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Abstract

Infrared small target detection (ISTD) is critical to national
security and has been extensively applied in military areas.
ISTD aims to segment small target pixels from background.
Most ISTD networks focus on designing feature extraction
blocks or feature fusion modules, but rarely describe the
ISTD process from the feature map evolution perspective.
In the ISTD process, the network attention gradually shifts
towards target areas. We abstract this process as the direc-
tional movement of feature map pixels to target areas through
convolution, pooling and interactions with surrounding pix-
els, which can be analogous to the movement of thermal
particles constrained by surrounding variables and particles.
In light of this analogy, we propose Thermal Conduction-
Inspired Transformer (TCI-Former) based on the theoreti-
cal principles of thermal conduction. According to thermal
conduction differential equation in heat dynamics, we de-
rive the pixel movement differential equation (PMDE) in the
image domain and further develop two modules: Thermal
Conduction-Inspired Attention (TCIA) and Thermal Conduc-
tion Boundary Module (TCBM). TCIA incorporates finite
difference method with PMDE to reach a numerical approx-
imation so that target body features can be extracted. To fur-
ther remove errors in boundary areas, TCBM is designed and
supervised by boundary masks to refine target body features
with fine boundary details. Experiments on IRSTD-1k and
NUAA-SIRST demonstrate the superiority of our method.

Introduction
Infrared small target detection (ISTD) is challenging be-
cause targets are so small that may easily get ignored by
generic segmentation networks. Besides, infrared images are
of low contrast and low quality, which also bring challenges
to this task. Since generic segmentation networks fail to per-
form well on this task, we hope to explore a new perspective
and design a precise and explainable method for ISTD.

ISTD methods are generally categorized into traditional
methods and deep-learning-based methods. In early stages,
for lack of public ISTD dataset, researchers are limited to
traditional methods (Sun, Yang, and An 2020; Marvasti,
Mosavi, and Nasiri 2018; Zhang and Peng 2019; Han et al.
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Figure 1: Conversion process between the image field and
the thermal field.The feature map evolution process in the
image field can be analogous to the thermal conduction pro-
cess in the thermal field. The upper part depicts the image
field and presents the from-coarse-to-fine feature map evo-
lution in the ISTD process. The upper right corner shows
the change of pixel value in a 2-D image micro-element.
The lower part shows the thermal conduction process of a 3-
D micro-element in the thermal field, where thermal energy
is conducted spontaneously from high-temperature areas to
low-temperature areas.

2019). However, these methods relying so much on prior
knowledge and handcraft features that inevitably suffer very
limited performances on images with characteristics incon-
sistent with the model assumptions.

Recent years have witnessed the research focus of ISTD
shifting to deep-learning-based methods. Deep-learning-
based methods improve the ISTD performance by a large
margin and can be further classidied into CNN-based meth-
ods (Chen et al. 2023c; Dai et al. 2021b,a; Zhang et al.
2021; Wang, Zhou, and Wang 2019; Li et al. 2022a; Zhang
et al. 2021, 2022d; Zhu et al. 2023; Weng et al. 2023; Du,
Wang, and Cao 2023) and hybrid methods (methods com-
bining ViT and CNN) (Wang et al. 2022a; Qi et al. 2022;
Chen et al. 2023b; Liu et al. 2021; Zhang et al. 2022a; Chen
et al. 2023a). However, despite different module designs,
these methods rarely explore a new perspective to look at
ISTD, which helps constructing an explainable ISTD net-
work and proposing a potential future research direction. To
this end, we propose to understand the feature map evolution
process of ISTD from the perspective of thermal conduction.
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In thermodynamics, micro-elements with different heat
exhibit different distribution over time in a closed system.
Influenced by the heat source and other external factors, heat
will spontaneously be conducted from warm areas to cold
areas. Similarly, the ISTD process can be regarded as a se-
ries of feature maps that change over time constrained by an
objective function. The intuitive analogy between ISTD and
thermal dynamics is shown in Fig. 1. The upper part shows
the feature map evolution process during ISTD, which is
a from-coarse-to-fine process gradually highlighting targets
using the adjacent pixel information. Specifically, in con-
volution operations, pixels are determined by multiple ad-
jacent pixels of the previous layer. During ISTD process,
the micro-elements with different pixel values in the im-
age move under the constraints of an objective function un-
til some micro-elements with high pixel values gather near
small target areas. In this way, the small targets gradually
get highlighted. The three consecutive images in the upper
right part visualize this process. The lower part describes
the spontaneous thermal conduction from high-temperature
to low-temperature areas. The bottom right image shows the
inflow and outflow of the thermal energy in a 3-D micro-
element. The two processes are essentially very similar, so
some thermodynamic theories can be transferred to ISTD.
The most related work of our paper is (Zhang et al. 2022b),
which understands super resolution from thermodynamics
perspective, but our task, network modules and the way of
analogizing thermal field to image field (the pixel movement
of ISTD is directed to target areas, but for super resolution it
is unordered) are all different.

