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Abstract

Recent strides in Text-to-3D techniques have been propelled
by distilling knowledge from powerful large text-to-image
diffusion models (LDMs). Nonetheless, existing Text-to-
3D approaches often grapple with challenges such as over-
saturation, inadequate detailing, and unrealistic outputs. This
study presents a novel strategy that leverages explicitly syn-
thesized multi-view images to address these issues. Our ap-
proach involves the utilization of image-to-image pipelines,
empowered by LDMs, to generate posed high-quality images
based on the renderings of coarse 3D models. Although the
generated images mostly alleviate the aforementioned issues,
challenges such as view inconsistency and significant content
variance persist due to the inherent generative nature of large
diffusion models, posing extensive difficulties in leveraging
these images effectively. To overcome this hurdle, we advo-
cate integrating a discriminator alongside a novel Diffusion-
GAN dual training strategy to guide the training of 3D mod-
els. For the incorporated discriminator, the synthesized multi-
view images are considered real data, while the renderings of
the optimized 3D models function as fake data. We conduct a
comprehensive set of experiments that demonstrate the effec-
tiveness of our method over baseline approaches.

Introduction
In recent years, the field of text-to-image has witnessed re-
markable progress, sparking a surge of interest within the
research community to extend this advancement to the do-
main of 3D generation. This enthusiasm can largely be at-
tributed to the emergence of methods capitalizing on pre-
trained 2D text-to-image diffusion models (Sohl-Dickstein
et al. 2015; Ho, Jain, and Abbeel 2020; Song et al. 2021).
By harnessing the immense volumes of training image data,
these models acquire a comprehensive understanding of ob-
ject appearance and geometry. Such advances have paved
the way for text-to-3D generation without the explicit need
for 3D datasets, showcasing an unparalleled combination of
flexibility, diversity, and potential for cost and time savings.

A cornerstone in this domain is the innovative work of
Dreamfusion (Poole et al. 2022). Their introduction of the
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Score Distillation Sampling (SDS) algorithm has been a
game-changer, primarily due to its capability to generate di-
verse 3D objects using mere textual prompts (Poole et al.
2022). Despite its revolutionary approach, it comes with
its set of challenges. A significant limitation is its control
over the geometry and texture of the generated models,
often leading to issues like over-saturation and the multi-
face appearance of models (as depicted by coarse models
in Fig. 1). Furthermore, there is an observed inefficacy in
improving the model quality by merely amplifying the tex-
tual prompts (Poole et al. 2022; Lin et al. 2022; Wang et al.
2023).

To address these challenges, our research seeks to present
an enhanced methodology for 3D generation. At its core,
our method emphasizes the explicit synthesis of multi-view
images of the intended 3D model, subsequently employing
these images for 3D object reconstruction. This process be-
gins by utilizing an existing text-to-3D generation model,
such as DreamFusion (Poole et al. 2022), to craft a rudi-
mentary depiction of the object. By rendering these foun-
dational models, we gain an elemental representation of the
object’s geometry and spatial arrangement. Building upon
these initial renderings, our method refines the view images
using an image-to-image (I2I) generation pipeline (Zhang
and Agrawala 2023; Brooks, Holynski, and Efros 2023;
Rombach et al. 2022). By focusing on generating 2D im-
ages, a task that is simpler and more extensively studied, we
can employ a range of techniques to enhance the image qual-
ity, resulting in the creation of more realistic and detailed
images from different views of the 3D objects.

However, our approach is not without its unique set of
challenges. The independent view generation can lead to
multi-view inconsistencies, such as differences in textures
and geometries. These inconsistencies pose a significant bar-
rier to traditional 3D reconstruction methods and hinder
them from producing satisfactory outcomes. To circumvent
this obstacle, we introduce a discriminator paired with an
adversarial loss to guide the learning of 3D models (Good-
fellow et al. 2014; Chan et al. 2022). Here, we treat the en-
hanced multi-view images generated by I2I models as real
data and the renderings of the optimized 3D models as fake
data. By leveraging adversarial losses, our model effectively
addresses these multi-view discrepancies, significantly en-
hancing the stability of training and improving the overall
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3D model of Deadpool, full body, highly detailed
Coarse NeRF Refined NeRF

a model of a house in Tudor style
Coarse NeRF Refined NeRF

a DSLR photo of fresh broccoli, 4K
Coarse Mesh Refined Mesh

a bunch of yellow rose, highly detailed
Coarse Mesh Refined Mesh

NeRF Edited by OursNeRF Edited by 
Prompt Replacement

3D model of hulk

Coarse NeRF

a red hulk, red skin

Mesh Edited by OursMesh Edited by 
Prompt Replacement

a bunch of pink Chrysanthemum

Coarse Mesh

a bunch of yellow Chrysanthemum

Figure 1: Results and applications of IT3D. Top: high-resolution text-to-3D Refinement. IT3D can refine the texture and geom-
etry of 3D models generated by diffusion prior. Bottom: high-resolution prompt-based editing. Our method can edit 3D models
given a prompt. Naively editing 3D models by prompt replacement would potentially cause an editing failure.

quality of the generated 3D objects.

