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Abstract

3D perception is a critical problem in autonomous driving.
Recently, the Bird’s-Eye-View (BEV) approach has attracted
extensive attention, due to low-cost deployment and desirable
vision detection capacity. However, the existing models ig-
nore a realistic scenario during the driving procedure, i.e., one
or more view cameras may be failed, which largely deterio-
rates the performance. To tackle this problem, we propose
a generic Masked BEV (M-BEV) perception framework,
which can effectively improve robustness to this challeng-
ing scenario, by random masking and reconstructing cam-
era views in the end-to-end training. More specifically, we
develop a novel Masked View Reconstruction (MVR) mod-
ule for M-BEV. It mimics various missing cases by ran-
domly masking features of different camera views, then lever-
ages the original features of these views as self-supervision,
and reconstructs the masked ones with the distinct spatio-
temporal context across views. Via such a plug-and-play
MVR, our M-BEV is capable of learning the missing views
from the resting ones, and thus well generalized for robust
view recovery and accurate perception in the testing. We per-
form extensive experiments on the popular NuScenes bench-
mark, where our framework can significantly boost 3D per-
ception performance of the state-of-the-art models on various
missing view cases, e.g., for the absence of back view, our
M-BEV promotes the PETRv2 model with 10.3% mAP gain.

Introduction
3D perception of surrounding scenes is the key for au-
tonomous driving. Compared to LiDAR-based methods
(Mohapatra et al. 2021; Barrera et al. 2020; Ma et al. 2022a;
Zhou et al. 2020), camera-based approaches has attracted in-
creasing attention(Li et al. 2022d; Philion and Fidler 2020;
Roddick, Kendall, and Cipolla 2018; Wang et al. 2019)
since they are easy and cheap for deployment. In particular,
the Bird’s-Eye-View (BEV) based methods have been high-
lighted by learning the holistic representation from multi-
camera images (Roddick, Kendall, and Cipolla 2018; Wang
et al. 2019; Philion and Fidler 2020; Li et al. 2022d,c, 2023;
Wang et al. 2022b; Liu et al. 2022a; Chen et al. 2023). Basi-
cally, these approaches integrate 2D image information from

*Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

E D

E DRVM MVR

E DMVR

E D

Self-Supervision for Masked Views

Feature Copy for Rest Views

Camera Failure

Camera Failure
Tr

ai
n

Te
st

Tr
ai

n
Te

st

BEV-Based Paradigm

Our Masked BEV (M-BEV) Paradigm

SOTA Comparison

16

26

36

46

NDS mAP

PETRv2 Our MVR

Missing back view

Figure 1: Motivation. In cases where cameras crash, the ex-
isting BEV-based approaches would be largely deteriorated.
We design a self-supervised Masked View Reconstruction
(MVR) module which can significantly boost the state-of-
the-art models for various missing camera cases. E: Encoder,
D: Decoder, RVM: Random View Masking.

six distinct views to encode a unified 3D representation of
visible scenes, and then decode it to accurately capture the
size and location of objects in the surrounding. However,
these approaches work on the ideal case in which six cam-
eras always work well, while one or more cameras may be
failed or broken down during the realistic driving procedure.
In such an emergency, the existing BEV-based approaches
would be largely deteriorated, due to the lack of the corre-
sponding visual clues from the missing views. For example,
the NDS and mAP of PETRv2 (Liu et al. 2023) have a de-
crease of 12.4% and 18.0% respectively when the back cam-
era view is missing, which severely affects the safety and
reliability of autonomous driving system.

To alleviate this problem, we propose a concise Masked
BEV (M-BEV) perception framework, which can effectively
boost model’s robustness to missing camera views, by ran-
domly masking and recovering view features in the end-
to-end training procedure. Specifically, we design a self-
supervised Masked View Reconstruction (MVR) module in
our M-BEV, we randomly mask the features of different
camera views in the training epochs, then leverage the fea-
tures of the rest views as spatio-temporal context, and re-
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cover the features of the masked views as their original fea-
tures. Via such learning, MVR masters the capacity of re-
constructing the missing views from the rest views, and thus
can effectively tackle the camera failure cases in the testing.

