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Abstract

We study to generate novel views of indoor scenes given
sparse input views. The challenge is to achieve both photore-
alism and view consistency. We present SparseGNV: a learn-
ing framework that incorporates 3D structures and image gen-
erative models to generate novel views with three modules.
The first module builds a neural point cloud as underlying
geometry, providing scene context and guidance for the target
novel view. The second module utilizes a transformer-based
network to map the scene context and the guidance into a
shared latent space and autoregressively decodes the target
view in the form of discrete image tokens. The third mod-
ule reconstructs the tokens back to the image of the target
view. SparseGNV is trained across a large-scale indoor scene
dataset to learn generalizable priors. Once trained, it can ef-
ficiently generate novel views of an unseen indoor scene in a
feed-forward manner. We evaluate SparseGNV on real-world
indoor scenes and demonstrate that it outperforms state-of-
the-art methods based on either neural radiance fields or con-
ditional image generation.

Introduction
Synthesizing high-quality novel views of 3D indoor scenes
is a long-standing and challenging task in computer vision
(Hedman et al. 2016; Philip et al. 2021; Lei, Tang, and Jia
2022). Typically, this task requires dense scans from various
viewpoints as input. However, indoor scenes are often spa-
tially complex, and capturing every region of a scene can be
expensive and even intractable. To overcome this challenge,
we aim to synthesize novel views with sparse input observa-
tions, which reduces the data capture burden. An ideal ap-
proach should be capable of generating views by reasonably
filling unobserved regions with view consistency.

Sparse-view synthesis methods have gained significant at-
tention recently, particularly those based on neural radiance
fields (NeRFs) (Niemeyer et al. 2021; Deng et al. 2022;
Roessle et al. 2022), which require inputs with a certain level
of view coverage. Due to lack of image generation ability,
the above methods are intractable for filling largely unob-
served areas. Several methods (Sajjadi et al. 2022; Kulhánek
et al. 2022) use transformers (Vaswani et al. 2017) to learn
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Figure 1: The proposed SparseGNV generates novel view
images of unseen indoor scenes based on 4 observed views.

latent scene representations from 2D observations and con-
ditionally generate images given new viewpoints. However,
due to lack of explicit 3D representation, it is challenging for
these methods to synthesize visual details from unstructured
latent space. Another line of work (Gkioxari et al. 2019;
Rockwell, Fouhey, and Johnson 2021; Ren et al. 2022) fo-
cuses on generating novel views or long-term videos start-
ing from a single image, using generative networks to paint
the “outside” of a view autoregressively, but they face lim-
itations in synthesizing consistent views between multiple
frames. This leads to the core motivation of our approach:
marrying explicit 3D scene structures with image generative
models for a joint capability of generating views with lim-
ited visual clues and maintaining scene consistency.

We propose SparseGNV: a framework that learns gener-
alizable scene priors to generate novel views conditioned on
sparse RGB-D input views. SparseGNV is first trained on
a large indoor scene dataset to obtain priors that are gener-
alizable across scenes. Once trained, SparseGNV can effi-
ciently generate novel views through forward passing given
observed views of a new scene and target viewpoints, with-
out the need for per-scene optimization. To generate 2D
novel views grounded in 3D scene structures, we design
SparseGNV with three modules: a neural geometry mod-
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ule, a view generator module, and an image converter mod-
ule. The neural geometry module reconstructs a set of input
views into a 3D neural point cloud where each point is as-
sociated with an embedding vector. The neural point cloud
can be rendered to 2D color and mask images from arbi-
trary viewpoints using volume rendering following Point-
NeRF (Xu et al. 2022). Although the point cloud can be
scattered and incomplete due to input sparsity, the rendered
images still provide structural and texture clues for imaging
unobserved regions and maintaining consistency. The view
generator module generates a novel view conditioned on a
scene context and a query. The scene context is an overview
of the given scene, which consists of the observed images
and images rendered by the neural geometry module from
multiple sampled viewpoints. It provides a global context
that benefits inferring missing regions and maintaining con-
sistency. The query specifies the view that is required to gen-
erate. It consists of the rendered image from the target view-
point. The query provides guidance to retrieve information
from the scene context for generating the target novel view.
The module uses a joint convolution and transformer-based
encoder-decoder network that maps the scene context and
the query to a shared latent space, and then autoregressively
generates the novel view in the form of discrete tokens from
a codebook (van den Oord, Vinyals, and Kavukcuoglu 2017;
Ommer et al. 2020). The image converter module is a con-
volutional decoder network that can reconstruct the discrete
tokens back to 2D images in the pixel space. The codebook
of tokens provides a compact and expressive representation
for images. It enables the use of transformer models which
are powerful to align complex scene contexts and queries to
target novel views.