Our method, termed IT3D, presents itself as a versatile
plug-and-play solution, seamlessly integrating with any text-
to-3D methodology that draws upon 2D diffusion priors.
Our method is versatile, supporting a range of 3D output
representations such as meshes and NeRFs. An additional
advantage is its capacity to efficiently modify the appearance
of 3D models using text, with examples illustrated in Fig. 1.
Empirical evaluations further reveal that our approach can
accelerate training convergence, which in turn, reduces the
number of required training steps and results in comparable

overall training time.
We provide comprehensive experimental results, both

qualitative and quantitative, to validate the effectiveness of
our methods. Our empirical findings show that our proposed
method significantly improves the baseline models in terms
of texture detail, geometry, and fidelity between text prompts
and the resulting 3D objects.

Related Work
In this section, we review the literature related to text-to-3D
generation. Our examination centers on two principal areas:
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the emergence of diffusion models for image generation and
the evolution of text-to-3D generation methods.

Text-to-Image Diffusion Models
The recent surge in generative model research has been
prominently characterized by the rise of diffusion models.
Incorporating textual prompts within the diffusion model
has proven to be a critical step toward creating high-caliber
text-to-image diffusion models. Renowned models in this
domain such as GLIDE (Nichol et al. 2021), DALL·E
2 (Ramesh et al. 2021), Imagen (Saharia et al. 2022), and
StableDiffusion (Rombach et al. 2022), leverage textual
prompts as guiding parameters during the image generation
process. As a result, these models have demonstrated signif-
icant competence in creating high-quality images that mirror
the descriptions provided by the accompanying text.

Text-to-3D Generation
The groundbreaking work of DreamFusion (Poole et al.
2022) led the way by introducing the Score Distillation Sam-
pling (SDS) method. This innovative technique optimizes
3D models using diffusion prior. Subsequent models built
upon these pioneering developments, seeking to further en-
hance and refine the 3D generation process (Lin et al. 2022;
Chen et al. 2023; Wang et al. 2023; Zhu and Zhuang 2023;
Wang et al. 2022; Tang et al. 2023; Seo et al. 2023). For in-
stance, Magic3D (Lin et al. 2022) sought to boost the resolu-
tion and learning speed of DreamFusion by utilizing a two-
stage optimization strategy incorporating a sparse 3D hash
grid structure. Similarly, DreamBooth3D integrated Dream-
Booth (Ruiz et al. 2023) and DreamFusion to facilitate
the personalization of text-to-3D generative models using
a few subject images. Additionally, ProlificDreamer (Wang
et al. 2023) presented variational score distillation (VSD), a
principled particle-based variational framework, to improve
text-to-3D generation.

The work most closely related to ours is Dream-
Booth3D (Raj et al. 2023). Similar to our approach, Dream-
Booth3D involves generating datasets based on renderings
of coarse models and enhancing them using image-to-image
pipelines. However, there are distinct differences between
our methods and DreamBooth3D in two main aspects.
Firstly, DreamBooth3D primarily focuses on image-to-3D
and requires a few subject images to fine-tune a DreamBooth
model (Ruiz et al. 2023), resulting in a low-variance dataset
for a single subject. In contrast, our method is geared to-
wards enhancing text-to-3D generation. We generate high-
variance datasets without the need for any tuning on large
diffusion models. Secondly, our methods make more effi-
cient use of the generated datasets by leveraging a 3D GAN.
This approach proves superior to using an L2 loss with view
and content-inconsistent datasets, as illustrated in Fig. 3.

Preliminary
Dreamfusion
The text-to-3D generation achieved by DreamFusion (Poole
et al. 2022) is composed of two key components: a neural

scene representation, referred to as the 3D model, and a pre-
trained text-to-image diffusion-based generative model that
provides diffusion prior.