In this paper, we explore a novel research routine by
analogizing the pixel movement during ISTD process as
thermal conduction in thermodynamics and propose TCI-
Former. Based on the thermal conduction differential equa-
tion, we derive the pixel movement differential equation
(PMDE) in the image domain for ISTD. Our PMDE builds
a spatial–temporal constraint to guide the pixel flow direc-
tion, so we design our network based on it. On the one hand,
we apply the finite difference method to PMDE and pro-
pose thermal conduction-inspired attention (TCIA) to help
extracting the main body features of targets. On the other
hand, only focusing on main body areas of targets inevitably
causes errors in segmenting target boundary areas, so we de-
vise thermal conduction boundary module (TCBM) to refine
target body features with fine boundary details.

Our contributions can be summarized in three folds:

• We are the first to realize the intrinsic consistency be-
tween thermal micro-elements and the image pixels dur-
ing feature map evolution in ISTD, where the change of
heat distribution over time is analogous to the change of
pixel values due to pixel movement in consecutive fea-
ture map series. We transfer heat conduction theories into
the ISTD network design and propose TCI-Former.

• Inspired by the thermal conduction differential equa-
tion, we derive our pixel movement differential equation
(PMDE) to establish a link between spatial and temporal
information of pixel values during ISTD process.

• We incorporate the finite difference method to PMDE

and propose thermal conduction-inspired attention
(TCIA) to extract target main body features but brings
slight errors to target boundary areas. As complement,
thermal conduction boundary module (TCBM) is also
devised to supplement the target body features with fine
boundary details to make up for the errors.

• Our method outperforms others on IRSTD-1k and
NUAA-SIRST in terms of evaluation metrics.

Related Work
Infrared Small Target Detection Networks
ISTD networks are generally classified into CNN-based and
hybrid types. CNN-based networks mainly extract local fea-
tures. Dai et al. (Dai et al. 2021a) released the first public
ISTD dataset and proposed asymmetric contextual modula-
tion for cross-layer feature fusion. They then proposed Al-
cNet (Dai et al. 2021b) to preserve local features of small
targets. Wang et al. were the first to apply GAN to ISTD and
proposed MDvsFA (Wang, Zhou, and Wang 2019), which
achieved a trade-off between missed detection and false
alarm. DNANet (Li et al. 2022a) devised a dense nested in-
teractive module (DNIM) to progressively interact different
level features. ISNet (Zhang et al. 2022d) designed a simple
Taylor finite difference-inspired block and a two-orientation
attention aggregation module to detect targets.

However, only local features are insufficient to detect all
infrared targets because the low contrast background makes
many small targets unclear to find. Therefore, researchers
turn to hybrid methods (Chen, Wang, and Tan 2022; Wang
et al. 2022a; Zhang et al. 2022a) by combining ViT with
CNN to complement local features with global dependen-
cies. For example, Chen et al. novelly built a ViT-CNN struc-
ture based on fluid dynamics for shape-aware ISTD.