Note that, there are two critical differences between our
MVR and MAE (He et al. 2022). First, the masking goal and
design are different. MAE aims at learning scalable image
representation in general. Hence, it masks several patches
of each image and reconstructs them from the rest patches.
Alternatively, our MVR aims at tackling the missing cam-
era cases in BEV-based driving. Hence, it masks several im-
ages of six camera views and reconstructs them from the rest
images. More importantly, besides using all the rest images
for reconstruction, we also propose to exploit the distinct
contexts in the surrounding images for reconstruction, based
on spatio-temporal overlaps across BEV cameras. Second,
the training and testing manners are different. In the training
stage, MAE uses the same proportion for masking patches
of each input image in all the epochs, while our MVR uses
different proportion for masking images of six views in the
different epochs, in order to contain various missing camera
views which can possibly happen. In the testing stage, MAE
mainly uses encoder as general feature extractor and ignores
the decoder. Alternatively, our MVR uses decoder to recon-
struct the missing camera views and leverages the recovered
views for 3D perception in the BEV-based driving.

Finally, we implement our general M-BEV framework on
two state-of-the-art BEV-based models, i.e., PETRv2 (Liu
et al. 2023), and BEVStereo (Li et al. 2023) for 3D ob-
ject detection in autonomous driving, since they maintain
a preferable accuracy-efficiency balance. To verify the ef-
fectiveness, we perform extensive experiments on various
missing camera cases, on the popular NuScenes(Caesar et al.
2020) dataset. The results show that, M-BEV framework
significantly boosts the performance of the SOTA models
for various missing camera emergencies. For example, for
the absence of back view, M-BEV helps to boost PETRv2
baseline with 10.3% mAP improvement, while only takes
extra 0.6ms for once response.

Related Work
Multi-View 3D Object Detection. 3D object detection is
one of the key technologies for autonomous driving, which
takes LiDAR (Zhou and Tuzel 2018; Ma et al. 2022c; Li
et al. 2021; Lang et al. 2019), camera (Philion and Fidler
2020; Huang et al. 2021; Liu et al. 2022a; Wang et al. 2021),
or multi-modal input data (Liu et al. 2022b; Xu et al. 2021;
Ma et al. 2022b; Yin, Zhou, and Krähenbühl 2021) to predict
the location, size, velocity, and category of the targets in real
3D space. Cameras-based methods (Li et al. 2022d; Liu et al.
2023; Ma et al. 2023b; Li et al. 2022c, 2023) stand out, due
to the low cost and easy access to visual data from six cam-
era views. The key problem of these works is the conversion
between 2D and 3D space, and BEV representation works as
a suitable bond. OFT(Roddick, Kendall, and Cipolla 2018)
first makes a direct transformation from 2D features to 3D
BEV features for monocular 3D object detection. The fol-
lowing works expand this style, by learnable 3D object
queries (Wang et al. 2022b), 3D position-aware embedding

(Liu et al. 2022a, 2023), temporal information integration
(Li et al. 2022d; Ma et al. 2023a; Huang et al. 2021; Huang
and Huang 2022; Liu et al. 2023), etc. Additionally, depth
supervision is another main direction for 3D performance
enhancement (Li et al. 2022c; Chen et al. 2022; Huang et al.
2022; Li et al. 2023). However, all of these existing BEV-
based methods rely on the high-quality camera inputs in the
ideal case. When the camera views fails in practice, their
performance declines severely. RoboBEV (Zhu et al. 2023)
establishes a comprehensive driving benchmark under vari-
ous natural and adversarial corruptions. MetaBEV(Ge et al.
2023) solves the problem by cross-modal data fusion with
both Camera and LiDAR. As far as we know, our M-BEV
is the first camera-only solution for such view failure with
great robustness.
Masked Visual Modeling. Masked modeling pipeline was
first used in NLP (Radford et al. 2019). The masking
operation is treated as a noise type and processed by
traditional denoising encoders(Vincent et al. 2008). Then
ViT(Dosovitskiy et al. 2020) uses masked token prediction
and paves the way for self-supervised pre-training. More re-
cently, MAE(He et al. 2022) is introduced as an asymmetric
transformer-based encoder-decoder architecture, which is
achieved by reconstructing the pixels of the masked image.
The pre-trained autoencoder could be applied for various
downstream tasks with minor fine-tuning. Similar thoughts
are raised by BEiT(Bao et al. 2021), BEVT(Wang et al.
2022a), and VIMPAC(Tan et al. 2021) while the reconstruc-
tion is based on token-level. MaskFeat(Wei et al. 2022)
chooses to reconstruct HOG(Dalal and Triggs 2005) fea-
tures of the masked token as self-supervised pre-training.
Moreover, UM-MAE(Li et al. 2022b) and SemMAE(Li
et al. 2022a) design distinctive masking strategies, Video-
MAE(Tong et al. 2022; Wang et al. 2023) series simply
expand masking in the temporal dimension of videos and
achieve impressive performance. Compared to MAE-style
design, our MVR has two critical differences which has been
carefully discussed in the introduction.

