
Deep Linear Array Pushbroom Image Restoration: A Degradation Pipeline and
Jitter-Aware Restoration Network

Zida Chen1*, Ziran Zhang1,2*, Haoying Li1, Menghao Li1,
Yueting Chen1, Qi Li1, Huajun Feng1, Zhihai Xu1, Shiqi Chen1†

1State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University
2Shanghai Artificial Intelligence Laboratory

{zd chen, naturezhanghn, lhaoying, limh, chenyt, liqi, fenghj, xuzh, chenshiqi}@zju.edu.cn

Abstract

Linear Array Pushbroom (LAP) imaging technology is
widely used in the realm of remote sensing. However, images
acquired through LAP always suffer from distortion and blur
because of camera jitter. Traditional methods for restoring
LAP images, such as algorithms estimating the point spread
function (PSF), exhibit limited performance. To tackle this
issue, we propose a Jitter-Aware Restoration Network (JAR-
Net), to remove the distortion and blur in two stages. In the
first stage, we formulate an Optical Flow Correction (OFC)
block to refine the optical flow of the degraded LAP images,
resulting in pre-corrected images where most of the distor-
tions are alleviated. In the second stage, for further enhance-
ment of the pre-corrected images, we integrate two jitter-
aware techniques within the Spatial and Frequency Residual
(SFRes) block: 1) introducing Coordinate Attention (CoA) to
the SFRes block in order to capture the jitter state in orthog-
onal direction; 2) manipulating image features in both spatial
and frequency domains to leverage local and global priors.
Additionally, we develop a data synthesis pipeline, which ap-
plies Continue Dynamic Shooting Model (CDSM) to simu-
late realistic degradation in LAP images. Both the proposed
JARNet and LAP image synthesis pipeline establish a foun-
dation for addressing this intricate challenge. Extensive ex-
periments demonstrate that the proposed two-stage method
outperforms state-of-the-art image restoration models. Code
is available at https://github.com/JHW2000/JARNet.

Introduction
Linear array cameras are widely employed in remote sensing
for high-resolution optical imaging on the earth (Cui et al.
2023; Wang, Zhu, and Fan 2018). As shown in Fig. 1, a lin-
ear array camera contains an array of sensors arranged in
a straight line. The linear array sensor captures images at
ground scene while the whole camera moves along the push-
broom motion direction. This movement is similar to how a
broom sweeps forward. Pixels imaged at different moments
are stitched together to generate a LAP image. Due to adjust-
ments in camera attitude and periodic movement (Iwasaki
2011), inevitable jitter arises in LAP imaging. This leads to
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Figure 1: Illustration of our main idea: The stitched LAP
image suffers from distortion and blur caused by camera
jitter. To restore degraded LAP image, we propose a jitter
pre-correction and enhancement method in a two-stage man-
ner. We also design an image synthesis pipeline for training
data acquisition. Finally, our proposed JARNet outperforms
state-of-the-art methods on our LAP dataset.

pixel displacements of varying magnitudes, thereby induc-
ing distortion and blur within LAP images. Low-frequency
jitter causes image distortion effect, while high-frequency
jitter leads to blur effect (Pan et al. 2020). In practice, roll jit-
ter causes pixel offset in the cross-track direction, and pitch
jitter causes pixel offset in the along-track direction. Jitter
offsets in the along-track direction are much smaller than
that in the cross-track direction, while jitter in the yaw di-
rection is tiny enough to be neglected (Wang et al. 2017).

Many efforts have been made to remove distortion and
blur in LAP images. Their efforts are directed towards ac-
quiring more precise jitter curves, either directly measuring
from high-resolution equipment (Pan et al. 2020) or indi-
rectly predicting from degraded images (Wang et al. 2021).
However, the former is often hindered by the scarcity of
high-precision equipment, while the latter often falls short in
terms of predicting accuracy. Over the years, deep learning
has demonstrated outstanding performance in many image
restoration tasks due to its powerful data modeling and gen-
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eration capabilities. However, mainstream image restoration
methods (Cho et al. 2021; Chen et al. 2021; Zamir et al.
2022; Wang et al. 2022) are not well-adopted in LAP image
reconstruction due to the lack of jitter priors. As shown in
Fig. 6, we test seven mainstream methods and they struggle
to restore sufficient details of farmland and city buildings,
showing their limitation in LAP image restoration task.

Another obstacle is the availability of data that comes
with distortion and blur by jitter. As far as we are concerned,
there is no customized LAP image dataset. Many studies
(Zhang, Iwasaki, and Xu 2019; Wang et al. 2021) use several
sinusoidal components to simulate jitter effect in LAP im-
age (Wulich and Kopeika 1987). However, jitter in the real
world is more complicated. So how to establish an efficient
data synthesis pipeline remains a problem.