The above ISTD networks focus on building either feature
extraction blocks or fusion modules, none of them provide a
new understanding of ISTD from the feature map evolution
perspective. In this paper, we open a novel research perspec-
tive by abstracting the directional movement of pixels with
high pixel values to target areas in the ISTD process as heat
conduction from warm to cold areas in thermodynamics.

Thermal Conduction Differential Equation
Thermal conduction studies the law of thermal energy trans-
fer due to temperature difference. Wherever there exists a
temperature difference, there is a spontaneous conduction
of thermal energy from a high-temperature object to a low-
temperature object, or from a high-temperature object part
to a low-temperature part (Borgnakke and Sonntag 2022).

As the basic law of thermal conduction, thermal con-
duction differential equation indicates that the heat passing
through a given section in unit time is proportional to the rate
of temperature change and the area of the section perpendic-
ular to the direction of the section. It is the mathematical
expression of the differential form of the temperature dis-
tribution in the thermal conduction temperature field. The
thermal conduction direction is opposite to the temperature
increase direction. The equation is established according to
the heat conservation law and Fourier law. The law of heat
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conservation can be expressed as ∆Q = ∆E + Qf , where
Q is the difference between the thermal energy imported and
exported from an object. ∆E is the increment of internal en-
ergy of the object. Qf is the heat of formation of the inter-
nal heat source in the object. The Fourier law describes the
relationship between thermal conductivity and temperature
gradient, which is described as q = −λ∂T

∂n , where ∂T
∂n is the

temperature gradient and λ is the thermal conduction coeffi-
cient. Rewrite heat conservation equation into the differen-
tial form of unit time and space and plug the Fourier Law
into the heat conservation equation, we can get the thermal
conduction differential equation as follows:

∂T

∂t
=

λ

ρc
(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
) +

qv
ρc

, (1)

where qv is the heat of formation of the internal heat source
in an object in per unit volume and time.

Pixel Movement Differential Equation
(PMDE)

In a unit of time, the thermal change of a micro-element can
be expressed as: [the difference between the imported and
exported heat] + [the thermal energy generated by the inter-
nal heat source] = [the increase in thermodynamic energy].
The difference between the imported and exported heat cor-
responds to the feature map pixel value difference between
inflow and outflow (∆Pf ). The thermal energy generated
by the internal heat source corresponds to the change in
the pixel’s own value (∆Ps). The total increase in thermo-
dynamic energy corresponds to the overall change in pixel
value (∆P ). Accordingly, in the image field we have:

[∆Pf ] + [∆Ps] = [∆P ]. (2)

Similar to the derivation of TCDE, the Pixel Movement Dif-
ferential Equation (PMDE) can be derived as follows.

Pixel Value Difference between Inflow and Outflow
Within dt, we denote the pixel values flowing into the micro-
element along the x-axis and y-axis as dPx and dPy , respec-
tively. Similarly, there are also pixel values flowing out of
the micro-element along both axes, which we describe as
dPx+dx and dPy+dy , respectively. Subsequently, according
to the relationship between the difference and the derivative,
and combine the pixel value difference in the x-direction and
the pixel value difference in the y-direction to get the whole
value difference

dPx = pxdydt, dPy = pydxdt,

dPx+dx = px+dxdydt = (px+
∂px
∂x

dx)dydt,

dPy+dy = py+dydxdt = (px+
∂py
∂y

dy)dxdt,

∆Pf = dPx+dx − dPx+dPy+dy − dPy

= −(
∂px
∂x

+
∂py
∂y

)dxdydt,

(3)

where dpx, dpy , dpx+dx, dpy+dy are respectively the inflow
and outflow pixel value intensity along the x-axis and y-axis,

which measure the pixel values flowing in and out within
per unit area and per unit time. According to the Fourier law
in thermodynamics (Borgnakke and Sonntag 2022), which
characterizes the relationship between the heat flow and the
micro-element temperature gradient in the heat conduction
process, dpx, dpy can be calculated as follows:

dpx = −λ
∂P

∂x
, dpy = −λ

∂P

∂y
. (4)

Change in Pixel’s Own Value
For each pixel in the infrared image, its own pixel value
changes over time and follows Ps = psdxdydt. ps rep-
resents pixel intensity, which is the pixel value generated
within per unit area and time. Ps is the increase of the im-
age micro-element’s pixel value due to its internal points’
spontaneous pixel value changes. Here we only consider the
effect of the difference between the imported and exported
pixel values, so pixel value of each point is fixed and will
not change, which means ps = 0.