The 3D model, denoted as a parametric function x =
g(θ), can produce images x at specified camera poses. In this
context, g refers to the chosen volumetric renderer, while θ
stands for a coordinate-based MLP representing a 3D vol-
ume. The diffusion model ϕ is accompanied by a learned de-
noising function ϵϕ(xt; y, t), which predicts sampled noise ϵ
based on the noisy image xt, noise level t, and text embed-
ding y. This denoising function supplies the gradient direc-
tion to update θ, aiming to guide all rendered images towards
high-probability density regions conditioned on the text em-
bedding under the diffusion prior.

DreamFusion introduces Score Distillation Sampling
(SDS) to compute the gradient as follows:

∇θLSDS(ϕ, g(θ)) = Et,ϵ

[
w(t)(ϵϕ(xt; y, t)− ϵ)

∂x

∂θ

]
. (1)

Here, w(t) denotes a weighting function. The scene model
g and diffusion model ϕ are modular elements within the
framework, allowing for flexible choices.

Despite the success of DreamFusion, over saturation, in-
adequate detailing, and unrealistic outputs can often be ob-
served in text-to-3D method based on diffusion prior.

Method
This study aims to address prevalent issues in prior text-to-
3D methods, namely over-saturation, lack of details, and un-
realistic outputs (Poole et al. 2022; Lin et al. 2022; Wang
et al. 2023). While these challenges persist within the field
of text-to-3D, substantial progress has been achieved in mit-
igating them by employing 2D image generation techniques
driven by diffusion models. Building on this insight, we seek
to tackle these concerns through the incorporation of 2D
image Wgeneration techniques (Fig. 2). We will show that
high-quality posed datasets that are free from the aforemen-
tioned issues can be generated at a low cost (Section 4.1).

However, the challenges of view inconsistency and con-
tent inconsistency persist due to the inherent generative na-
ture of large diffusion models (Zhang and Agrawala 2023;
Rombach et al. 2022). This inherent nature leads to consid-
erable difficulties in effectively leveraging these generated
images. To harness the potential of the generated dataset
more effectively, we propose an innovative approach involv-
ing the integration of a discriminator (Chan et al. 2022).
This discriminator serves to distill knowledge from the gen-
erated datasets, thereby guiding the training process of the
3D model (Section 4.2).

Despite the proficiency of 3D GANs in accommodating
high variance datasets, the computational expense associ-
ated with training a 3D GAN to simulate realistic textures
and intricate details renders it impractical for text-to-3D ap-
plications (Chan et al. 2022). To expedite the training pro-
cess, we confine the size of the generated dataset to ap-
proximately two hundred samples. However, this diminu-
tive dataset proves inadequate for training a discriminator
that can solely fine-tune the 3D model, as the discrimi-
nator quickly overfits to such limited data (as depicted in
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Coarse 3D Model

Render 
2D image

Add Noise Text-to-Image 
Diffusion

Discriminator
Refined 3D Model

SDS Loss

Discrimination Loss

a DSLR photo of a bunch of white jasmine
Image-to-Image 

Pipeline

Fake Data

Real Data

Figure 2: Pipeline of IT3D. Begin from a coarse 3D model, IT3D first generate a tiny posed dataset leveraging image-to-image
pipeline conditioning on rendering of the coarse 3D model. Then incorporate a randomly initialized discriminator to distill
knowledge form the generated dataset and update the 3D model with discrimination loss and SDS loss

(a) L2 Loss (c) L2 Loss + SDS Loss(b) GAN Loss (d) GAN Loss + SDS Loss (Ours)
Coarse NeRF

3D model of hulk, highly detailed 

Dataset Generated by image-to-image Pipeline 

Figure 3: Top: Results for different loss setting. Bottom: Data samples generated through image-to-image pipeline. Prompt: a
3D model of hulk, highly detailed, full body. The generated dataset incorporate 60 camera views and 5 samples for each view.
Given such a tiny but high variance dataset, (a) and (b) tend to result in noised refinement without the help of strong denoising
ability of SDS loss. Comparing (c) and (d), (c) compromises to the average of generated dataset while (d) successfully bridge
the distribution gap between coarse NeRF and generated dataset.

Fig. 3). To surmount this challenge, we introduce an inno-
vative training strategy that employs a combination of diffu-
sion prior and GAN loss (Section 4.3). This strategy results
in a notable reduction in the training burden of the GAN
component.