In this paper, we tackle the challenge of limited data
availability for LAP images and propose a novel restora-
tion pipeline for LAP image recovery. Inspired by Continue
Dynamic Shooting Model (CDSM) which provides a finer-
grained sampling strategy (Pan et al. 2020), we propose a
novel LAP image degradation pipeline on CDSM-based
jitter model, which simulates distortion and blur. We gen-
erate sufficient degraded LAP images from public dataset
DOTA-v1.0 (Xia et al. 2018) for building our LAP dataset.

In order to utilize jitter prior and achieve better restoration
performance, we propose JARNet, a jitter-aware restora-
tion network based on the two-stage restoration strategy.
In the first stage, we design an Optical Flow Correction
(OFC) block to refine optical flow from jitter prior. Then we
warp the degraded LAP image by the refined optical flow
to make precise pre-correction, which removes most of the
distortion. In the second stage, we design a Spatial and Fre-
quency Residual (SFRes) block, which integrates two jitter-
aware techniques of coordinate attention (Hou, Zhou, and
Feng 2021) (CoA) block and frequency branch (Mao et al.
2023). The CoA block in spatial branch captures jitter state
in orthogonal direction. The frequency branch parallel to the
spatial branch extracts both low and high-frequency jitter,
guiding the overall removal of distortion and blur. Com-
pared with state-of-the-art methods, our proposed JARNet
achieves competitive performance in LAP image restoration
task. In summary, our contributions are outlined as follows:

• We develop a novel LAP image synthesis pipeline with
CDSM integration, which achieves a finer-grained level
of simulation fidelity and boosts restoration performance.

• We propose the first jitter-aware restoration network, em-
ploying optical flow correction and two jitter-aware tech-
niques to utilize both spatial and frequency information.

• Extensive experiments show that our method achieves
superior results (+ 1.28dB in PSNR) compared with
state-of-the-art methods on our LAP dataset.

Related Work
LAP Image Restoration for Remote Sensing
Many efforts have been made to remove distortion and
blur effects in LAP images. For distortion caused by low-
frequency jitter, many researchers improve the accuracy of

jitter detection for image resampling. While high-precision
attitude sensors (Tang et al. 2014) directly measure the atti-
tude of linear array cameras, the feasibility is constrained
by its economic viability. Some works focus on leverag-
ing parallax imaging systems across distinct spectral bands
within multispectral images for indirect prediction of jitter
state (Hu, Zhang, and Liu 2018). Nevertheless, such strate-
gies are often rendered inapplicable within the context of
panchromatic LAP images. Furthermore, solutions based on
deep learning have also been explored to predict jitter curves
(Zhang, Iwasaki, and Xu 2019). However, these approaches
only work within a limited range of jitter amplitude.

For blur effects caused by high-frequency jitter, tra-
ditional techniques are divided into blind and non-blind
restoration methods. The former targets scenarios where
blur kernel remains unknown, while the latter undertakes al-
gorithms based on the point spread function (PSF) (Vimal
2019; Chen et al. 2013). Most studies usually apply the same
PSF to the entire image, because jitter is regarded as uniform
within a short imaging interval (Pan et al. 2020). However,
this assumption is invalid for high-frequency jitter.

As the real LAP image data is rare, researchers often
(Zhang, Iwasaki, and Xu 2019; Wang et al. 2021) simu-
late jitter effects by using multiple sinusoidal components
(Wulich and Kopeika 1987). However, jitter in the real world
is more intricate. Consequently, establishing an effective
data synthesis pipeline remains a challenge. In this paper, we
establish a CDSM-based LAP image degradation pipeline to
acquire sufficient LAP data. We utilize deep learning tech-
nology and propose JARNet, to process distortion and blur
in a two-stage restoration manner. We remove most of the
distortions with jitter prior processed by CDSM in the first
stage. Then we deal with the rest of distortion and blur effect
by restoration network in the second stage.

Learning-based Single Image Restoration
Deep learning has emerged as a powerful tool for learn-
ing data-driven models end-to-end, especially in low-
level vision tasks (e.g. image restoration). Many methods
have achieved remarkable performance on public degraded
datasets (Nah, Hyun Kim, and Mu Lee 2017; Abdelhamed,
Lin, and Brown 2018; Li et al. 2023), proving their potential
in natural image restoration. These methods often employ
multi-scale architectures. For example, MIMO-UNet (Cho
et al. 2021) utilizes multi-scale inputs and outputs, HINet
(Chen et al. 2021) applies a two-stage UNet, and NAFNet
(Chen et al. 2022) leverages a simplified UNet backbone.
Some transformer-based approaches utilize self-attention
mechanism and reduce time complexity of vanilla vision
transformer (Dosovitskiy et al. 2021), such as Uformer
(Wang et al. 2022), Restormer (Zamir et al. 2022) and Strip-
former (Tsai et al. 2022). However, such mainstream im-
age restoration methods do not work well in LAP image
restoration task due to the domain gap between LAP and
natural imaging scenes. With the refined optical flow from
OFC block and two jitter-aware techniques of CoA block
and frequency branch, our JARNet can capture jitter state in
orthogonal direction and extract jitter at different frequen-
cies, which is well-adopt in LAP image restoration.
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Figure 2: Overall degradation and restoration pipeline for LAP images. (a) Proposed LAP image degradation pipeline. (b)
Proposed CDSM-based jitter map generating procedure. (c) Proposed two-stage restoration pipeline for LAP images. (d) Visu-
alization of jitter curve in (b). From upper left to lower right: ideal jitter curve, the average of finer-grained ideal jitter samples
from CDSM, noisy jitter curve, and the average of finer-grained noisy jitter samples from CDSM. For simplicity, we only dis-
play jitter curve in the roll direction. (e) Visualization of optical flow from noisy jitter map.

