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Abstract

Few-shot learning is a challenging task due to the limited
availability of training samples. Recent few-shot learning
studies with meta-learning and simple transfer learning meth-
ods have achieved promising performance. However, the fea-
ture extractor pre-trained with the upstream dataset may ne-
glect the extraction of certain features which could be crucial
for downstream tasks. In this study, inspired by the process
of human learning in few-shot tasks, where humans not only
observe the whole image (‘global view’) but also attend to
various local image regions (‘local view’) for a comprehen-
sive understanding of detailed features, we propose a sim-
ple yet effective few-shot learning method called FeatWalk
which can utilize the complementary nature of global and lo-
cal views, therefore providing an intuitive and effective solu-
tion to the problem of insufficient local information extrac-
tion from the pre-trained feature extractor. Our method can
be easily and flexibly combined with various existing meth-
ods, further enhancing few-shot learning performance. Exten-
sive experiments on multiple benchmark datasets consistently
demonstrate the effectiveness and versatility of our method.
The source code is available at https://github.com/exceefind/
FeatWalk.

Introduction

Convolutional neural networks (CNNs) have demonstrated
excellent performance in various computer vision tasks. Its
success largely relies on adequate training samples to opti-
mize a huge number of model parameters. However, some-
times training samples may be scarce due to certain diffi-
culty or cost in data collection. In such cases, deep neu-
ral networks often suffer from severe overfitting to limited
training samples, leading to noticeable performance degra-
dation. Therefore, how to achieve the superior model per-
formance with very limited training samples, known as few-
shot learning (FSL) (Fei-Fei, Fergus, and Perona 2006; Lake
etal. 2011; Vinyals et al. 2016), has attracted strong research
interest.

Recently, various approaches have been proposed to
tackle the challenges of FSL. One is based on meta-
learning (Finn, Abbeel, and Levine 2017; Sung et al. 2018;
Vinyals et al. 2016), which simulates numerous similar FSL
scenarios using an upstream dataset and trains the model to

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1019

King crab

Golden retriever

Origin image Global view Global-Local Fusion
Figure 1: Two exemplar visual attentions by a representative
few-shot learning method Good-Embed (Tian et al. 2020)
(Middle) and our method (Right). Our method can more ef-
fectively learn to leverage local features of image patches
(shown in dashed boxes) that are not well captured in the
image-level features, thereby obtaining more comprehensive
features.

enhance its capability in learning from limited training data,
and then fine-tune the model with a small amount of data
to quickly adapt to the target downstream task (Jamal and
Qi 2019; Lee et al. 2019; Nichol, Achiam, and Schulman
2018). Built on meta-learning of a feature extractor, metric-
based methods can be employed to estimate the similarity
between training and test samples for FSL (Allen et al. 2019;
Li et al. 2019a; Snell, Swersky, and Zemel 2017). Meta-
learning approach often requires extensive episodic train-
ing to accomplish FSL tasks. From this perspective, transfer
learning approach is more desirable as simple pre-trained
models can be directly applied to a wider range of target
tasks. For instance, recent studies (Tian et al. 2020; Xie et al.
2022) have improved transfer learning by introducing self-
distillation and enhanced embeddings, achieving significant
performance gains in FSL.

In meta-learning or transfer learning, directly applying
models to few-shot learning tasks may encounter some po-
tential challenges. In learning upstream tasks, models may
prioritize certain discriminative features and underestimate
the importance of some other features. However, these ne-
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glected features could be equally or even more crucial for
downstream tasks. As shown in Figure 1 (Middle column),
when the feature extractor extracts features from only the
whole image (‘global view’), the model attends to focus on
partial features and may overlook other essential informa-
tion related to the current downstream task.