Dataset Generation
In this section, we describe our data generation strategy in
detail. IT3D starts with a coarse 3D model parameterized
by θ, derived using a text-to-3D baseline method that con-
ditions on the prompt T . Firstly, we render the coarse 3D

model across a range of camera poses represented by C,
ultimately resulting in the creation of a dataset comprising
posed images denoted as D. Subsequent to this, we employ
image-to-image pipelines to generate a dataset of enhanced
quality, termed D′, which is conditioned on both the prompt
T ′ and the original coarse dataset D. Users may either main-
tain T ′ as equivalent to T to refine the 3D model θ, or select
a distinct T ′ to edit the 3D model θ. It is noteworthy that
IT3D does not necessitate a well-trained θ. A preliminary
3D model exhibiting the foundational shape, albeit lacking
extensive texture, is sufficient for providing depth maps or

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1240



normal maps as conditioning images for the image-to-image
pipeline.

The collection of camera poses C envelops the 3D model
in a uniform manner, with the same number of images be-
ing generated from the image-to-image pipeline for each
viewpoint. This uniform distribution of poses is crucial for
achieving an unbiased pose distribution within the dataset, a
factor of high importance for effective GAN training. In our
experimentation, the size of C ranges from 24 to 60, and 3
to 7 images are sampled for each viewpoint, contingent upon
the complexity of the 3D model.

For the image-to-image pipeline, we opt for Control-
Net (Zhang and Agrawala 2023) and Stable Diffusion (Rom-
bach et al. 2022). We extract feature maps from images in the
coarse datasets, encompassing depth maps, normal maps,
and soft-edge maps. These extracted features serve as con-
ditioning images for ControlNet, ensuring the generation of
data that retains viewpoint consistency. In the context of the
Stable Diffusion image-to-image pipeline (Rombach et al.
2022), random Gaussian noise is initially introduced to the
rendered images. Subsequently, these noise-affected images
are denoised with vanilla 2D diffusion denoising steps, ulti-
mately yielding images of elevated quality.

Handling Inconsistencies with GAN
Although the image-to-image pipeline is conditioned on fea-
ture maps extracted from the original renderings during the
generation process, it is inevitable that the generated dataset
D′ exhibits inconsistencies in terms of content and camera
views. Naively applying a plain L2 loss would yield subop-
timal results due to its inclination to align the 3D model θ
with the average content of the highly variable dataset (refer
to Fig. 3).

However, the capabilities of Generative Adversarial Net-
works (GANs) shine in scenarios involving datasets charac-
terized by high variance (Chan et al. 2022). GANs have the
ability to learn both geometry and texture-related knowledge
from such datasets, subsequently guiding the 3D model to
converge towards the same high-quality distribution exhib-
ited by the generated dataset.

In our approach, we designate the 3D model as a 3D
generator. We then integrate a discriminator initialized with
random values. In this setup, the generated dataset D′ is
treated as real data, while the renderings of the 3D model
θ represent fake data. The role of the discriminator involves
learning the distribution discrepancy between the renderings
and D′, subsequently contributing to the discrimination loss
which in turn updates the 3D model θ.

Diffusion-GAN Dual Training Strategy
Instead of relying solely on the discrimination loss, we pro-
pose an innovative Diffusion-GAN dual training strategy
that combines the strengths of the diffusion prior and dis-
crimination loss. This strategy utilizes the discrimination
loss to guide the updating direction and leverages the diffu-
sion prior to provide intricate geometry and texture details.

During the refinement phase, we fine-tune the coarse 3D
model θ using both the discriminator loss and the diffusion

prior. As the discriminator is randomly initialized, the dis-
criminator loss introduces a considerable amount of noise
along with meaningful content to the 3D model. However,
due to the robust denoising capabilities inherent in large dif-
fusion models, the diffusion prior effectively eliminates the
added noise without erasing the valuable information ac-
quired from the discriminator.

We found that this training strategy significantly reduce
the training burden of the 3D GAN. Training a 3D GAN
to achieve full convergence is highly time-consuming (Chan
et al. 2022). However, the proposed training strategy accom-
plishes full convergence within a mere 0.5 to 1.0 GPU hours.
This abbreviated refinement period, however, is insufficient
for the discriminator to thoroughly comprehend the nuances
of fine textures and geometry, as seen in result (b) in Fig. 3,
which was trained for over 10.0 GPU hours. Nonetheless,
the effectiveness of our training strategy is empirically vali-
dated.

We attribute this efficiency to the robust denoising ca-
pabilities and content dreaming capacity of the diffusion
prior. Leveraging the diffusion prior empowers the genera-
tor to closely track the discriminator’s updates at an acceler-
ated pace. As a result, the discriminator can focus on learn-
ing higher-level distribution discrepancies without spending
time on mastering minute details. Consequently, both the
generator and discriminator update at significantly higher
speeds compared to traditional vanilla 3D GANs.