Proposed Method
We first introduce the principle of LAP jitter with the
CDSM-based dense sampling strategy. On this basis, we
propose an image synthesis pipeline for LAP image degra-
dation. Finally, we present the jitter-aware image restoration
network, JARNet, in a two-stage restoration manner.

CDSM-Based Jitter Model
For linear array sensors in the remote sensing field, the main
factor of degradation is the image deformation and blur ef-
fect caused by the camera jitter. The jitter can be described
by a series of time-varying sinusoidal functions (Wulich and
Kopeika 1987) in Eq. 1:

ϕd(t) =

N∑
i

Ai sin (2πfit+ φi) , (1)

where ϕd is a time-varying jitter angle curve in a certain
direction, A, f and φ are jitter amplitude, jitter frequency,
and initial random phase, respectively. N means the num-
ber of sinusoidal components. Due to tiny ϕd, the pixel off-
set on the sensor caused by jitter can be approximated by
Jd = ϕd

f
µ , where Jd is the number of pixel offset in a cer-

tain direction, f is focal length of optical system, and u is
pixel size of linear array sensor. Proportional to ϕd, Jd con-
sists of various sinusoidal components. As shown in Fig. 2
(b), (d), we obtain ideal jitter curve Jd for LAP image degra-
dation pipeline by jitter simulator in Eq. 1. The real jitter
curve measured by gyroscopes is noisy that contains much

measurement error. We denote it as noisy jitter curve. How-
ever, it is difficult to obtain sufficient noisy jitter curves in
the real world. Therefore, we simulate noisy jitter curve for
LAP two-stage restoration pipeline by adding measurement
error to the ideal jitter curve.

It is worth noting that ideal jitter curve from jitter simu-
lator simulates image distortion with only tiny blur effect.
And correcting deformed LAP image directly by noisy jit-
ter curve is imprecise. So we introduce CDSM into our jitter
model to address these issues, which will be discussed in
Section and Section . CDSM provides a denser sampling
strategy (Pan et al. 2020). Without CDSM, we sample jitter
curve at the time interval of imaging τ . In other words, in
Eq. 1, t ⊆ kτ , where k is column pixel index in LAP image.
With the application of CDSM, we utilize a shorter time in-
terval for finer-grained sampling. Derived from Eq. 1, The
CDSM-based jitter model is depicted by Eq. 2:

Jsub
d (t,m) =

N∑
i

A
′

i sin
(
2πfi(t+

m

M
τ) + φi

)
, (2)

where Jsub
d is the subdivision jitter curve, A

′

i = Ai
f
µ , M is

subdivision number, m is subdivision index, τ is time inter-
val of imaging. With CDSM, the sample time interval be-
comes τ

M , achieving finer-grained sampling. In the upper
right and lower right of Fig. 2 (d), we visualize the effect
of CDSM by averaging finer-grained jitter curves in Eq. 3:

JCDSM
d (k) =

1

M

M∑
m

Jsub
d (kτ,m), (3)



Degraded LAP Image Ground Truth

Figure 3: Examples of our LAP image dataset. The 1st and
3rd columns are simulated LAP images from our proposed
degradation pipeline. The 2nd and 4th columns are the cor-
responding original clean scene.

where JCDSM
d is jitter curve processed by CDSM. Com-

pared to their original state, the ideal jitter curve shows only
minor changes, while the noisy jitter curve is smoothed.

LAP Image Degradation Pipeline
Fig. 2 (a) illustrates the pipeline of generating degraded
LAP images from original clean scene. Firstly, we apply in-
verse gamma correction for original clean image to obtain
the energy representation of the scene, as the sensor noise
follows Gaussian-Poisson distribution in this domain. Next,
we deform the image by ideal jitter map. Finally, Gaussian-
Poisson noise is added to the deformed image.