Method
Overall Architecture
The overall architecture of M-BEV is shown in Fig. 2, it con-
sists of 3D object detector, Random View Masking (RVM),
and Masked View Reconstruction (MVR) modules. Basi-
cally, the 3D object detector contains a visual encoder, trans-
lator, and decoder. First, the encoder transforms the input
images of multiple camera views into their corresponding
2D visual features. Second, the translator transforms these
2D features into 3D-relevant features, by 3D position em-
bedding (Liu et al. 2023, 2022a), depth estimation (Li et al.
2022c, 2023; Chen et al. 2022), attention mechanism (Li
et al. 2022d; Yang et al. 2022; Ma et al. 2022d; Wang et al.
2022b), etc. Finally, the decoder transforms 3D features for
final object detection. Note that, when one or more cameras
fail, there are no corresponding features from encoder. To
address this, we incorporate the RVM and MVR modules af-
ter the encoder to recover the missing features. In this case,
we denote the combination of translator and decoder as an
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Figure 2: Overall Architecture of Our Proposed M-BEV
Framework. M-BEV consists of 3D Object Detector with
Visual Encoder (E) and Decoder (D), Random View Mask-
ing (RVM) and Masked View Reconstruction (MVR) mod-
ules. We propose two MVR modules, namely Global MVR
and Local MVR, to recover the features of masked views.

integrated decoder in this paper without loss of generality.
To mimic the emergency situation of camera failure in the

testing phrase, we propose to perform view masking and re-
covering in the training phrase. Specifically, RVM is used to
randomly select the camera views for masking, and MVR
is used to recover the masked views by exploiting spatio-
temporal context from the rest views. Note that, recovering
is performed on the feature-level of the views from encoder,
instead of raw images like in MAE (He et al. 2022). The
main reason is that our goal is to reconstruct the missing
views for 3D object detection, if we reconstruct the raw im-
ages, these predicted images have to be fed into the visual
encoder again to obtain features for detection, this makes
the whole paradigm tedious with unnecessary processing
and computation. Alternatively, if we reconstruct the fea-
tures of the masked images, we could directly use the vi-
sual encoder(e.g., VoVNet, ViT, ResNet, etc) in the BEV-
based models for both detection and reconstruction. These
recovered features can be straightforwardly used for subse-
quent decoding without any difficulty. In this case, we can
effectively leverage the self-supervised advantages of mask
modeling, by only adding MVR with a lightweight feature
decoder.

Masked View Reconstruction Module
Typically, BEV-based approaches (Li et al. 2022d; Huang
and Huang 2022; Liu et al. 2023; Jiang et al. 2022; Li et al.
2022c; Lin et al. 2022) take the images of six camera views
at previous step t − 1 and current step t as input. After en-
coding these images as visual features, we use RVM mod-
ule to randomly mask the features of several camera views.
Note that in real situation, for the missing views, all previ-
ous frames of this view are lost, so we mask both frames

t-1 t

Back Left (t-1) Back (t)

(a) Spatial overlap (b) Temporal overlap

Back Left Front Left

Front Front Right

Figure 3: Illustration of spatial and temporal overlap.