Overall Change in Pixel Value
According to the correspondence between the variables in
image field and heat conduction field, we can get the rela-
tionship between the pixel value change rate (∂P∂t ) and the
overall pixel value change ∆P during feature map evolu-
tion. The change in the micro-element’s pixel value can be
expressed as:

∆P = a
∂P

∂t
dxdydt, (5)

where a is a constant. From Eq.(2) to Eq.(5), we can get the
relationship between the pixel value change rate and gradi-
ent during the ISTD process, which is the final expression of
pixel movement differential equation (PMDE):

∂P

∂t
= α(

∂2P

∂x2
+

∂2P

∂y2
), (6)

where α = (λ/a). PMDE builds the link between spatial
and temporal information of pixel values in an image. In the
next section we will use the equation to devise two modules
which respectively focus on target body and boundary parts
to reflect the flow of pixels.

Methodology
Overall Architecture
The overview of our TCI-Former is displayed in Fig. 2. TCI-
Former has a U-Net-like encoder-decoder structure, where
the encoder is composed of several Thermal Conduction-
Inspired Transformer (TCIT) blocks stacked sequentially
while the decoder is built upon three plain deconvolu-
tion layers following the common practice. Skip connec-
tions are added between the corresponding encoder and de-
coder layers for cross-layer feature fusion. A fully convo-
lutional segmentation head is connected after the decoder
to offer the final predictions. The added circle in the stage
blocks denotes the position coding operation for the input
tokens. Specifically, each TCIT block contains a Thermal
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Figure 2: Overall architecture of our TCI-Former with an encoder-decoder structure. The encoder is composed of several
TCIT blocks. Each TCIT block contains two key components: Thermal Conduction-Inspired Attention (TCIA) and Thermal
Conduction Boundary Module (TCBM), which are both devised based on our derived pixel movement differential equation
(PMDE). PMDE is inspired by the thermal conduction differential equation (TCDE) in heat dynamics.

Conduction-Inspired Attention (TCIA) and a Thermal Con-
duction Boundary Module (TCBM). The TCIT has a paral-
lel structure of global attention and convolution to assemble
their merits of modelling local and global information simul-
taneously. The global attention structure of TCIT block is
TCIA, which concentrates on target body information from
horizontal and vertical directions in the same way as thermal
conduction. The convolutional structure of TCIT is TCBM,
which refines target body features with boundary details.

Thermal Conduction-Inspired Attention
The finite difference method is a numerical ODE solver. We
apply the method to our PMDE to extract the target main
body feature, which can be regarded as an approximation
of the whole target feature. Thus, we propose TCIA to ex-
plore the rule of target body feature extraction during feature
map evolution. Here we use the second-order finite differ-
ence equation, which is expressed as:

∂2P t
i,j

∂x2
=

P t
i+1,j − 2P t

i,j + P t
i−1,j

(∆x)2
,

∂2P t
i,j

∂y2
=

P t
i,j+1 − 2P t

i,j + P t
i,j−1

(∆y)2
,

(7)

where P t
i,j is the pixel value in position (i, j) in the t-th

feature map layer. Applying Eq.(7) to Eq.(6) we have

P t+1
i,j − P t

i,j = α(
P t
i+1,j − 2P t

i,j + P t
i−1,j

(∆x)2
+

P t
i,j+1 − 2P t

i,j + P t
i,j−1

(∆y)2
).

(8)

Defining ∆x = ∆y, we can get the final expression of the
target main body part feature extraction rule as follows:

P t+1
i,j = γ(P t

i+1,j+P t
i−1,j+P t

i,j+1+P t
i,j−1−4P t

i,j)+P t
i,j ,
(9)

where γ denotes α
∆x∆y . Eq.(9) describes that the pixel value

at a certain position in a certain feature map layer is deter-
mined by its surrounding pixels in x and y axis of its former
layer feature map.