Ideal jitter map determines the amount of jitter offset
for each pixel in LAP image. Given a LAP image with
shape of (H,W, 1), where the width direction is the push-
broom direction, we establish a sampling time array t ⊆
{τ, 2τ, ...,Wτ}. According to Eq. 2, we calculate a finer-
grained ideal jitter sample in a certain direction from CDSM
with a shape of (W, 1), denoted as J̃sub

d . The height direc-
tion represents the direction of the linear array sensor. Since
all the pixels are imaged at the same time, their jitter states
remain consistent. So we simply duplicate the jitter sample
along the height direction to a shape of (H,W, 1). Subse-
quently, we concatenate jitter from roll and pitch direction,
resulting in an ideal jitter map with a shape of (H,W, 2). Eq.
4 shows the process above.

Jsub(m) = C
(
D(J̃sub

roll(m), h),D(J̃sub
pitch(m), h)

)
, (4)

where Jsub is the mth subdivided ideal jitter map. D is du-
plicate operation. h represents the height direction. C is con-
catenate operation. Finally, we make a grid sample to deform
LAP image by several subdivision ideal jitter maps. Since
the pixel offset may not be an integer, we apply bilinear in-
terpolation during resampling. The LAP image degradation
pipeline is depicted by Eq. 5:

I lq =
1

M

M∑
m

G
(
(Igt)γ , Jsub(m)

)
+ n, (5)

where I lq is the degraded LAP image, Igt is the original im-
age, γ is inverse gamma correction coefficient, G denotes
grid sample operation, and n is Gaussian-Poisson noise.
Through averaging deformed LAP images from ideal jit-
ter maps with different subdivision indexes, we successfully
introduce blur effect into degraded LAP image thanks to
CDSM-based jitter model.

Finally, we establish our LAP dataset through our pro-
posed degradation pipeline, which contains degraded-clean
LAP image pairs. We demonstrate two LAP image pairs and
their zoom-in details in Fig. 3.

Jitter-Aware Restoration Network
To restore the LAP images from the pixel displacement
and blur caused by camera jitter, we propose a jitter-aware
restoration network, JARNet, which restores LAP images in
two stages, as shown in Fig. 2 (c). The first stage is called
the pre-correction stage, where most of the distortion in de-
graded LAP image is removed by optical flow. Noticeably,
we introduce Optical Flow Correction (OFC) block in JAR-
Net to enable more precise warping and effective distortion
removal. The second stage is called the enhancement stage,
where we employ a Spatial and Frequency Residual (SFRes)
block in the U-shaped network to further enhance the pre-
corrected LAP image. The two-stage restoration strategy of-
fers us an effective approach to enhance the performance of
state-of-the-art methods in LAP image restoration task. We
will introduce the two stages, the proposed jitter-aware tech-
niques, and losses in the following paragraphs.
Pre-correction Stage and OFC Block Since jitter state
provides degradation information, we attempt to use it as
prior to warp the distorted LAP images in the pre-correction
stage. Specifically, we simulate several subdivided noisy jit-
ter maps from noisy jitter curve as shown in Fig. 2 (b), whose
process is similar to ideal jitter map. Then we average all
the subdivided noisy jitter maps, assisting in smoothing the
noise thanks to CDSM-based jitter model. Subsequently, the
degraded LAP image is warped by optical flow in Eq. 6,
which is approximated as the inverse of noisy jitter map:

Iwarp = G(I lq, ω) ≈ G(I lq,−Jnoisy)

= G
(
I lq,− 1

M

M∑
m

Jsub
noisy(m)

)
,

(6)

where Iwarp is the pre-corrected image, most of whose dis-
tortions are removed. ω denotes optical flow, and Jnoisy de-
notes noisy jitter map. Fig. 2 (e) shows the optical flow map
with shape of (H,W, 2). The vector at each pixel represents
direction and relative magnitude of pixel offset.

Instead of warping the degraded image by original opti-
cal flow, we refine the optical flow by our proposed Optical
Flow Correction (OFC) block. As shown in Fig. 5, the OFC
block has a shallow attention-based convolution architecture
and employs the SCA module (Chen et al. 2022) to reweight
feature map of optical flow between roll and pitch directions,
which assists better embedding of jitter prior. Then we uti-
lize the refined optical flow to warp the degraded image.
Enhancement Stage and SFRes Block Since optical
flow is calculated approximately, there still remains little
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distortion and blur in pre-corrected LAP image. In the en-
hancement stage, we further improve the LAP image quality
by a U-shaped network with Spatial and Frequency Residual
(SFRes) blocks as key blocks, as illustrated in Eq. 7:

IR = N(Iwarp; Θ), (7)

where IR is restored image. N is restoration network. Θ
is parameter set in image restoration network. As shown in
Fig. 4, the enhancement stage adopts a U-shaped network
with skip connections between the encoder and the decoder.
After the initial convolution layer, each level of encoder and
decoder uses a series of SFRes blocks, inspired by the de-
sign of NAFNet block (Chen et al. 2022). The SFRes block
includes a spatial branch, a frequency branch, and a residual
path, taking advantage of both local and global information.
In both of the two kinds of branches, we adopt jitter-aware
techniques to further improve the LAP image quality.