from t − 1 and t. The next question is how to recover the
features of these masked views. In our task, the entire image
is masked, we can not explore the relations within an image
like the MAE style, but the relations between the six im-
ages instead. As shown in Fig. 3, six camera views share the
overlapped regions, which offer the distinct spatio-temporal
clues, i.e., the same object might appear in different views at
different time steps. Based on this observation, we propose
two types of MVR module to recover the features of masked
views, by using the features of rest views.
Global MVR Module. In this design, we use all the rest
views as context to reconstruct the masked ones. First, we
concatenate the features of all the views. For the missing
views, we pad them with the shared and learned masked to-
kens which are randomly initialized, i.e., Vmask. For the
rest views, we use their corresponding 2D features from en-
coder, i.e., Frest. Second, we need to distinguish the loca-
tion of these views to encode 3D relationships among them.
Hence, we apply 3D position embedding (Liu et al. 2022a)
to encode 3D coordinates of different views, i.e., P3D. Fi-
nally, we add all the features with the corresponding position
embedding, and feed them into a feature decoder for recon-
structing the masked features. The decoder is composed of
transformer blocks which are the same as MAE (He et al.
2022), except that the last layer outputs the feature tokens,
instead of the raw pixels of the masked views.

Umask = Decoder(C[Vmask, Frest] +P3D), (1)

Umask is the reconstructed features of the masked views, C
means we concat the tokens.
Local MVR Module. In fact, a camera view is strongly cor-
related to its adjacent views, instead of all the views. As
shown in Fig. 2, the left part of Front view is relevant to the
right part of Front Left view, while the right part of Front
view is relevant to the left part of Front Right view. Hence,
using all the views of Global MVR may introduce the noisy
reconstruction, with irrelevant surrounding scenes. Based on
this analysis, we propose to design a local MVR module,
which uses the relevant context from the neighboring views
to recover the missing views. Specifically, for the feature of a
masked view, we divide it into three parts, i.e., the left, mid-
dle, and right parts, with a dividing portion ratio. We investi-
gate different portion ratios in our experiments. (1) Left Part:
As shown in Fig. 2, for the left part of this masked view, we
refer to the adjacent camera on its left view. In particular, we
crop the right part of left-view features Fleft(right) at t−1
and t with the same ratio. Then, we use the mean of them
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as the left part of the masked view for both time stamps. (2)
Right Part: Similarly, for the right part of this masked view,
we refer to the adjacent camera on its right view. In particu-
lar, we crop the left part of right-view features Fright(left)
at t − 1 and t with the same ratio. Then, we use the mean
of them as the right part of the masked view for both time
stamps. (3) Middle Part: For the middle part of this masked
view, there is no clue. Hence, we use the masked tokens just
like Global MVR, i.e., Vmask(mid). As a result, the masked
view becomes the concatenation of these features,

Vmask = C[Fleft(right), Vmask(mid), Fright(left)]. (2)

Multiple views can be randomly masked. If the adjacent
views of a masked view are also missing, there are no left
and/or right clues for this view. In this case, we use the
masked features Vmask(left) or/and Vmask(right) in the
corresponding left or/and right parts. Finally, since Vmask
is the 2D feature for a camera view, we use 2D positional
embedding P2D by the sine-cosine version (He et al. 2022),
and feed the sum of Vmask and P2D into the decoder,

Umask = Decoder(Vmask +P2D), (3)

where Umask is the reconstructed features of the masked
views. Additionally, the decoder for Local MVR has the
same transformer structure as the one for Global MVR. But
it only needs to process the tokens of one image size in Local
MVR, instead of all the tokens in the six images of Global
MVR. Hence, the computation cost of Local MVR is less
expensive than Global MVR.

Training and Testing
Training. After obtaining the reconstructed features of the
masked views Umask from MVR, we compute the L2
loss between the original features Fmask and the recon-
structed ones for self-supervised pretraining of our M-BEV,
we freeze the encoder during pretraining.

Lmvr = ∥Fmask −Umask∥2. (4)

However, only feature supervision is not enough for per-
ception, we further fine-tune our M-BEV with 3D detection
supervision end to end,

Ltotal = Ldet + αLmvr, (5)

where Ldet is the 3D detection loss which consists of focal
loss (Lin et al. 2017) for object classification and L1 loss for
3D bounding box regression. Since our goal is to boost de-
tection in case of emergency, the detection loss should be the
major loss. In this case, we set a weight coefficient α = 0.05
for the reconstruction loss in the fine-tuning. Moreover, we
randomly select different number of camera views in differ-
ent training epochs, e.g., one view can be randomly picked
for masking in the previous epoch, while four views can be
randomly picked for masking in the current epoch. This is
different from the training style of MAE (He et al. 2022),
where the same masking proportion is adopted in all the
epochs. The main reason is that our goal is to tackle all
the missing view cases which can possibly happen. Hence,
the training procedure should cover various missing views
by random masking in different epochs. This design has not
been attempted in previous research on mask modeling.