It is important to note that the entire refinement process is
iterative in nature. After enhancing the 3D model’s quality,
the same process of dataset generation and refinement can
be iteratively applied to the improved 3D model, resulting
in further quality improvements. Additionally, the incorpo-
ration of a Dataset Update (DU) strategy (Shao et al. 2023;
Haque et al. 2023) can complement our training approach.

Experiments
Implementation Details
As our baseline method, we opt for the default config-
uration of text-to-3D in the Stable DreamFusion reposi-
tory (Tang 2022). This baseline approach embraces classical
SDS loss and the regularization losses outlined in Dream-
Fusion (Poole et al. 2022). It is noteworthy that our IT3D
method serves as a plug-and-play refinement technique and
can also be seamlessly applied to any text-to-3D method
based on 2D diffusion priors.

For our baseline method, complex prompts such as avatars
typically require approximately 20k steps to achieve com-
plete convergence, while simpler prompts like flowers con-
verge around 15k steps. To ensure a fair comparison, we
train the baseline method for 25K steps (1.5 to 2.5 GPU
hours) to guarantee the full convergence of the 3D model.
As for our method, we resume training from 5k to 15k steps
of the baseline method, varying based on the complexity
of the prompt. Following the resumption and dataset gen-
eration steps, we proceed to initialize a discriminator using
the same architecture as EG3D, commencing our Diffusion-
GAN dual training strategy. The learning rates for both the
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Mesh Edited by OursMesh Edited by 
Prompt Replacement

a bunch of yellow rose, highly detailed
Coarse Mesh

a DSLR photo of a bunch of white jasmine
Coarse NeRF Refined NeRF

Full-body 3D model of Darth Vader, highly detailed
Coarse NeRF Refined NeRF

a bunch of pink Chrysanthemum
Coarse Mesh Refined Mesh

a 3D model of an iron man, highly detailed, full body
Coarse NeRF Refined NeRF

a 3D model of Batman, full body, highly detailed

Coarse Mesh Refined Mesh
a DSLR photo of a green tea ice cream on an ice 

cream cone, highly detailed, 4K

Coarse Mesh Refined Mesh

a bunch of blue rose, 
highly detailed

Figure 4: More Results of IT3D. IT3D can refine the texture and geometry (body posture of Deadpool) of 3D models generated
by text-to-3D method. IT3D can also edit 3D models given a prompt.
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a marble bust of Thanos, highly detailed
Coarse NeRF Refined NeRF

a DSLR photo of a Siamese cat, 4K, highly detailed
Coarse NeRF Refined NeRF

Figure 5: IT3D can recover NeRF with mild geometry or Janus problem. Current text-to-3D methods are potentially to generate
failure cases like below examples, our method are capable of recovering failure cases with mild geometry or Janus problem.

Coarse NeRF Refined NeRFDataset Generated by image-to-image Pipeline
a 3D model of an iron man

Image-to-Image Discrimination Loss

Coarse Mesh Edited MeshDataset Generated by image-to-image Pipeline

Image-to-Image

a bunch of yellow rose a bunch of blue rose

Discrimination Loss

a 3D model of an iron man

Figure 6: Examples for generated dataset. Our method can work on high-variance dataset and can tolerate failure cases of
image-to-image pipeline (see texture of iron man dataset).

NeRF and the discriminator are set to 1e-3 and 2e-3, respec-
tively.

3D Model Refinement and Editing
In this section, we present our results for 3D model refine-
ment and editing, as depicted in Fig. 1 and Fig. 4.

We demonstrate that even with a low-quality coarse NeRF
(Fig. 5) and a generated dataset that includes failure cases
(Fig. 6), IT3D is capable of achieving a significant enhance-
ment in quality.

In Fig. 5, IT3D demonstrates success in rectifying slight
Janus problems and effectively corrects erroneous geometry,
such as character body poses.

User Study
We conduct a user study with the baseline method over 15
prompts. The renderings utilized for this study align with
the settings employed in the earlier experiments. The study
involved 45 participants, resulting in 675 pairwise compar-
isons. On average, our methods were preferred by 89.92%
in comparison to the baseline method.

Conclusion

In this paper, we propose a new plug-and-play refinement
method for text-to-3D generation. Given a coarse 3D model,
IT3D first generates posed image datasets by leveraging an
image-to-image diffusion pipeline. It then refines the coarse
3D model with a novel Diffusion-GAN training strategy. To
the best of our knowledge, our work is the first to combine
GAN and diffusion prior to improve the text-to-3D task.

Limitations. The performance of our proposed method
is limited by the performance of image-to-image pipelines.
Current image-to-image pipelines fail to generate high-
quality results when the input prompt is too complicated.
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