Based on Eq.(9), we devise TCIA to extract the main body
features of small targets during feature map evolution. Fig. 3
shows the structure of TCIA. The input of TCIA is P t and
the output is γ(P t

i+1,j + P t
i−1,j + P t

i,j+1 + P t
i,j−1 − 4P t

i,j),
which is obtained through horizontal and vertical conduc-
tion attentions ∆y and ∆x to aggregate surrounding pixel
information of the former layer before element-wise ad-
dition with P t. The channel of P t ∈ RC×H×W is di-
vided into four groups before shifting each channel group
to different directions by +1 or −1. In this way, the recep-
tive field of P t after spatial shift is rhombic, which corre-
sponds to P t

i+1,j + P t
i−1,j + P t

i,j+1 + P t
i,j−1. We can get

P t
i+1,j + P t

i−1,j + P t
i,j+1 + P t

i,j−1 − 4P t
i,j through resid-

ual operation and then linearly project this term into Q, K,
V . The horizontal conduction ∆y is implemented by tak-
ing average of query feature map on the horizontal direc-
tion. In the same way, the vertical conduction ∆x squeezes
query feature map on the vertical direction. The same op-
erations are also conducted upon K and V , so we can get
Qh,Kh ∈ RH×Cqk , Vh ∈ RH×Cv and Qv,Kv ∈ RW×Cqk ,
Vv ∈ RW×Cv . Each of the two conduction attentions re-
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Figure 3: Overall architecture of our proposed Thermal
Conduction-Inspired Attention (TCIA), which is devised
based on finite difference method and PMDE derived from
the TCDE in heat dynamics.

serves the global information to a single axis, so that each
position on the feature map propagates information only on
two squeezed x-axis and y-axis features. Then the Q,K, V
vectors are fed into multi-head attentions and then added to-
gether for horizontal and vertical feature aggregation to real-
ize the γ(P t

i+1,j+P t
i−1,j+P t

i,j+1+P t
i,j−1−4P t

i,j) term. For
the last term P t

i,j in Eq.(9), it is added through the residual
and layer norm operation in the transformer block. In this
way, the TCIA based on Eq.(9) is realized.

Thermal Conduction Boundary Module
TCIA helps extracting target body features, but the features
extracted by TCIA branch alone are not fine enough in near
boundary regions because the finite difference method used
in TCIA is a numerical method, which inevitably brings
small errors. A certain degree of dispersion exists due to nu-
merical uncertainty during pixel value movement. To solve
this, we need to refine the coarse target body features with
fine boundary details to make up for the uncertain errors. We
notice that our PMDE itself has already contained bound-
ary information (second-order derivative terms), so to ex-
tract target boundary features we design Thermal Conduc-
tion Boundary Module (TCBM) based on PMDE. The dif-
ferential form of Eq.(6) can be described as:

P t+∆t − P t = ∆tα(
∂2P

∂x2
+

∂2P

∂y2
.) (10)

During ISTD, the extracted feature maps are arranged in
a chronological order. The PMDE establishes the relation-
ship between the change of pixel value in temporal domain
(P t+∆t − P t) and 2-D spatial domain (∂

2P t

∂x2 , ∂2P t

∂y2 ) during
feature extraction. Defining the time step ∆t as 1, we can ex-
plore the boundary feature evolution rule between two con-
secutive feature maps. The specific expression of PMDE can
be rewritten as:

P t+1 − P t = hα(
∂2P t

∂x2
+

∂2P t

∂y2
), (11)

where t means the t-th residual calculation. h is the step size
between the t-th and t+1-th residual calculation. The TCBM
applies spatial information to make up for the lack of bound-
ary refinements during feature extraction in the encoder. The

right side of Eq.(11) is the second derivative of P t in the x-
and y-directions, respectively. Thus, with this item, we ob-
tain the spatial information which can be used as the residual
supplementary for time information, that is, the information
in the forward extraction process. ∂2P t

∂x2 and ∂2P t

∂y2 have larger
value at boundary areas, therefore TCBM is sensitive to tar-
get boundaries and can play a complementary role to the
target body features. Our TCBM incorporates a Laplace op-
erator into a residual block, where the Laplace operator is
used to realize the ∂2P t

∂x2 and ∂2P t

∂y2 terms.