Testing. In the testing process, we preserve the view decoder
in MVR to predict the features of missing views. This design
can effectively tackle the camera failure emergency in the
driving procedure. Additionally, for the regular case without
missing views, our M-BEV still works well, where we can
simply ignore the trained MVR and feed the features of en-
coder into 3D detection decoder. In fact, our trained M-BEV
is better for the regular case, compared to the baseline model
(without view masking and recovering). This is mainly be-
cause that training with MVR can generalize our M-BEV
model for various hard masking cases. In our experiment,
we have validated this conclusion (Table. 5).

Experiments
Datasets and Metrics
We conduct our experiments on the popular NuScenes
dataset (Caesar et al. 2020). NuScenes is a large-scale
benchmark for autonomous driving, where the data is col-
lected from 1000 real driving scenes with around 20 seconds
duration. The scenes are divided: 700 of them for training,
and 150 each for validation and testing. We report the of-
ficially used metrics of 3D object detection in BEV-based
research(Caesar et al. 2020; Lang et al. 2019; Wang et al.
2022b) , i.e., mean Average Precision(mAP) and five True
Positive metrics, including mean Average Translation Error
(mATE), mean Average Scale Error (mASE), mean Aver-
age Orientation Error(mAOE), mean Average Velocity Er-
ror(mAVE), mean Average Attribute Error(mAAE), where
the lower value is better. Besides, the NuScenes Detection
Score (NDS) comprehensively reflects these metrics, and it
is the most concerned metric for performance evaluation.

Implementation Details
Driving scenes in the real world are often complex, we
choose a challenging setting to mimic real situation, that is,
we randomly discard images of the corresponding views us-
ing our RVM module, all previous frames for the view are
also missing, so we can evaluate how other views help for
the reconstruction of the missing ones. For the baseline mod-
els, we follow the official implementation on open-sourced
code bases. For PETRv2(Liu et al. 2023), we use images of
320×800 resolution as input, and the visual backbone is pre-
trained VoVNet-99(Lee and Park 2020). For BEVStereo(Li
et al. 2023), the model is obtained by the official code on
GitHub with ResNet-50(He et al. 2016) as visual encoder
and uses 256x704 input resolution. The models are trained
with official settings and get comparable performance with
the official report. And for inference, we do the evaluation
on all possible situations. The MVR module is fine-tuned
for 48 epochs, the learning rate is set to 2.0 × 10−4. The
transformer layer of decoder is four, and the hidden dimen-
sion is 512. We use 8 A5000 GPUs for all experiments. No
test-time augmentation methods are used during inference.

SOTA Comparison
As mentioned before, we apply M-BEV paradigm on two
recent state-of-the-art approaches, PETRv2(Liu et al. 2023)
and BEVStereo(Li et al. 2023), where we insert our local
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W/O Missing Method NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Standard PETRv2 (Liu et al. 2023) 0.4853 0.3977 0.7531 0.2693 0.4978 0.4310 0.1840
Missing Method NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

Front PETRv2 (Liu et al. 2023) 0.4238 0.3022 0.7757 0.2740 0.5311 0.5043 0.1883
Our M-BEV (PETRv2) 0.4504 0.3263 0.7234 0.2736 0.4996 0.4449 0.1862

Front Right PETRv2 (Liu et al. 2023) 0.4363 0.3294 0.8444 0.2706 0.5333 0.4551 0.1808
Our M-BEV (PETRv2) 0.4712 0.3666 0.7346 0.2704 0.5098 0.4214 0.1850

Front Left PETRv2 (Liu et al. 2023) 0.4405 0.3355 0.8195 0.2733 0.5216 0.4664 0.1912
Our M-BEV (PETRv2) 0.4678 0.3628 0.7308 0.2740 0.5113 0.4298 0.1905