The spatial branch of SFRes block employs coordinate
attention (CoA) (Hou, Zhou, and Feng 2021) block to
reweight feature map in the vertical and horizontal directions
of LAP image. With the input feature shape of (H,W,C),
CoA outputs two attention maps with shapes of (H, 1, C)
and (1,W,C), respectively. Then element-wise multiplica-
tion is applied between the input feature map and attention
maps. CoA block helps capture the jitter state in orthogonal
directions for better LAP image restoration.

The frequency branch (Mao et al. 2023) in the SFRes ap-
plies fast Fourier transform algorithm to convert the feature

map to the frequency domain. Each pixel of feature map in
frequency branch contains global information of LAP im-
age, which not only extracts both low and high-frequency
jitter but also assists in restoring high-frequency details.
Losses To supervise the training of JARNet, we apply a
restoration loss Lres and an optical flow loss Lflow in the
total loss function Ltotal, as illustrated in Eq. 8:

Ltotal = Lres + λ1 · Lflow, (8)

where λ1 = 0.1. The refined optical flow ωR is su-
pervised by noise-free optical flow ωgt, where ωgt ≈
− 1

M

∑M
m Jsub(m). We define the flow loss in Eq. 9:

Lflow = L1(ω
R, ωgt), (9)

where L1 is mean absolute error loss function. Lflow is uti-
lized to constrain the optimization of the optical flow. We
train OFC block as part of JARNet in a joint end-to-end man-
ner. We apply a restoration loss to supervise the training of
JARNet between IR and Igt in Eq. 10:

Lres = L1 + λ2 · Lpercep + λ3 · Lfft, (10)

where λ2 = 10−4 and λ3 = 0.1. Lres contains 3 compo-
nents, mean absolute error loss, perceptual loss (Johnson,
Alahi, and Li 2016), and FFT loss (Cho et al. 2021).

Experiments
Dataset
We utilize DOTA-v1.0 dataset (Xia et al. 2018) as our
source of clean data, which is originally designed for ob-
ject detection in aerial images. We apply our proposed LAP
image degradation pipeline on training set of DOTA-v1.0,
which contains 2,806 images, to create our simulated LAP
dataset. We crop each image into a size of 640 × 480. For
degradation parameter, f ∈ {1000, 2000, 3000, 4000} in
Hz, Aroll ∈ {4, 1.5, 1.0, 0.5} in pixel number, Apitch ∈
{1, 0.5, 0.3, 0.2} (Teshima and Iwasaki 2007; Zhu et al.
2018), τ = 3.54 × 10−5s, M = 6. We simulate four
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Figure 6: Visual comparison of different restoration methods on our LAP dataset.

main sinusoidal components. To promise a larger degrada-
tion space, for each cropped image we multiply amplitude
and frequency respectively by a vibration factor, where am-
plitude vibration factor satisfies Gaussian distribution with
µ = 1, σ = 0.1 and frequency vibration factor satisfies
Gaussian distribution with µ = 1, σ = 0.01. The Gaussian-
Poisson noise is applied with σgauss = 0.01, λpoisson =
10−4. The maximum jitter measurement error is 20% of cur-
rent jitter offset. Overall, we obtain 20,614 train image pairs
and 2,577 test image pairs in our synthetic LAP dataset.

Implementation Details
Our experiments are all trained and evaluated on our LAP
image dataset. We set our batch size as 4 and training patch
size as 128 × 128. We train our JARNet from scratch for
450k steps on a single NVIDIA GeForce RTX 4090 GPU
with 24GB of memory, which takes approximately 26 hours.
We apply AdamW (Loshchilov and Hutter 2019) optimizer
(β1 = 0.9, β2 = 0.999, weight decay 10−3). Cosine learn-
ing rate strategy is applied from 3 × 10−4 to 10−7. We
compare our proposed method with other state-of-the-art
approaches on our LAP image dataset. For a fair compari-
son, other methods are all trained from scratch on our LAP
dataset. Except for batch size, patch size, and training steps,
we follow the training protocols of each method if not spec-
ified. In testing, we use PSNR, SSIM, and gradient magni-
tude similarity deviation (GMSD) (Xue et al. 2013) as our
evaluation metrics with the full image size of 640× 480.