We evaluate SparseGNV on a real-world indoor scene
dataset (Dai et al. 2017) , and the results outperform re-
cent baselines using either neural radiance fields or condi-
tional image generation. We show example generations of
SparseGNV in Figure 1.

Contributions
• We propose SparseGNV: a learning framework to synthe-

size consistent novel views of indoor scenes with sparse
input views. The method combines neural 3D geome-
try and image generation model to enable photorealis-
tic view synthesis with consistent structure faithful to the
observations.

• We design a joint convolution and transformer-based im-
age generation network that effectively incorporates con-
textual information from 3D scene structures.

• Evaluation results on real-world indoor scenes demon-
strate that SparseGNV achieves state-of-the-art perfor-
mance of synthesizing novel views with only a few ob-
servations.

Related Work
Novel View Synthesis Novel view synthesis is a task to
produce images of scenes from arbitrary viewpoints given a
number of input views. Early work achieves photorealistic
synthesis by capturing a dense set of views (Levoy and Han-
rahan 1996; Gortler et al. 1996). Recently, neural networks

based methods have made significant progress on enabling
better synthesis quality, wider ranges of novel viewpoints,
and more compact model representation. Neural radiance
fields (NeRF) (Mildenhall et al. 2020) is a milestone work
that trains a multi-layer perceptron (MLP) to encode radi-
ance and density for producing novel views via volume ren-
dering. Following work based on NeRF extends novel view
synthesis on varies of aspects: relaxing image constraints
(Martin-Brualla et al. 2020), improving quality (Barron et al.
2021), dynamic view synthesis (Li et al. 2020; Pumarola
et al. 2020), pose estimation (Lin et al. 2021; Meng et al.
2021), rendering in real-time (Yu et al. 2021a), and object /
scene generation (Poole et al. 2022; Jain et al. 2021).

High-quality synthesis of scene views generally requires
iterative per-scene optimizations with large number of ob-
servations. As dense inputs is unavailable in many scenar-
ios, the study of few view synthesis is growing rapidly
(Sitzmann, Zollhöfer, and Wetzstein 2019; Jain, Tancik, and
Abbeel 2021; Niemeyer et al. 2021; Kim, Seo, and Han
2022; Chen et al. 2022), and one direction is to learn pri-
ors across scenes and predicts novel views (Yu et al. 2021b;
Chen et al. 2021; Wang et al. 2021; Sajjadi et al. 2022;
Kulhánek et al. 2022). PixelNeRF (Yu et al. 2021b) is a
learning framework that conditions NeRF on one or few
input images to predict continuous scene representations.
MVSNeRF (Chen et al. 2021) learns a generic deep neu-
ral network that combines plane-swept cost volumes with
volume rendering for constructing radiance fields. IBRNet
(Wang et al. 2021) is a network of MLP and ray trans-
former that estimates radiance and volume density from
multiple source views. Scene Representation Transformer
(Sajjadi et al. 2022) combines convolutional networks and
transformers to encode input images into latent scene repre-
sentations and decodes novel views. ViewFormer (Kulhánek
et al. 2022) is another transformer based approach with two
stages, where images are encoded into tokens via a code-
book network in the first stage, and the tokens of novel views
are generated autoregressively conditioned on the inputs in
the second stage. Depth priors can be helpful for novel view
synthesis (Deng et al. 2022; Roessle et al. 2022) which com-
pletes a dense depth map first to guide optimization of NeRF.
However, these methods can have poor performance given
inputs with large sparsity.