Loss Function
Dice loss (Sudre et al. 2017) measures the difference be-
tween a mask prediction and the ground truth. It can also
relieve sample imbalance problem and is defined as:

Ldice = 1− 2|X ∩ Y |
|X|+ |Y |

, (12)

where X denotes the mask prediction and Y is the ground
truth. Our final loss function LFinal includes LSeg as the
main loss function and Target Boundary loss (LTB) and
Interior Body loss (LIB) as two auxiliary loss functions.
LFinal is calculated as:

LFinal = Lhyb
Seg + Lhyb

TB + Lhyb
IB . (13)

LIB and LSeg share the same Y as the ground truth mask,
while the X of LIB is the segmentation head output from
the TCIA encoder branch, and the X of LSeg is the final
prediction output. The X of LTB is the segmentation head
output from the TCBM encoder branch, and the Y of LTB

is the boundary mask label.

Experiments
Experimental Settings
Datasets. We choose NUAA-SIRST (Dai et al. 2021a)
and IRSTD-1k (Zhang et al. 2022d) as our experimental
datasets. NUAA-SIRST contains 427 infrared images of var-
ious sizes while IRSTD-1k consists of 1,000 real infrared
images of 512 × 512 in size. IRSTD-1k is a more difficult
ISTD dataset with richer scenarios. For each dataset, we use
80% of images as training set and 20% as test set.

Evaluation Metrics. We compare our TCI-Former with
other SOTA methods in terms of both pixel-level and object-
level evaluation metrics. The pixel-level metrics include In-
tersection over Union (IoU ) and Normalized Intersection
over Union (nIoU ), while the object-level metrics include
Probability of Detection (Pd) and False-Alarm Rate (Fa).

IoU measures the accuracy of detecting the accuracy of
detecting the corresponding object in a given dataset. nIoU
is the normalization of IoU , which can make a better bal-
ance between structural similarity and pixel accuracy of in-
frared small targets. IoU and nIoU are defined as:

IoU =
Ai

Au
, nIoU =

1

N

N∑
i=1

(
TP [i]

T [i] + P [i]− TP [i]
), (14)
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Figure 4: Result visualization of different ISTD methods.
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Figure 5: Visualization of (a) TCIA and TCBM branch out-
puts and (b) intermediate stage feature map evolution.

where Ai and Au are the areas of intersection region and
union region between the prediction and ground truth, re-
spectively. N is the total number of samples, TP [.] is the
number of true positive pixels, T [.] and P [.] is the number
of ground truth and predicted positive pixels.

Pd calculates the ratio of the number of correctly pre-
dicted targets Npred to all targets Nall. Fa refers to the ratio
of falsely predicted target pixels Nfalse to all the pixels in
the infrared image Nall. Pd and Fa are calculated as follows:

Pd =
Npred

Nall
, Fa =

Nfalse

Nall
. (15)

Optimization. The algorithm is implemented in Pytorch,
with Adaptive Gradient (AdaGrad) as the optimizer with the
initial learning rate set to 0.05 and weight decay coefficient
set to 0.0004. A Titan XP GPU is used for training, with
batch size set to 4. Training on SIRST and IRSTD-1k takes
800 epochs and 600 epochs respectively.

Comparison with SOTA Methods
Quantitative Comparisons. We select some SOTA ISTD
methods for comparison. As shown in Table 1, our TCI-
Former performs the best in terms of pixel-level and object-
level metrics on both datasets.