Comparisons with State-of-the-Art Methods
We compare the proposed method on our LAP dataset with
the following RGB-based methods: MIMO-UNet+ (Cho
et al. 2021), HINet (Chen et al. 2021), Uformer-B (Wang
et al. 2022), NAFNet (Chen et al. 2022), Restormer (Zamir
et al. 2022), Stripformer (Tsai et al. 2022), and FNAFNet
(Mao et al. 2023). Some spectral-based methods, such as
MST (Cai et al. 2022b), MST++ (Cai et al. 2022c), CST
(Cai et al. 2022a), DAUHST (Cai et al. 2022d), and HD-
Net (Hu et al. 2022), are also evaluated. Quantitative evalu-
ation results in Tab. 1 demonstrate that our proposed JAR-
Net outperforms all other state-of-the-art methods in terms
of PSNR, SSIM, and GMSD. Compared to the existing best
single image restoration method, JARNet achieves 39.02dB
in PSNR and 0.9493 in SSIM, which corresponds to 1.28dB
improvement in PSNR, 0.0104 improvements in SSIM and

Models ↑PSNR(dB) ↑SSIM ↓GMSD ↓Params(M)
MIMO-UNet+ 34.94 0.9127 0.0447 16.10

Uformer-B 36.08 0.9213 0.0439 50.88
HINet 36.18 0.9208 0.0376 88.66

FNAFNet 36.94 0.9311 0.0370 68.02
NAFNet 36.95 0.9291 0.0366 67.89

Restormer 37.51 0.9366 0.0344 26.12
Stripformer 37.74 0.9389 0.0326 19.71

MST-L 35.67 0.9155 0.0464 2.03
MST++ 35.65 0.9154 0.0456 1.33
CST-L∗ 35.16 0.9083 0.0499 3.00

DAUHST-9stg 36.08 0.9214 0.0435 6.15
HDNet 34.43 0.8958 0.0595 2.37

JARNet(Ours) 39.02 0.9493 0.0239 13.46

Table 1: Quantitative results of different RGB-based and
spectral-based restoration methods and JARNet. ‘Params’
denotes the number of parameters.

0.0087 improvements in GMSD. Fig. 6 presents visual com-
parison of an interior details of farmland and city buildings.
Our proposed JARNet not only effectively removes jitter in
LAP images but also successfully recovers more details in
the contour of farmland and buildings. While other existing
methods can effectively remove deformation caused by jit-
ter, most of them fail to remove blur effect and recover suf-
ficient details. In contrast, JARNet utilizes the prior knowl-
edge of jitter to make pre-correction in the first stage and re-
duces the learning difficulty for subsequent restoration net-
work so as to pay more attention to image details.

Ablation Studies
Effectiveness of Pre-Correction

To validate the effectiveness of pre-correction, we utilize jit-
ter prior to enhance other methods in a two-stage restora-
tion manner as shown in Fig. 2 (c). Tab. 2 shows that
performances of all methods enhanced by jitter prior are
improved, compared with Tab. 1. Notably, Stripformer∗
achieves a slightly higher SSIM compared with our method,
while JARNet maintains the best PSNR, GMSD metric, and
relatively acceptable amount of GMACs among all meth-
ods. The pre-correction in the first stage effectively reduces
learning difficulty of restoration network in the second stage,
leading to enhanced performance for mainstream methods.



Models ↑PSNR(dB) ↑SSIM ↓GMSD ↓GMACs
MIMO-UNet+∗ 36.07 0.9402 0.0293 154.3

Uformer-B∗ 37.93 0.9431 0.0286 85.75
HINet∗ 37.97 0.9425 0.0275 170.3

FNAFNet∗ 37.70 0.9404 0.0296 63.34
NAFNet∗ 38.01 0.9428 0.0279 63.18

Restormer∗ 38.46 0.9472 0.0263 140.8
Stripformer∗ 38.72 0.9500 0.0247 170.4

JARNet(Ours) 39.02 0.9493 0.0239 85.71

Table 2: Quantitative results of different enhanced RGB-
based restoration methods. All methods denoted ‘∗’ are
enhanced by pre-correction in the first stage. We evaluate
GMACs with input tensor shape of (1, 1, 256, 256).

No. Freq CoA OFC ↑PSNR ↑SSIM ↓Params(M)
1 38.17 0.9444 13.80
2 ✓ 37.98 0.9428 13.94
3 ✓ 38.50 0.9478 12.26
4 ✓ 38.56 0.9463 14.87
5 ✓ ✓ 38.69 0.9492 12.39
6 ✓ ✓ 38.44 0.9456 15.01
7 ✓ ✓ 38.69 0.9471 13.33

8(Ours) ✓ ✓ ✓ 39.02 0.9493 13.46

Table 3: Ablation of frequency branch, CoA block, and OFC
block in JARNet. ‘Freq’ denotes frequency branch.