Indoor Scene Synthesis from Sparse Views Synthesiz-
ing novel view of indoor scenes is a practical task naturally
challenged by data sparsity. With incomplete RGB-D scans,
SPSG (Dai et al. 2021) generates high-quality colored re-
constructions of 3D scenes in the form of TSDF. It uses
a self-supervised approach to learn geometry and color in-
painting with adversarial and perceptual supervisions on the
2D renderings of the reconstructions. CompNVS (Li et al.
2022) is a framework to synthesis novel views from RGB-
D scans with largely incomplete scene coverage. It first en-
codes scans into neural voxel grids, and then uses a geome-
try predictor with a texture inpainter to complete the grids
with embedding. A neural render decodes the grids into
images and refined via adversarial training. These geome-
try based methods requires strong 3D completion modeling
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which are hardly adapted to open-world scenes. PixelSynth
(Rockwell, Fouhey, and Johnson 2021) synthesizes novel
view of a single image by outpainting unobserved areas
projected via 3D reasoning. LookOutsideRoom (Ren et al.
2022) synthesizes long-term video from a single scene im-
age base on an autoregressive transformer modeling consec-
utive frames. These single image based methods are unable
to maintain consistency between observations. Pathdreamer
(Koh et al. 2021) targets on generating panorama images at
novel positions given one or a few observations. It consists
of a structure generator and an image generator. The struc-
ture generator projects observations into 3D semantic geom-
etry. The image generator uses SPADE network (Park et al.
2019) to generate photorealistic views from panorama se-
mantic maps. Pathdreamer focuses on panorama images and
requires semantic labeling of indoor scene which cannot be
applied conventionally.

Methodology
In this section, we first briefly introduce the notations and
the problem statement. We then propose SparseGNV with
designs of the three modules. Lastly, we introduce the pro-
cedures of training and inference.

Notation & Problem
Let V = {(Ii, Di, πi) | i = 1, 2, ..., N} be a set of views of
indoor scenes, where Ii ∈ RW×H×3 is the i-th color image,
Di ∈ RW×H is the depth image, and πi is the camera pose.
V can be divided into an input observed view set O and a
novel view set X . Given an input sparse set of O, our prob-
lem is to generate a view image at a target novel viewpoint.
As unobserved regions can be large, generating novel views
exactly matching ground truth is not easy. We therefore fo-
cus on the photorealism of the generations and also the view
consistency.

The SparseGNV Framework
We propose SparseGNV: a learning framework incorporat-
ing 3D scene structures and image generative models to gen-
erate consistent novel views of indoor scenes given only
sparse input views. SparseGNV is trained on a large indoor
scene dataset to achieve generalization ability. Given sparse
input views of an unseen scene, SparseGNV can efficiently
generate novel views in a feed-forward manner. SparseGNV
is designed with three modules: the neural geometry module,
the view generator module, and the image converter module.
The neural geometry module takes the input views to build
a 3D neural point cloud (Xu et al. 2022) that can provide
rendered guidance images from arbitrary viewpoints. The
view generator module generates a novel view conditioned
on a scene context of global information and a query regard-
ing the target pose. The scene context and the query contain
the information provided by the rendered guidance images.
They are fed to a convolution encoder and a transformer-
based network to generate novel views in the form of dis-
crete image tokens from a codebook (van den Oord, Vinyals,
and Kavukcuoglu 2017; Ommer et al. 2020). The image con-
verter module reconstructs the tokens back to the final im-
ages through a decoder network. We show an overview of

SparseGNV in Figure 2. The detailed description of the three
modules is as follows.
Neural Geometry Module. Given an input sparse set of ob-
servations O, the neural geometry module builds an underly-
ing 3D neural point cloud, which can be used to produce ren-
dered guidance images from arbitrary poses. Those rendered
guidance images provide structural and color clues that can
complement scene representation and guide the generation
of target novel views.
The module builds a neural point cloud following Point-
NeRF (Xu et al. 2022) with two steps: 1) reconstructs a 3D
point cloud using the input O; 2) assigns each point of the
cloud an embedding vector, which is computed by MVSNet
(Yao et al. 2018) given the corresponding pixel of the ob-
served image.
With the neural point cloud, the module can produce ren-
dered color images Fi ∈ RW×H×3 (Xu et al. 2022). In
detail, given an arbitrary camera pose πi, ray marching is
performed to query a number of points on each ray. The
embedding vectors of all the queried points are mapped to
radiance and density via multi-layer perceptrons (MLPs).
Through volume rendering, a ray color is obtained and as-
signed to the corresponding pixel of the image Fi. If a ray
hits no neural point, the ray is marked as invalid. All the rays
form a validation mask Mi ∈ {0, 1}W×H indicating which
part of Fi is geometrically valid. The module output is for-
mally expressed as:

Fi,Mi = NeuralGeometry(πi,O ; θ), (1)
where θ is the parameters of module networks including the
MVSNet and the MLPs. The mask Mi can be used to filter
out the invalid part of Fi for a clear signal.