For the pixel-level metrics (IoU, nIoU ), the deep-
learning methods generally surpass the traditional methods
because deep-learning methods do not rely heavily on prior

knowledge and handcraft features as traditional methods do.
However, deep-learning methods lay insufficient emphasis
on target edges, causing limited IoU and nIoU . Our TCI-
Former achieves the best performance on both IoU and
nIoU , meaning that our method achieves the best shape-
aware segmentation performance thanks to our TCBM.

For the object-level metrics (Pd, Fa), how to reach a
trade-off between Pd and Fa is challenging because the two
metrics are mutually exclusive. Traditional methods fail to
balance the two metrics but deep-learning methods make it.
Our TCI-Former achieves the best object-level metrics re-
sults except that our Fa is second only to RKformer (Zhang
et al. 2022a) in NUAA-SIRST. However, our Fa signifi-
cantly outperforms it in IRSTD-1k, which is a more difficult
ISTD dataset with richer scenarios. The results demonstrate
that our method can learn better representations to find the
small targets covered by low contrast and noisy background
owing to our TCIA, which mimics thermal conduction to
extract target main body features.

Visual Comparisons. Visual results with closed-up views
of different methods is shown in Fig. 4. As shown in Fig. 4,
most CNN-based methods suffer incomplete detection for
lack of extracting global contexts. Hybrid method gener-
ally outperforms CNN-based methods with fewer severely
incomplete detection cases, but still cannot predict ac-
curate target shapes. Compared with other methods, our
method significantly curtails bad cases and achieves better
boundary-aware segmentation of small targets. This is be-
cause our network can not only extract target body features
like thermal conduction, but also refine body features with
fine boundary information.

To demonstrate the target body location effect of TCIA
and boundary refinement effect of TCBM, we visualize
the segmentation head outputs of TCIA branch and TCBM
branch in Fig. 5 (a). To present the from-coarse-to-fine fea-
ture map evolution process, we visualize intermediate fea-
ture maps of all stages in encoder (En: stage1,2,3,4) and de-
coder (De: stage3,2,1) in Fig. 5 (b). We can find that the
small target areas gradually get highlighted like heat con-
ducted from warm to cold areas from the decoder stage 3,2,1
feature maps, which complies with our analogy.

Ablation Study
Impact of Each Module. The ablation study of TCIA and
TCBM is shown in Table 2. The baseline uses basic pyramid
ViT (Wang et al. 2022b) as encoder. Table 2 demonstrates
the positive effects of both designs and combining them to-
gether brings the best results, implying that they are comple-
mentary to each other. The reason is that ViT block equipped
with TCIA can extract main target body features from sur-
rounding areas in orthogonal directions, while TCBM in par-
allel refines the coarse body features with boundary details
to improve detection performance.

Impact of TCIA. To ablate TCIA, we compare our TCIA
with multi-head self-attention (MHSA) (Wang et al. 2022b),
cross-shaped window self-attention (CSWSA) (Dong et al.
2022) and the multi-head relation attention (MHRA) (Li
et al. 2022b). As shown in Table 3, our TCIA outperforms
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Method Type NUAA-SIRST IRSTD-1k
IoU ↑ nIoU ↑ Pd ↑ Fa ↓ IoU ↑ nIoU ↑ Pd ↑ Fa ↓

PSTNN (Zhang and Peng 2019) Trad 22.40 22.35 77.95 29.11 24.57 17.93 71.99 35.26
MSLSTIPT (Sun, Yang, and An 2020) Trad 10.30 9.58 82.13 1131 11.43 5.93 79.03 1524

MDvsFA (Wang, Zhou, and Wang 2019) CNN 60.30 58.26 89.35 56.35 49.50 47.41 82.11 80.33
ACM (Dai et al. 2021a) CNN 72.33 71.43 96.33 9.325 60.97 58.02 90.58 21.78

AlcNet (Dai et al. 2021b) CNN 74.31 73.12 97.34 20.21 62.05 59.58 92.19 31.56
DNANet (Li et al. 2022a) CNN 75.27 73.68 98.17 13.62 69.01 66.22 91.92 17.57