Inspired by the process of human learning in few-shot
tasks, where humans not only observe the whole image but
also attend to various local image regions (‘local view’) for
comprehensive understanding of detailed features, we pro-
pose a simple yet effective few-shot learning method that
involves sampling local views and extracting potentially im-
portant local features, thus assisting the model in gaining a
more comprehensive understanding of the objects in images
(Figure 1, Right column). As illustrated in Figure 2, features
from multiple local views and the global view can be adap-
tively fused for each class with the proposed FeatWalk mod-
ule (see Method section for details), such that both global
features and class-relevant local features can be effectively
learned from the very limited training samples in the down-
stream FSL task.

Our method can be flexibly combined with vari-
ous meta-learning and pre-training FSL methods, with-
out requiring changes in the meta-training or pre-training
stage. With our method, new state-of-the-art performance
was achieved on the standard FLS benchmark datasets
minilmageNet (Vinyals et al. 2016), tieredlmageNet (Ravi
and Larochelle 2017), and CUB (Wah et al. 2011). In sum-
mary, the main contributions are as follows:

* We propose a simple yet effective FSL method that lever-
ages local views and the FeatWalk module to obtain more
comprehensive representations.

e The FeatWalk module demonstrates high flexibility,
seamlessly integrating with existing FSL methods.

» Extensive experiments on benchmarks consistently vali-
date the efficacy and adaptability of our method.

Related Works

In this section, recent studies relevant to few-shot classifi-
cation are summarized, although few-shot learning has been
applied to multiple types of tasks.

As one of the strategies in FSL, meta-learning aims to
construct episodic training to adapt deep neural networks,
particularly the feature extractor, for effective adaptation to
downstream few-shot tasks (Finn, Abbeel, and Levine 2017,
Li et al. 2019a; Snell, Swersky, and Zemel 2017; Vinyals
et al. 2016). Most meta-learning methods are developed and
evaluated under the same n-way m-shot setting, where the
model is trained to predict n classes, each with only m train-
ing samples. The model is optimized through tasks that sim-
ulate downstream few-shot scenarios, enabling the feature
extractor to rapidly learn from each of the n new classes.
In the evaluation of meta-learning methods, after training
the feature extractor on the upstream dataset, it can be fine-
tuned (i.e., updated) to fast adapt to any n new classes (Finn,
Abbeel, and Levine 2017; Jamal and Qi 2019; Lee and Choi
2018; Li et al. 2017; Rusu et al. 2019). Alternatively, the
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Figure 2: FeatWalk involves combining the global-view fea-
ture with multiple local-view features through weighted
summation for each class. In the feature space, it can be seen
as walking from the global feature (solid circles) towards a
set of local representations (squares) with varying steps by
presuming the local views are from a specific class (one pro-
totype per class). As a result, fused features (dashed circles)
for the corresponding classes are obtained.

feature extractor can be completely fixed, and then a clas-
sifier is trained on the downstream task data for any n new
classes, or classification can be performed based on metric-
based methods (Hou et al. 2019; Li et al. 2019b; Ye et al.
2020a; Snell, Swersky, and Zemel 2017; Sung et al. 2018;
Vinyals et al. 2016). However, meta-learning methods heav-
ily rely on extensive episodic training.

Compared to various meta-learning strategies, the simple
transfer learning strategy has been recently shown to achieve
competitive performance on few-shot learning tasks (Chen
et al. 2019; Dhillon et al. 2020; Tian et al. 2020; Xie
et al. 2022). These methods don’t require complicated meta-
training but simple pre-training on the upstream dataset, i.e.,
it just needs to train a simple classifier responsible for the
prediction of all classes on the upstream dataset, and then
the pre-trained feature extractor is used for the downstream
classification task. Most meta-training and simple transfer
learning methods just learn image-level representation, and
therefore certain local features crucial to downstream tasks
may be filtered out if such local features are not impor-
tant for the upstream task. To address this issue, some re-
cently proposed studies (Wertheimer and Hariharan 2019;
Xie et al. 2022) started to explore the way of effectively ex-
tracting local input features for FSL, e.g., by fully utilizing
feature maps (Li et al. 2019a), aligning the feature distribu-
tion of both global and local views (Zhou et al. 2021), or
random sampling of local features for better similarity mea-
sure (Zhang et al. 2022), etc.