The module networks are jointly trained to produce a vi-
sually reasonable Fi with structure and color information.
The objective is regressing Fi to the ground truth color im-
age Ii on the valid rays:

min
θ

∑
i

||(Fi − Ii)⊙Mi||22. (2)

View Generator Module. The view generator module uses
a joint convolution and transformer-based network that takes
a scene context and a query as input to generate a target
novel view. The scene context is the global information that
includes two types of “previews”: reference previews and
probed previews. The reference previews are from the input
observed poses, and the probed previews are from several
sampled novel poses interpolated between the poses of the
observations. The query is a preview from the target novel
pose, which specifies the target viewpoint required to gener-
ate. Each preview of these three types is composed of four
items: 1) an observed image Ii (using an “N/A” image if un-
available); 2) a rendered color image Fi; 3) a rendered mask
image Mi; 4) a ray map Ri of origins and directions derived
from the camera pose πi (Sajjadi et al. 2022). For each pre-
view, we concatenate the corresponding Ii, Fi, Mi, and Ri

to one multi-channel image, which is then fed into a con-
volutional network with the output spatially divided into a
group of local patches Bi:

Bi = ConvNet(Ii ⊕ Fi ⊕Mi ⊕Ri). (3)
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Figure 2: The overview of SparseGNV which consists of three modules: 1) Neural geometry module; 2) View generator module;
3) Image converter module.

Each patch group Bi is additionally labeled by adding a
learnable segment embedding (Devlin et al. 2019) regard-
ing one of the three preview categories: reference, probed,
and query. This allows the model to distinguish them and
utilize information properly. We concatenate all the patches
into one sequence, and pass it into a transformer encoder
network to obtain a latent representation:

h = TransformerEncoder

(⋃
i

Bi

)
. (4)

The latent representation h is a set of hidden vectors that
encodes both scene context and query information. The tar-
get novel view can then be generated conditioned on h. Due
to the recent success of Vector Quantization (VQ) in image
synthesis (Ommer et al. 2020; Ramesh et al. 2021; Ren et al.
2022), we present the target image as VQ codebook tokens
S = {s1, s2, ..., sT }. The distribution of S is formulated as
a probability p(S|h) which can be factorized as:

p(S|h) =
T∏

t=1

p(st|S<t, h), (5)

where S<t = {s1, s2, ..., st−1}, and p(st|S<t, h) is the
probability of the t-th image token. We use a transformer
decoder to model p(S|h) by autoregressively estimating
p(st|S<t, h). In detail, the last layer of the decoder gener-
ates hidden states z, and a linear layer f(z) maps z into a
vector with the dimension of the codebook size. The proba-
bility p(st|S<t, h) is computed as softmax(f(z)). We train
the entire network by minimizing the objective of negative
log-likelihood loss on the probability estimation:

L =
∑
st∈S

− log p(st|S<t, h). (6)

Image Converter Module. The image converter module is
structurally based on a convolutional autoencoder network
that encodes an image into discrete representation and de-
codes it back to the image. In SparseGNV, the image con-
verter module plays two roles: 1) encoding a ground truth
color image I into VQ codebook tokens S for training the
view generation module; 2) decoding a generated S back to
the image at inference. The architecture of the converter net-
work follows VQ-GAN (Ommer et al. 2020).