Back PETRv2 (Liu et al. 2023) 0.3616 0.2179 1.0176 0.2977 0.5618 0.4477 0.1726
Our M-BEV (PETRv2) 0.4516 0.3206 0.7283 0.2688 0.4908 0.4237 0.1754

Back Left PETRv2 (Liu et al. 2023) 0.4568 0.3513 0.7910 0.2700 0.4903 0.4476 0.1895
Our M-BEV (PETRv2) 0.4753 0.3694 0.7277 0.2694 0.4770 0.4291 0.1909

Back Right PETRv2 (Liu et al. 2023) 0.4556 0.3544 0.7892 0.2700 0.5157 0.4508 0.1902
Our M-BEV (PETRv2) 0.4756 0.3730 0.7294 0.2711 0.4990 0.4211 0.1879

Table 1: Performance comparison on PETRv2 (Liu et al. 2023) when losing each of six camera views. The effect of our M-BEV
is impressive, e.g., for the absence of back view, our M-BEV achieves 10.3% mAP improvement.

W/O Missing Method NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Standard BEVStereo (Li et al. 2023) 0.4432 0.3439 0.6583 0.2823 0.5860 0.5287 0.2327
Missing Method NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

Front BEVStereo (Li et al. 2023) 0.3901 0.2462 0.6799 0.2867 0.6192 0.5159 0.2283
Our M-BEV (BEVStereo) 0.4027 0.2667 0.6744 0.2866 0.6223 0.5103 0.2130

Front Right BEVStereo (Li et al. 2023) 0.4042 0.2832 0.6770 0.2841 0.6027 0.5811 0.2298
Our M-BEV (BEVStereo) 0.4148 0.3004 0.6733 0.2845 0.6122 0.5791 0.2153

Front Left BEVStereo (Li et al. 2023) 0.4039 0.2795 0.6720 0.2820 0.5960 0.5645 0.2429
Our M-BEV (BEVStereo) 0.4126 0.2967 0.6725 0.2851 0.6134 0.5690 0.2269

Back BEVStereo (Li et al. 2023) 0.3894 0.2373 0.6761 0.2840 0.6071 0.5126 0.2126
Our M-BEV (BEVStereo) 0.3949 0.2580 0.6703 0.2880 0.6196 0.5540 0.2087

Back Left BEVStereo (Li et al. 2023) 0.4132 0.2891 0.6753 0.2828 0.5687 0.5457 0.2408
Our M-BEV (BEVStereo) 0.4149 0.2989 0.6762 0.2859 0.5966 0.5709 0.2259

Back Right BEVStereo (Li et al. 2023) 0.4081 0.2898 0.6813 0.2817 0.5945 0.5739 0.2367
Our M-BEV (BEVStereo) 0.4157 0.3027 0.6719 0.2843 0.6052 0.5738 0.2209

Table 2: Performance comparison on BEVStereo (Li et al. 2023) when losing each of six camera views. Overall, our M-BEV
gives a comprehensive improvement for the baseline.

MVR after the visual encoder in these models. We compare
our M-BEV paradigm with the original BEV paradigm on
these models. Moreover, to explicitly evaluate the effective-
ness, we investigate the result for missing each of the six
camera views. As shown in Table 1 and Table 2, our M-
BEV comprehensively improves the performance, compared
to the original model. For example, M-BEV is remarkable
for the back-view camera failure, with a 10.3% mAP growth
on the PETRv2 baseline. All these prove the effectiveness of
our design.

Ablation Study
Global MVR v.s. Local MVR. We first ablate the effect of
Global MVR and Local MVR, where we use the PETRv2
baseline due to its good performance. Both two MVR vari-
ants are trained with the same schedule when each camera
view loses, and all other hyper-parameters keep the same.
The results are shown in Table. 3, Local MVR method out-
performs Global MVR in all metrics. This superiority may
be attributed to the fact that, Local MVR exploits the distinct
spatio-temporal context across adjacent cameras, instead of
using all the views which may contain noise.