Following the recent trend of utilizing local features for
FSL (Hao et al. 2022; Li et al. 2020), this study provides
one simple yet effective method to help the model more ef-
fectively learn to extract helpful local features with few-shot
training samples for any downstream task. Unlike methods
that rely on complex local similarity calculations, i.e. Deep-
EMD (Zhang et al. 2022), our approach simply fuses local
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Figure 3: Overview of our method. A well-performing feature extractor backbone (Grey) is inherited from pre-training or meta-
training. The fixed feature extractor is used to extract a feature vector respectively from the global view and each of the multiple
local views, with the global view corresponding to the whole image and each local view corresponding to randomly sampled
image patches. These feature vectors are then fed to the FeatWalk module (Lower right) to obtain a fused feature representation
for each of the n classes. Each fused feature representation is then fed to the special classifier head to obtain the corresponding
logit for final probability prediction. Only the classifier head (after the FeatWalk module) is learnable.

features with global features, making it more effective and
straightforward to improve performance without altering the
meta-learning and pre-training processes.

Method

In this section, we first introduce the potential issues in fea-
ture extraction from only the global view in few-shot learn-
ing and the motivation behind FeatWalk which aims to ef-
fectively alleviate this problem by leveraging local views.
Then, we analyze how to extract and fuse global and local
information for better few-shot learning. The overview of
our method is demonstrated in Figure 3.

Motivation

Through sufficient episodic training in meta-learning or pre-
training on large datasets, we can obtain feature extractors
with exceptional representation capabilities. However, when
we apply these feature extractors to few-shot learning tasks,
the scarcity of samples may hinder the model from fully
grasping task-relevant information. In the context of few-
shot learning, humans tend to shift their attention to other
local details or surrounding areas after initial global obser-
vation of the object. This cognitive process allows humans
to discover potentially useful information for the current task
more effectively. Similar to this process, by leveraging local
perspectives and class prototypes to extract class-related in-
formation and excluding irrelevant details like backgrounds,
our aim is to reveal all the potentially useful information
within the limited training samples, enabling the model to
make wiser decisions based on a comprehensive understand-
ing of classes.

As depicted in Figure 1, when the feature extractor only
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encounters global view of images, the model may prior-
itize weakly related information to the current few-shot
task. Consequently, without further correction from addi-
tional samples, the model might overfit to minor or irrel-
evant details, or even overlook crucial task-specific infor-
mation. However, by additionally providing local regions
as part of the input to the model, it gains a powerful abil-
ity to explore essential information that cannot be extracted
from the global view alone. Hence, we believe that local
views can significantly complement global views, resulting
in more comprehensive and robust representations.

FeatWalk

Suppose a feature extractor f(-) with strong representation
capability has been obtained through certain meta-learning
or pre-training methods, and fixed in the downstream n-way-
m-shot learning task. For any training (or test) image sample
x, we randomly sample J image patches to represent the
local views. Denote by z9 the global representation of the
sample x, and by zé- its j-th local representation, i.e.,

Zg:f(x)7
z = f(x;),

where X; is the j-th local view sampled from image x.
With the sampled local views, we obtain multiple local
representations from each image sample. However, some of
these local views may only contain irrelevant information,
such as that from background regions. For the classifier not
to learn from such irrelevant local views, it would be desired
if the importance of each local view could be appropriately
estimated for class prediction of the image sample. For m
training samples of one class, if one local view from one of

ey
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the m training samples is class-related (i.e., containing cer-
tain representative features of the class), there should exist
similar local views in the other (m — 1) training samples.
Otherwise, if one local view is from a background region
that is irrelevant to the class of the image sample, similar
local views would less likely appear in the other (m — 1)
training samples of the same class and even may appear
in training samples of other classes. Suppose there exists a
prototype for each class that possesses more comprehensive
and representative information of the associated class, and
denote the prototype representation of the k-th class by ci
in the feature space. Then, the importance w; . of the lo-
cal view x; for the k-th class can be estimated by the nor-
malized similarity between the representation zlj of the local
view and the prototype representation cy, i.e.,

eT»s(zl]-7ck)

i s ) ®
j=1

Wik =

where s(-, -) denotes the similarity between two representa-
tions. Here we use cosine similarity, although other similar-
ity measurements could be used as well. 7 is the temperature
parameter.