Dim2Clear (Zhang et al. 2023) CNN 77.20 75.20 99.10 6.72 66.3 64.2 93.7 20.9
FC3-Net (Zhang et al. 2022c) CNN 74.22 72.64 99.12 6.569 64.98 63.59 92.93 15.73
IAANet (Wang et al. 2022a) Hybrid 75.31 74.65 98.22 35.65 59.82 58.24 88.62 24.79

RKformer (Zhang et al. 2022a) Hybrid 77.24 74.89 99.11 1.580 64.12 64.18 93.27 18.65
ISNet (Zhang et al. 2022d) CNN 80.02 78.12 99.18 4.924 68.77 64.84 95.56 15.39

TCI-Former Hybrid 80.79 79.85 99.23 4.189 70.14 67.69 96.31 14.81

Table 1: Quantitative results of different methods on NUAA-SIRST and IRSTD-1k. The figures in bold and underline mark the
highest and the second highest ones in each column.

Method IoU ↑ nIoU ↑ Pd ↑ Fa ↓
Baseline 62.82 60.59 92.97 26.37
+TCIA 67.26 65.03 94.55 19.83

+TCIA+TCBM 70.14 67.69 96.31 14.81

Table 2: Ablation study of each module on IRSTD-1k.

Method IoU ↑ nIoU ↑ Pd ↑ Fa ↓
MHSA 66.73 64.69 94.05 19.22

CSWSA 68.23 66.05 95.36 17.41
MHRA 68.86 66.87 95.74 16.76
TCIA 70.14 67.69 96.31 14.81

Table 3: Ablation study of TCIA on IRSTD-1k.

others in all metrics, showing better small target location
ability. The reason is that in TCIA the spatial shift operation
enables the encoder block to be more aware of boundaries,
which helps extracting more complete target body features.
The superiority of TCIA demonstrates our analogy between
ISTD process and thermal conduction process is effective.

Impact of TCBM. In Table 4 we compare TCBM
(Laplace+Resblock) with basic Resblock and basic Res-
block with Roberts operator to examine the boundary feature
extraction effect of different designs. Our TCBM delivers
the best result, because (1) edge operators help basic Res-
block to extract edges and (2) the edges extracted by Roberts
operator is thick and less accurate.

Model Complexity Analysis
We also compare the model complexity of different methods
in terms of parameter number (M), FLOPs (G) and inference
time (s), as shown in Table 5. Compared with other methods,
our method doesn’t have many parameters and has accept-
able FLOPs and inference time. This is because we squeeze
the dimensions of q, k, v before attention operations in our

Method IoU ↑ nIoU ↑ Pd ↑ Fa ↓
ResBlock 68.93 66.62 95.90 16.35

Roberts+ResBlock 69.51 67.38 96.02 15.70
TCBM 70.14 67.69 96.31 14.81

Table 4: Ablation study of TCBM on IRSTD-1k.

Method Param FLOPs Inf

ACM (Dai et al. 2021a) 0.52 2.02 0.01
DNANet (Li et al. 2022a) 4.7 56.34 0.15

IAANet (Wang et al. 2022a) 14.05 18.13 0.29
RKformer (Zhang et al. 2022a) 29.00 24.73 0.08

TCI-Former 3.66 5.87 0.04

Table 5: Comparison of the model parameters (M), FLOPs
(G) and inference time (s) of different methods.

TCIA, which reduces model parameters and improves effi-
ciency. Our model reach a general balance among different
model complexity indicators.

Conclusion

Motivated by the analogy of pixel movement during ISTD
process and thermal conduction in thermodynamics, we pro-
pose TCI-Former for ISTD. We first derive PMDE for the
image domain from thermodynamic equation. We then ap-
ply finite difference method to PMDE and devise TCIA and
embed it into encoder block to extract target main body fea-
tures by simulating the thermal conduction process. We also
propose TCBM based on PMDE to parallelly refine the tar-
get body features with fine boundary details. Experiments
on NUAA-SIRST and IRSTD-1k prove the superiority of
TCI-Former, which explores a new research routine.
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