Number of Missing Camera Views. It is natural to evaluate
the robustness if more than one camera is lost in real-world
scenarios. Note that, there are several possible missing view
choices for each setting, e.g., there are 6/15/20/15/6 choices
for missing 1/2/3/4/5 views. Hence, we compute the NDS
and mAP metrics for each choice and average them as the
final NDS and mAP metrics. As mentioned in the training
section, we train a single model to handle all these situa-
tions to show our robustness. As shown in Fig. 4, our method
outperforms the baseline PETRv2 for all the missing cases,
especially when the number of missing views increases. It
clearly shows the robustness of our M-BEV. Moreover, Lo-
cal MVR is consistently better than Global MVR, based on
the exploration of distinct contexts across adjacent views.

MVR Designs. To verify the contributions of the strate-
gies in our proposed MVR module, we conduct ablation
experiments on several settings which will be explained in
detail below. All ablations are conducted with the Local
MVR method which performs better. In Table4, we ablate
the MVR module employed in the model, fine-tuning pro-
cess, the position embedding(PE), and the masking ratio in
sequence to validate how they contribute to the final results,
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Figure 4: Performance of baseline, our Global MVR and Local MVR settings for different number of missing cameras.

Missing Our M-BEV NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

Front
Global MVR 0.4361 0.3160 0.7524 0.2725 0.5489 0.4584 0.1873
Local MVR 0.4504 0.3263 0.7234 0.2736 0.4996 0.4449 0.1862

Front Right
Global MVR 0.4588 0.3592 0.7622 0.2684 0.5550 0.4371 0.1852
Local MVR 0.4712 0.3666 0.7346 0.2704 0.5098 0.4214 0.1850

Front Left
Global MVR 0.4574 0.3570 0.7635 0.2727 0.5410 0.4410 0.1928
Local MVR 0.4678 0.3628 0.7308 0.2740 0.5113 0.4298 0.1905

Back
Global MVR 0.4390 0.3146 0.7642 0.2679 0.5340 0.4400 0.1773
Local MVR 0.4516 0.3206 0.7283 0.2688 0.4908 0.4237 0.1754

Back Left
Global MVR 0.4632 0.3633 0.7645 0.2697 0.5214 0.4350 0.1944
Local MVR 0.4753 0.3694 0.7277 0.2694 0.4770 0.4291 0.1909

Back Right
Global MVR 0.4629 0.3671 0.7638 0.2694 0.5504 0.4333 0.1895
Local MVR 0.4756 0.3730 0.7294 0.2711 0.4990 0.4211 0.1879

Table 3: The performance after reconstruction of two MVR module variants. Local MVR is a better choice by exploiting the
distinct context from adjacent camera views.

the results show the average values under one random cam-
era failure. Note that the best performance is obtained with
all the strategies used and 76% masking ratio, put in bold
in Table4. (1)First, we ablate the MVR module which is
the core of our M-BEV approach. To verify its effective-
ness, we remove our proposed MVR module and perform
the same fine-tuning using RVM module. The final results
show a drop in NDS and mAP by 1.14% and 1.28% re-
spectively compared to the best model with MVR, indicat-
ing that our reconstructed features could offer extra infor-
mation beyond the original model. (2)Then we explore the
influence of fine-tuning process which aims to alleviate the
domain gap between reconstruction task and detection task.
The model without fine-tuning shows a drop in NDS and
mAP by 2.61% and 3.69%, which strongly confirms the sig-
nificance of fine-tuning with our RVM module. (3)Next, as
the composition of input for MVR decoder, PE is added to
the 2D feature tokens for better localization. The ablation
shows the influence of PE which indeed makes a progress.
The model with PE have an improvement of 0.28% NDS
and 0.22% mAP on average compared to model without it.
(4)Finally, we ablate the masking ratio. The masking ratio
depends on the dividing portion we use from the neighboring
overlaps, the left and right views could both offer prompts
for the missing camera, so we only need to mask the middle
part. A proper ratio close to the real situation is also crucial
for good reconstruction. We have evaluated different mask-