From Equation (3), it can be seen that local views con-
taining class-relevant information of the k-th class as in
the associated prototype will have higher importance weight
wj,k, while local views containing class-irrelevant informa-
tion will have lower weight. Then, if the sample x belongs
to the k-th class, the fused representation zj;, from the global
view and weighted multiple local views as follows (Equa-
tion 4, with a being the fusion coefficient) will contain more
prominent features of the class compared to the only global
representation z9, considering that the multiple local views
overall contribute class-relevant features to the fused rep-
resentation because class-irrelevant local representation is
largely suppressed by their smaller weights,

J
zk:azg—&—l—ag wj,k~z§-.
j=1

“

In contrast, if the sample x is not from the k-th class, all
local views would be more likely dissimilar to the prototype
of the k-th class, and therefore the importance weights of
all local views would be largely similar to each other. In this
case, the fused representation z; would probably not contain
more features of the k-th class compared to the only global
representation z9. Indeed, the fusion process (Equation 4)
is equivalent to walking from the global representation z9
towards a set of local representations with varying steps by
presuming the local views are from a specific (k-th) class.
We refer to this fusion process as FeatWalk.

For a n-way-m-shot learning task, any sample x will re-
sult in n fused feature vectors {zi,2o,...,2,} after the
FeatWalk module. To make full use of all the n fused repre-
sentations, a special classifier head is designed here. Specifi-
cally, let wy, and by, respectively denote the learnable weight
vector and the bias parameter associated with the k-th class
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in the classifier head, then the logit u for the k-th class is
obtained by

(&)

and the logits {uy,us,...,u,} are finally sent to the soft-
max operator to obtain the probability output of the classi-
fier. By default, the classifier head is trained using the tradi-
tional cross-entropy loss.

Note that the FeatWalk module requires a prototype con-
taining representative information for each class. In this
study, prototype representation c, for the k-th class is ini-
tially obtained from the global representations of all the m
trammg samples coming from the same class, i.e., c; =
o er p, 27, and then iteratively updated based on the

fused representatlons by ¢, = % er Dy, Zks where D, is
the collection of all the m training samples for the k-th class.
The iterative updating of prototypes and the classifier head
are performed together during training, and the updated pro-
totypes from the last training iteration are saved for model
inference. During inference, for any test image, FeatWalk is
performed with the fixed prototypes, followed by the special
classifier head to obtain the final output.

U = Wi, - Z + by,

Experiment
Experiment Setup

Datasets: Empirical evaluations and relevant analysis were
performed on the following three widely used few-shot clas-
sification datasets.

* MiniImageNet (Vinyals et al. 2016) is a subset of the
ILSVRC-12 dataset commonly used for few-shot learn-
ing, consisting of 100 classes with 600 samples per class.
We used the same split as in previous studies (Ravi and
Larochelle 2017) , with 64, 16, and 20 classes for train-
ing, validation, and testing, respectively.

» TieredIlmageNet (Ren et al. 2018) is a larger dataset
based on the ILSVRC-12 dataset. It consists of 34 super-
classes, each containing 20 sub-classes. Following the
original work (Ren et al. 2018), we used 351, 97, and
160 classes for training, validation, and test, respectively.

* CUB (Wah et al. 2011) is a fine-grained few-shot bench-
mark that includes 200 classes of birds. Following pre-
vious work (Chen et al. 2019), we used 100, 50, and 50
classes for training, validation, and test, respectively.

