybrid archi-
tecture on the ResNet18 baseline and demonstrate the F1
measure for some of the challenge scenarios.
Ablation study on MFA. To further demonstrate the effect
of MHA on lane detection, we performed ablation exper-
iments on MHA. MHA improves the mF1 measure from
52.84% to 54.58% and greatly improves performance in
blurred lane lines such as Shadow and Dazzle scenarios. The

Baseline MFA Hybrid mF1 F1 No line Shadow
✓ 52.84 77.54 50.16 79.30
✓ ✓ 54.58 78.25 52.90 80.64
✓ ✓ ✓ 55.83 80.65 53.74 81.75

Table 4: Effects of each component in our method. Results
are reported on CULane.

results reinforce that expanding the local and regional hierar-
chies of feature maps enables to overcome of lane ambiguity
and improves localization accuracy.
Ablation study on Hybrid architecture. Ablation stud-
ies of Hybrid architecture are shown in Table 4. The pro-
posed hybrid architecture is straightforward and can be eas-
ily transferred to different networks. With the introduction
of the hybrid architecture, the network has been greatly im-
proved, improving the performance in difficult scenarios.
The results demonstrate the advantage of our Hybrid archi-
tecture to sense the global presence of lane lines and accu-
rately regress their locations. Notably, the proposed Hybrid
architecture can (i) efficiently focus global features and lo-
cal features in parallel, (ii) fully integrate the two features to
judge the existence of lane lines and correct their positions.

Conclusion
In this paper, we propose a Hybrid Global-Local Percep-
tion Network (HGLNet) that performs efficient parallel ex-
traction of global context and local feature modeling for
lane detection. Our analysis focuses on the roles played by
globality, locality, and consistency in lane representation. To
address the absence of visual evidence for lane presence,
we propose using a global extraction head to extract global
context from multi-layer feature maps. To more accurately
regress the position of the lane, we propose MFA to enhance
the hierarchy of local feature ranges. Our proposed method
has been demonstrated to improve lane detection accuracy
and outperforms current state-of-the-art methods in multiple
challenging scenarios.
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