Training & Inference
The training of SparseGNV requires two stages. In the first
stage, the neural geometry module and the image converter
module are trained separately. Given scanned views V =
{Ii, Di, πi} of an indoor scene, we randomly sample a set
of views as observations to build a neural point cloud, and
iterate Ii from V to supervise the rendered images for train-
ing the MVSNet and the MLPs jointly, as shown in Equa-
tion (2). The VQ decoder of the image converter module is
trained through a self-supervised process of encoding im-
ages into VQ tokens and subsequently decoding them back.
In the second stage, we use the neural geometry module to
produce scene contexts and queries, and supervise the view
generator module to generate VQ tokens of novel views ob-
tained by the image converter module, as shown in Equation
(6). The inference of SparseGNV is straightforward. Taking
a number of observed views, we use the neural geometry
module to build a neural point cloud. We then produce the
scene context and queries, and pass them to the view gen-
erator network. With the output latent representation h, we
autoregressively draw out the VQ tokens using multinomial
sampling. Lastly, we use the image converter module to re-
construct the VQ tokens back to the final image. Note that
there is no optimization process in SparseGNV. With a mod-
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|O| = 2 |O| = 4 |O| = 8

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Point-NeRF 9.606 0.375 0.689 11.004 0.364 0.680 13.495 0.435 0.617
PixelSynth 11.503 0.412 0.750 12.261 0.443 0.716 12.880 0.459 0.684
IBRNet 11.739 0.400 0.725 12.823 0.450 0.717 14.099 0.524 0.702
ViewFormer 14.365 0.541 0.674 14.927 0.549 0.649 15.420 0.553 0.633
DDP-NeRF 14.281 0.451 0.712 15.799 0.495 0.630 17.491 0.567 0.554

Ours w/o “R-Color” 13.157 0.426 0.699 15.124 0.553 0. 617 16.010 0.537 0.582
Ours w/o “Ray” 15.239 0.559 0.553 15.739 0.559 0.530 16.827 0.569 0.506
Ours w/o “Reference” 14.957 0.560 0.572 15.755 0.562 0.549 17.007 0.573 0.515
Ours w/o “Probed” 15.825 0.560 0.539 16.475 0.569 0.502 17.402 0.584 0.464
Ours 15.713 0.564 0.533 16.622 0.568 0.500 17.931 0.577 0.463

Table 1: Quantitative results on the ScanNet test scenes.

ern GPU, a neural point cloud of a scene can be built within
a few seconds (only once), and generating 24 novel views
takes about 0.83 second.

Experiments
Experimental Settings
Data Preparation. We use the ScanNet dataset (Dai et al.
2017), following the original train/test split, to study the pro-
posed and baseline methods. For each scan of the dataset, we
randomly capture sub-scans of consecutive 256 frames. We
then downsample the sub-scans to 32 frames (1/8 ratio) as
the samples of view sets. For a training sample, we randomly
pick 4 out of 32 frames as observed views and the rest as
novel views. For a testing sample, we randomly pick |O|=2,
4, 8 frames as observed views and the rest as novel views
for evaluation. Therefore, we have 3 groups of evaluation
results. Following the settings of (Roessle et al. 2022), we
hold out “scene0708 00”, “scene0710 00”, “scene0738 00’,
“scene0758 00”, “scene0781 00” as test scenes and ran-
domly select one sample for each scene. The comparing
resolution is set to 624 × 468 after scaling and cropping
dark borders. In the experiments, we assume accurate cam-
era poses and depths which are provided to all the compari-
son methods for training and testing.
Evaluation Metrics. We compute the peak signal-to-
noise ratio (PSNR), the structural similarity index measure
(SSIM) (Wang et al. 2004) and the learned perceptual image
patch similarity (LPIPS) (Zhang et al. 2018). We report the
averaged metric results.
Method Setting & Baselines. Given a sample of |O| input
views and 32 - |O| novel views, we use the |O| input views
to build a neural point cloud, which produces the rendered
color and mask images for all 32 viewpoints. The scene con-
text is formed by the reference previews produced from the
|O| input views and the probed previews from the 32-|O|-
1 novel viewpoints. The query is produced from the rest 1
novel viewpoint. The neural geometry module follows the
Point-NeRF settings (Xu et al. 2022). The image converter
module follows the settings in (Ren et al. 2022). The net-
work of the view generator module includes an encoder and
a decoder. The encoder architecture mainly follows (Sajjadi