Network Architectures: We employed various deep net-
work structures for extensive evaluations. Specifically, we
used two different backbones, ResNet-12 (Tian et al. 2020;
Xie et al. 2022) and ResNet-18 (Sung et al. 2018), to enable
a fair comparison with previous methods. The input resolu-
tion of images for ResNet-12 was set to 84 x84 pixels, while
for ResNet-18, it was set to 224 x 224 pixels.

Implementation Details: Our method considers the Feat-
Walk module as a plug-in component, making it easily
applied to current few-shot learning approaches. In our
method, the training of the feature extractor is consistent
with the meta-learning or pre-training process of the cor-
responding method, e.g., ProtoNet (Snell, Swersky, and
Zemel 2017) or GoodEmbed (Tian et al. 2020). Similar to
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minilmageNet 5-Way tieredIlmageNet 5-Way
Method Backbone 1-shot 5-shot 1-shot 5-shot
DN4 (Li et al. 2019a) ResNet-12 64.73 £0.44 79.85+£0.31 - -
BML (Zhou et al. 2021) ResNet-12 67.04 £0.63 83.63 +0.29 68.99 £+ 0.50 85.49 £ 0.34
MCL (Liu et al. 2022) ResNet-12 67.51+£0.20 83.99 +0.20 72.01 £0.20 86.02 +0.20
DeepEMD v2 (Zhang et al. 2022) ResNet-12 68.77 £0.29 84.13 £0.53 74.29 £0.32 87.08 £ 0.60
CovNet (Wertheimer and Hariharan 2019) ResNet-12 64.59 £ 0.45 82.02 £0.29 69.75 £ 0.52 84.21 +£0.26
Baseline++ (Dhillon et al. 2020) ResNet-12 60.56 + 0.45 77.40 +0.34 - -
ProtoNet (Snell, Swersky, and Zemel 2017) ResNet-12 62.11 +0.44 80.77 £ 0.30 68.31 +0.51 83.85 +0.36
Good-Embed (Tian et al. 2020) ResNet-12 64.82 + 0.60 82.14 +0.43 71.52 £0.69 86.03 £ 0.58
DeepBDC (Xie et al. 2022) ResNet-12 67.83 £0.43 85.45+0.29 73.82 £0.47 89.00 + 0.30
FGM (Cheng et al. 2023) ResNet-12 69.14 £ 0.80 86.01 £ 0.62 73.21 £0.88 87.21 £0.61
RENet-ventral (Dong, Zhai, and Zha 2023) ResNet-12 69.71 £ 0.45 84.23 +0.29 73.94 +£0.48 87.15+£0.35
Ours ResNet-12 70.21 £+ 0.44 87.38 £ 0.27 75.25 £ 0.48 89.92 + 0.29

Table 1: Comparison with recently proposed methods on minilmageNet and fieredlmageNet datasets..

CUB 5-Way

Method Backbone 1-shot 5-shot
FEAT (Ye et al. 2020b) Conv4 68.87 £0.22 82.90 £ 0.15
ProtoNet (Snell, Swersky, and Zemel 2017) Conv4 64.42 +0.48 81.82 +0.35
DeepEMD v2 (Zhang et al. 2022) ResNet-12 79.27+0.29 89.80 £ 0.51
FGM (Cheng et al. 2023) ResNet-12 80.77 £ 0.90 92.01 £0.71
RENet-ventral (Dong, Zhai, and Zha 2023) ResNet-12 83.33+0.40 92.97 +0.24
Baseline++ (Dhillon et al. 2020) ResNet-18 67.02 £0.90 83.58 £ 0.54
ADM (Li et al. 2020) ResNet-18 79.31+£0.43 90.69 £ 0.21
CovNet (Wertheimer and Hariharan 2019) ResNet-18 80.76 £ 0.42 92.05 +0.20
FRN (Wertheimer, Tang, and Hariharan 2021) ResNet-18 82.55+0.19 92.98 £0.10
Good-Embed (Tian et al. 2020) ResNet-18 77.92 £0.46 89.94 +0.26
DeepBDC (Xie et al. 2022) ResNet-18 84.01 £0.42 94.02 £ 0.24
Ours ResNet-18 85.67 £ 0.38 95.44 £ 0.16