Effectiveness of Components in JARNet
In this section, we verify the effectiveness of frequency
branch, CoA block, and OFC block in JARNet by conduct-
ing 7 extra experiments. As shown in Tab. 3, when we add
CoA block alone in No.3, we observe a significant perfor-
mance gain of 0.33dB in PSNR compared with No.1 base-
line. This improvement indicates that the CoA block is ef-
fective in extracting orthogonal jitter state. Additionally, the
number of parameters reduces by 11.2% approximately, in-
dicating the efficiency of incorporating the CoA block in our
JARNet. When we add frequency branch in No.2, the per-
formance has a decline of 0.19dB in PSNR, compared with
No.1 baseline. Nevertheless, by incorporating the global in-
formation extracted by frequency branch and jitter state ex-
tracted by CoA block, No.5 achieves better performance
compared with No.3. So we apply frequency branch and
CoA block simultaneously. Similarly, when we add OFC
block in No.4, we achieve a performance gain of 0.39dB
in PSNR, compared with No.1 baseline. This improvement
indicates that refined optical flow effectively pre-corrects de-
graded LAP image. For the best restoration performance, we
apply all three components in No.8 JARNet.

We further analyze visual results of different combina-
tions of components. As shown in Fig. 7, when the fre-
quency branch and CoA block are combined, the vertical de-
tails in the window are partly restored, which indicates that
the CoA block, along with the frequency domain branch, has
capabilities to capture jitter state and high-frequency fea-
tures. OFC block helps reconstruct zebra crossing correctly
on the edge of the degraded image. In situations where pre-

Degraded w/ CoA + Freq w/ OFC JARNet (Ours) Ground Truth

Fail Success Success

Success Fail Success

Figure 7: Visual comparison of different components.

NAFNet∗ Restormer∗ Stripformer∗ JARNet(Ours)
PSNR 36.64 37.06 37.52 38.50
SSIM 0.9270 0.9338 0.9403 0.9465

Table 4: Results on LAP dataset without CDSM.

corrected images have black edges, architectures without
OFC block fail to handle the edge details correctly. How-
ever, the application of the OFC block helps alleviate the in-
fluence of these black edges, resulting in better restoration of
edge details. Our JARNet combines advantages of all three
components and achieves high-quality restoration results.

Effectiveness of CDSM
In order to verify CDSM enhances the restoration effect of
the LAP dataset. We remove CDSM and generate a new
CDSM-free LAP dataset on which we compare different en-
hanced state-of-the-art methods. As shown in Tab. 4, other
enhanced methods suffer from a sharp performance decline
compared with results in Tab. 2, even worse than non-
enhanced versions in Tab. 1. Without CDSM, the noisy jit-
ter curve is not smoothed. Therefore, pre-correction in the
first stage does not work. However, JARNet only shows a
slight decrease in performance, because the OFC block in
the first stage compensates part of smoothing effect from
CDSM. This fully demonstrates the importance of CDSM
in LAP image restoration pipeline. CDSM helps smooth the
noisy jitter curve and obtain better pre-correction results.

Conclusion
In order to restore degraded LAP image caused by camera
jitter and overcome the obstacle of data availability, we pro-
posed a CDSM-based LAP image degradation pipeline and
created a LAP dataset. Then we presented the first jitter-
aware restoration network in a two-stage restoration manner.
In the first stage, we utilized optical flow refined by OFC
block to warp the degraded LAP image. In the second stage,
we incorporated CoA block and frequency branch in SFRes
block to realize jitter-aware character. CoA block captures
jitter state in orthogonal direction, while frequency branch
extracts both low and high-frequency jitter. Extensive exper-
iments demonstrate that our approach performs favorably
against state-of-the-art methods qualitatively and quantita-
tively on our LAP dataset.
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Appendix
Approximation of Optical Flow
In this section, we discuss the reason why we make an ap-
proximation between optical flow and the inverse of jitter
map. For simplicity we only consider distortion. The pro-
cess of deforming a clean image is shown in Eq. 11:

I lq(h+∆h,w +∆w) = G(Igt(h,w), J(h,w)), (11)

where h and w represent pixel position in the image, and J is
a jitter map. ∆h and ∆w is pixel displacement at original po-
sition (h,w). We pre-correct the deformed image precisely
in Eq. 12:

Iwarp(h
′
, w

′
) = G(I lq(h+∆h,w +∆w),−J(h,w)),

(12)

where h
′

and w
′

represent pixel position in the pre-corrected
image. Theoretically, we need jitter data at the original posi-
tion (h,w). However, we only have deformed image I lq(h+
∆h,w+∆w) and measured jitter data J(h+∆h,w+∆w).
We do not know where the original position (h,w) is. On
the other hand, ∆h and ∆w are probably not integers. In
practice, I lq is processed by bilinear interpolation algorithm
during the process of grid sample.