ing ratios from 60% to 80%, the optimal masking ratio is
76% for both NDS and mAP.
Segmentation. We also evaluate our M-BEV for map
segmentation tasks on nuScenes with PETRv2(Liu et al.
2023) baseline, where only the prediction head needs to be
changed. When missing one camera view, the IoU scores of
Drive, Lane and Vehicle drop form 79.5%, 46.2% and 49.9%
to 76.6%, 41.1% and 43.5% respectively on average, while
with our MVR, the IoU scores are 78.2%, 45.1% and 45.6%,
much better than that of original model.
Generalization vs. Computation. Finally, we evaluate the
generalization and computation cost of M-BEV. As shown
in the Table. 5, for the regular cases without missing views,
we can directly deactivate the MVR module after training,
the GFLOPS keep the same as the baseline. However, the
model co-trained with MVR performs better than the base-
line, showing that, M-BEV paradigm can generalize the
learning capacity for 3D object detection, by masking view
modeling. For the camera failure case (one view missing
setting), local MVR has better performance with little extra
computation cost, and it only takes about 6ms for the local
MVR to response for once detection, which is negligible. All
these prove its potential for practical application.

Visualization
In Fig. 5, we give some examples of the reconstructed fea-
tures of missing cameras and the detection results of the
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MVR FineTune PE MaskRatio NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
% % % % 0.4285 0.3117 0.8279 0.2730 0.5228 0.4638 0.1865
% ! % % 0.4466 0.3371 0.7752 0.2741 0.5256 0.4469 0.1975
! % ! 76% 0.4319 0.3130 0.8196 0.2721 0.5181 0.4545 0.1852
! ! % 76% 0.4552 0.3477 0.7556 0.2715 0.5190 0.4376 0.1870
! ! ! 76% 0.4580 0.3499 0.7544 0.2712 0.5186 0.4368 0.1878
! ! ! 60% 0.4576 0.3495 0.7538 0.2710 0.5171 0.4402 0.1885
! ! ! 64% 0.4566 0.3474 0.7529 0.2720 0.5185 0.4378 0.1894
! ! ! 68% 0.4570 0.3491 0.7596 0.2714 0.5246 0.4302 0.1892
! ! ! 72% 0.4579 0.3485 0.7540 0.2721 0.5126 0.4352 0.1895
! ! ! 80% 0.4560 0.3478 0.7578 0.2716 0.5249 0.4330 0.1916

Table 4: The ablation of MVR module, fine-tuning, position embedding and masking ratio for M-BEV. All models are trained
with same schedule and hyper-parameters. We randomly drop one camera and calculate the average metrics for inference.

Figure 5: Visualization for feature maps and detection results. M-BEV reconstructed features could be a rough substitute of the
original feature, and could help for the detection of the vehicles on the left and right sides of the missing view.

W/O Missing NDS↑ mAP↑ GFLOPS↓
PETRv2 Baseline 0.4853 0.3977 1047
Our Global MVR 0.4872 0.4007 1047
Our Local MVR 0.4898 0.4039 1047
Missing NDS↑ mAP↑ GFLOPS↓
PETRv2 Baseline 0.4285 0.3117 1047
Our Global MVR 0.4534 0.3467 1088
Our Local MVR 0.4580 0.3499 1053

Table 5: Generalization vs. Computation. The model trained
with our MVR performs better the original baseline under
both no-missing and missing settings, while requiring only
little extra GFLOPS for computation.

missing view. As shown in Fig. 5, our M-BEV reconstructed
features could be a rough substitute of the original features,
from which we can see the outline of the road and the major
targets.For the detection results, our M-BEV is helpful for
detection of the vehicles on left and right sides of the missing

view. For example, due to the missing of back view, PETRv2
model can’t detect any object in the view, but with our recon-
struction, the vehicles near the overlap regions could be de-
tected, while it’s still hard to detect the small and far objects
in the middle part, which may need further exploration.

Conclusion and Future Work
Recent researches have primarily focused on improving de-
tection performance, while our work focuses on the robust-
ness of these models, which is essential for ensuring driving
safety. In this paper, we put forward a novel reconstruction
architecture to address the emergence of camera crashes.
To compensate for the lost information of missing camera
views, we design a distinct MVR module that leverages the
related tokens from neighboring cameras. The reconstructed
image features are capable of boosting the detection results,
compared to the original models. Furthermore, M-BEV has
great generalization ability and requires little extra compu-
tation. Extensive experiments verify the effectiveness of our
M-BEV, which could be widely applied as a plug-and-play
module to enhance the robustness of 3D perception models.
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