Table 2: Comparison with the-state-of-art methods on CUB.

these previous methods, we use the training set as the base
set for meta-learning or pre-training the backbone. By de-
fault, we adopt the state-of-the-art few-shot learning method
DeepBDC (Xie et al. 2022) for pre-training the feature ex-
tractor and then fix the feature extractor for subsequent FSL
evaluation. During the training of the classifier head, we use
the AdamW optimizer for simple and fast adaptation learn-
ing, with the learning rate of le-3, and optimize for 100
epochs. For each image, we randomly select 12 local views.
Each local view is a 20% sized patch of the image. The tem-
perature parameter 7 is set to 32, and « is set to 0.5. To
compare our method with basic and strong baseline meth-
ods, we conduct 5-way 1-shot and 5-way 5-shot classifica-
tion tasks on the FSL test set, referred to as the novel set
of meta-testing. For each FSL episode, we randomly select
five categories (i.e., 5-way) from the test set and then, for the
selected five categories, randomly choose one image (i.e., 1-
shot) or five images (i.e., 5-shot) to optimize the classifier
head of the framework in our method and then evaluate the
classification performance using 15 query images for each
category. Finally, similar to previous FSL studies (Xie et al.
2022), we conduct 2000 episodes for each run and report the
average results over 5 runs with 95% confidence interval.
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Comparison With State-of-the-Art Methods

General Object Recognition: As shown in Table 1, on
minilmageNet, our method achieves new state-of-the-art
performance under both 5-way 1-shot and 5-shot settings.
It outperforms the best baseline RENet-ventral, by 0.50%
under the 5-way 1-shot setting and also surpasses FGM by
1.37% under the 5-way 5-shot setting. On tieredlmageNet,
our method outperforms significantly the state-of-the-art
performance under 5-way 1-shot and 5-shot settings, with
accuracy improved by 0.96% and 0.92%, respectively.
Fine-Grained Categorization: Following the previous
studies (Afrasiyabi, Lalonde, and Gagné 2020; Xie et al.
2022), we also evaluated our method on the fine-grained
categorization task based on CUB dataset. Again, the fea-
ture extractor pre-trained by the strong baseline DeepBDC
was used in our method. Table 2 reveals that our method
achieves the best performance under both 5-way 1-shot and
5-shot settings, with improvements of 1.66% and 1.42%, re-
spectively. This further confirms the effectiveness of the pro-
posed FeatWalk as a simple transfer learning strategy in en-
hancing few-shot learning performance.

Cross-Domain Evaluation: To further confirm the supe-
rior transfer learning ability of our method, one cross-
domain experiment was performed, i.e., training the fea-
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Figure 4: Performance comparison between each baseline (Blue) and its combination with our method (Red) under 5-way 1-
shot and 5-shot settings on minilmageNet and CUB.

Method Backbone 5-shot
Baseline++ ResNet-18 62.04 £0.76
BML ResNet-12 72.42 £ 0.54
FRN ResNet-12 77.09 £0.15
ProtoNet ResNet-12 67.19 £ 0.38
Good-Embed ResNet-12 6743 +0.44
CovNet ResNet-12 70.55 £ 0.43
DeepBDC ResNet-12 80.16 £ 0.38
Ours ResNet-12 83.60 = 0.31
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Table 3: Performance comparison on cross-domain classifi-
cation. For each method, minilmageNet was used to train the
feature extractor, and CUB was used for FSL evaluation.

ture extractor using the general objection recognition dataset
minilmageNet and then transferring it to the fine-grained
classification task with the CUB dataset. The cross-domain
classification performance of all the baselines are directly
from their original studies. As shown in Table 3, our method
achieved the best cross-domain FSL performance, outper-
forming the best baseline DeepBDC by a large margin
(83.60% vs. 80.16%). The better performance of our method
is not limited to the specific DeepBDC-based feature extrac-
tor pretraining. When using the feature extractor from the
Good-Embed method, our method resulted in even more sig-
nificant improvement (from 67.43% to 71.45%, not shown
in the table) in the cross-domain classification task.