To make Eq. 12 computable, we assume the jitter data at
new position (h + ∆h,w + ∆w) is approximately equaled
to that in original position (h,w), as shown in Eq. 13:

J(h,w) = J(h+∆h,w) ≈ J(h+∆h,w +∆w), (13)

For height direction, the jitter state keeps the same, be-
cause the pixels along the height direction are imaged at
the same time. We make an approximation in the width
direction, because jitter offsets in the along-track direc-
tion are much smaller than that in the cross-track direction
(Wang et al. 2017). So we treat the inverse of jitter map
−J(h+∆h,w +∆w) as optical flow for pre-correction.

More Architecture Details of JARNet
We adopt NAFNet (Chen et al. 2022) as the backbone of
JARNet, with 4 levels of encoder and decoder. We set 32 as
the width of JARNet, with 36 SFRes blocks in total. Each
level of encoder and decoder contains 4 SFRes blocks, and
the middle bottleneck also contains 4 SFRes blocks.

We demonstrate the architecture details of the CoA block
and frequency branch in Fig. 8. The CoA block manipu-
lates attention maps in both horizontal and vertical direc-
tions. Feature map with the shape of (H,W,C) is applied
element-wise multiplication respectively with two attention
maps by the broadcast mechanism in Python.

It is worth noting that different levels of encoder and de-
coder extract information at varying levels. To control the
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Figure 8: (a) Details of CoA block (Hou, Zhou, and Feng
2021). ‘H Pool’ means global pooling operation along the
horizontal direction. ‘V Pool’ means global pooling opera-
tion along the vertical direction. ‘Hswish’ means hswish ac-
tivation function (Ramachandran, Zoph, and Le 2018). (b)
Details of frequency branch (Mao et al. 2023).

Degraded Stripformer JARNet (Ours)IJC-Net

Figure 9: Visual comparison of real LAP image ‘Lijiang’
from Yaogan-26 satellite. Please zoom in for a better view.

receptive field, we employ a window partition strategy (Mao
et al. 2023) in the frequency branch. This strategy is taken
because shallow levels focus on extracting local degradation.
On the other hand, deep levels are responsible for detecting
global jitter states. In practice, we set the window size in the
first level as 64, which means only a 64 × 64 spatial region
is considered when extracting frequency domain informa-
tion. Window partition in other levels is disabled, allowing
for feature extraction in the global context.

Real-World LAP Image Restoration Results
We conducted experiments on real-world LAP images from
Yaogan-26 satellite (Wang et al. 2017) and show results in
Fig. 9. We did the same pre-processing for degraded image
before implementing Stripformer and JARNet. Compared to
Stripformer and IJC-Net (Zhang, Iwasaki, and Xu 2019),
JARNet achieves the best visual result, where most of the
distortion and blur are removed.

More Visual Results of Restored LAP Images
As shown in Fig. 10, we demonstrate more visual compar-
isons of different restoration methods through 7 groups. Fig.
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Figure 10: More visual comparisons of different restoration methods on our LAP dataset.
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Figure 11: More visual comparisons of different compo-
nents.

11 shows more visual comparisons of different components
in our JARNet through 4 groups.

Recovery Performance on More Remote Datasets

In order to validate the generalization ability of JARNet, we
utilize the model trained on our original LAP dataset from
DOTA-v1.0 to restore other remote datasets simulated by
our degradation pipeline without finetune.

We choose AID and PatternNet as our samples. AID (Xia
et al. 2017) is a large-scale aerial image dataset by collect-
ing sample images from Google Earth imagery. AID dataset
contains 10,000 images of size 600× 600 within 30 classes.
PatternNet (Zhou et al. 2018) is a large-scale high-resolution
dataset for remote sensing image retrieval. There are 38
classes and each class has 800 images of size 256× 256.

We make two new LAP datasets (abbreviated as the orig-
inal name of the dataset) based on AID and PatternNet
through our LAP degradation pipeline, respectively. We crop
images in AID into a size of 480 × 360, while we keep the
original resolution in PatternNet. All simulated image pairs
are utilized for test. We acquire 10,000 image pairs in AID
and 30.400 image pairs in PatternNet.

As shown in Tab. 5, our JARNet keeps a good perfor-
mance while transferring to other datasets without finetune.
Compared with other state-of-the-art methods, our JARNet
keeps the performance advantage on AID and PatternNet,
showing the great generalization ability of JARNet.



Models ↑PSNR(dB) ↑SSIM ↑PSNR(dB) ↑SSIM
NAFNet 28.66 0.8798 30.46 0.8727

Restormer 32.79 0.9038 31.22 0.8863
Stripformer 32.92 0.9052 31.28 0.8869
NAFNet∗ 32.06 0.9048 31.55 0.8981

Restormer∗ 33.47 0.9204 32.15 0.9072
Stripformer∗ 33.81 0.9247 32.39 0.9107

JARNet 34.12 0.9241 33.40 0.9159

Table 5: Quantitative results on AID (Xia et al. 2017) dataset
(2nd and 3rd column) and PatternNet (Zhou et al. 2018)
dataset (4th and 5th column).
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