Flexible Combinations With FSL Methods

Our method as a plug-in strategy can be flexibly com-
bined with existing FSL methods. For fair comparison, only
the FSL methods without changing the feature extractor of
meta-training and pre-training are adopted, including Pro-
toNet, Good Embed, and DeepBDC. In this way, our method
respectively used the feature extractor trained from each
baseline and was compared with the corresponding baseline
on both minilmageNet and CUB. As Figure 4 demonstrates,
introducing FeatWalk module into these method clearly im-
proves the FSL performance compared to the correspond-
ing baseline under both 5-way 1-shot and 5-shot settings.
For example, when introducing FeatWalk module into the
Good-Embed method, its performance was improved from
64.82% to 67.50% and from 82.14% to 84.25% respec-
tively under the 5-way 1-shot and 5-way 5-shot settings on
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Figure 5: Sensitivity study of local view number. Blue
line: performance of the corresponding strong baseline
DeepBDC.
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Figure 6: Sensitivity study of hyperparameter «.. Blue line:
performance of the strong baseline DeepBDC.

minilmageNet. Note that our method is not limited to these
three FSL methods. The feature extractor trained by any FSL
method can be used in our method to potentially further im-
prove the FSL performance.

Ablation Study and Sensitivity Analysis

As a plug-in strategy, our method primarily consists of ran-
dom local sampling and FeatWalk operations. To investi-
gate the impacts of these two operations, we conducted an
ablation study to analyze their effects and assess their im-
portance within the proposed method. Furthermore, we per-
formed comparative analyses on the similarity metrics used
in FeatWalk and the selection of the final classifier head. Fi-
nally, we evaluated the stability of our method with respect
to the number of local view samples and the fusion coeffi-
cient between global and local representations, represented
by the hyperparameter . Further analyses about the effect
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minilmageNet 5-Way CUB 5-Way

1-shot 5-shot 1-shot 5-shot
FC 67.80 £ 0.45 85.21 £0.28 83.97 £0.39 94.40 £ 0.17
FC with Data Aug 68.11 £0.43 85.04 £0.28 83.04 £0.40 93.68 £0.18
FeatWalk with same view weights 69.66 + 0.45 86.70 £ 0.27 84.91 +0.38 94.92 £0.17
FeatWalk (proposed) 70.21 + 0.44 87.38 + 0.27 85.67 + 0.38 95.44 + 0.16

Table 4: Ablation study on local views and FeatWalk module with 5-way 1-shot and 5-shot on minilmageNet and CUB.

. Measure minilmageNet 5-Way CUB 5-Way
Classifier head Eudist Cosine 1 shot 5 shot 1 shot 5 shot
LR v 69.78+0.44 86.96+0.27 84.81+0.40 94.61+0.18
v 70.10+0.44 87.32+0.27 85.43+0.39 95.20+0.17
FC v 70.09+0.44 87.21+0.27 85.84+0.38 95.51+0.16
v 70.21+0.44 87.38+0.27 85.67+0.38 95.44+0.16

Table 5: Performance from different classifier heads and similarity measurements under 5-way 1-shot and 5-shot settings on

minilmageNet and CUB.
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Figure 7: Visualization of features before and after applying the FeatWalk operation on minilmageNet and CUB.

of the size of local view and different ways of local view
acquisition are presented in Supplementary Sections A and
B.

Ablation Study on FeatWalk: As shown in Table 4, the
baseline method, which excludes FeatWalk module and the
branch of local sampling, yields performance consistent
with the reported results in the original paper (Xie et al.
2022) with fully connected layer as the classifier head (de-
noted as ‘FC’ in the first row). To certain extent, the random
local sampling shares a similar concept to data augmenta-
tion. To explore whether data augmentation could improve
performance, we applied data augmentation to train the clas-
sifier head with a single branch, and comparable results (sec-
ond row) to the baseline were obtained, indicating the inef-
fectiveness of data augmentation. We further analyzed the
effect of weights (w; 1) for different local views in reducing
the impact of irrelevant information in FeatWalk module. As
Table 4 (third row) shows, when applying FeatWalk module
with all local views having equal importance, the model per-
forms better than the baseline, but it does not perform as
well as the proposed method (last row). These results ver-
ify the necessity of estimating the importance of different
local views and their correlation and complementarity with
the global view.

Exploration of Similarity Measure and Classifier Head:
In FeatWalk module, we utilized cosine similarity to ana-
lyze the importance of local representations and employed
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the linear transformation as in the traditional fully con-
nected (FC) layers for the classifier head. To investigate
their effects, we introduced Euclidean distance as an alter-
native similarity measure and explored the application of
the commonly used logistic regression (LR) based classifier
head (Tian et al. 2020). As shown in Table 5, the LR classi-
fier head performs slightly less effectively than the FC-based
head under the 5-way 1-shot and 5-shot settings on both
minilmageNet and CUB . Their performances are relatively
close in terms of the two different similarity measurements.

Sensitivity Studies of Local View Numbers and FeatWalk
Hyperparameters: To examine the sensitivity of the num-
ber of local view samples to the performance of our method,
we gradually increased the sampling number in the 5-way
1-shot and 5-shot tasks on minilmageNet . As depicted in
Figure 5, the performance is quite stable when the number
varies in a large range ([12,32]), supporting that the pro-
posed FeatWalk module can well utilize the class-relevant
local views to help improve the few-shot learning perfor-
mance when enough number of local views are available.
Moreover, we conducted a sensitivity analysis on the fu-
sion coefficient between global and local representations,
represented by the hyperparameter «.. Figure 6 illustrates
that the model achieves the best performance within the
range [0.4, 0.6] for o, and the proposed method consistently
achieves improved performance over the baseline in a wide
range of « € [0.1,0.9], confirming that the proposed method
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is insensitive to the choice of the hyperparameter c.

Visualization of Features After FeatWalk

Since our method achieves improved performance by intro-
ducing FeatWalk module, it should result in more effective
representations. To better understand the changes in feature
distributions before and after FeatWalk, we utilize the t-
SNE technique to visualize their representations in the two-
dimensional space. Figure 7 presents the feature distribu-
tions before and after applying FeatWalk to 10 new classes
on both minilmageNet and CUB. As observed from the visu-
alizations, the features after applying FeatWalk within each
class become more tightly clustered, and the class bound-
aries become clearer. Such enhanced separability between
classes facilitates the following classifier head in improv-
ing classification, as confirmed by the extensive experimen-
tal evaluations in this study.

Conclusion

In this study, we proposed a simple yet effective FeatWalk
module to improve the performance of few-shot learning.
This module enables the feature extractor to effectively fo-
cus on extracting relevant local views for the current task.
By combining local views with the global view based on
the FeatWalk, our method can extract more comprehensive
visual representations and therefore enhance the discrimina-
tive ability of the classifier. Our method demonstrates supe-
rior performance across multiple benchmark datasets when
compared to various few-shot learning approaches. Notably,
our method exhibits broad and robust applicability as it can
be directly applied to the current few-shot tasks without al-
tering the upstream meta-learning or pre-training process.
The proposed method is expected to work in other data
modalities such as medical images and text data, which will
be investigated in future work.
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