et al. 2022) with slight modifications. The decoder is a stack
of 6 vanilla transformer decoder layers. We train the model
with a learning rate 1e-4 and batch size 16 using the Adam
optimizer. We set up five baseline methods for compar-
isons: Point-NeRF (Xu et al. 2022), PixelSynth (Rockwell,
Fouhey, and Johnson 2021), IBRNet (Wang et al. 2021),
ViewFormer (Kulhánek et al. 2022), and NeRF with dense
depth priors (DDP-NeRF) (Roessle et al. 2022). For Point-
NeRF, we train its MVSNet and ray marching MLPs across
scenes, and test it in a feed-forward manner. For PixelSynth,
we take the pre-trained model provided by the authors, and
predict novel views by outpainting the re-projection from
the nearest observed images. For IBRNet and ViewFormer,
we train and test models with the same setting to our method
(IBRNet is tested in feed-forward). For DDP-NeRF, we opti-
mize the radiance fields with ground truth depths and camera
poses for each scene, and render the novel views.

Primary Results & Analysis
We compare the quantitative results on 3 groups of sparse
input views with observation number |O| = 2, 4, 8, respec-
tively. As the results presented in Table 1, our method out-
performs all the baselines on PSNR, SSIM, and LPIPS. We
show the generations of novel views with ground truths in
Figure 3. The results of Point-NeRF are often corrupted
and scattered, which is caused by incomplete underlying
point clouds. Without image generation ability, Point-NeRF
is unable to fill the missing parts of the novel views. Pixel-
Synth produces distorted views when the novel viewpoints
are significantly shifted from the observations. As Pixel-
Synth conditions on a single view, the reasoned 3D sur-
face can only be re-projected correctly within a small area
near the input viewpoint. The results of IBRNet are often
blurred and show black areas where rays hit no observation
due to sparsity. ViewFormer generates basic scene appear-
ances but lacks of details as it only perceives image tokens
where visual clues can be missing (Our method perceives
full images and decodes tokens). DDP-NeRF performs the
best among all the baselines. But due to the sparse inputs,
the renderings of DDP-NeRF unavoidably overfit to input
views that cause blurs in novel views even with depth in-
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Point-NeRF PixelSynth IBRNet ViewFormer DDP-NeRF Ours Ground Truth

Point-NeRF PixelSynth IBRNet ViewFormer DDP-NeRF Ours Ground Truth

Figure 3: Synthesized novel views given input views with |O| = 2 (Top Half) and |O| = 8 (Bottom Half).

formation. Our method generally outperforms the baselines
in terms of fidelity and visual details. With more observed
views, our method generates novel views exhibiting better
visual quality (shown in metrics). Therefore, the method ef-
fectively leverages the input information and demonstrates
strong applicability.

Ablation Study

We conduct ablation studies to assess the designs of
SparseGNV. The experiments include: 1) w/o “R-Color”: the
rendered color images from the neural point cloud are ex-

cluded from the scene context and the query; 2) w/o “Ray”:
the ray maps (camera poses) are excluded; 3) w/o “Refer-
ence”: the reference previews are excluded from the scene
context; 4) w/o “Probed”: the probed previews are excluded
from the scene context. As shown in Table 1, SparseGNV
with all components achieves the best results except a few
metric numbers. Without “R-Color”, the metrics signifi-
cantly decrease as missing of 3D structural clues from the
neural point clouds which are important to high-quality syn-
thesis. Without “Reference”, the metrics also decrease a lot
due to missing of complete observations, but the metrics
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Figure 4: A sequence of continuous generations between only two observations (red box) and moving away. The 1st and 3rd
rows are the ground truth. The 2nd and 4th rows are the generated novel views of “in between” and “moving away”, respectively.

still outperform the baselines as the probed previews can
provide enough scene information. Without “Probed”, most
of the metrics decline and some are improved. Probed pre-
views could be less important compared to the other com-
ponents and occasionally mislead the generations. However,
they still provide benefits for most cases.

View Consistency
To demonstrate the view consistency of SparseGNV, we
show continuous novel view generations between two obser-
vations in Figure 4 (first two rows). The quality and consis-
tency are fairly maintained without significant perturbation.
The neural geometry module provides a strong scene context
of 3D structure, which ensures a stable generation ability by
the downstream modules. We further show a sequence of
generated novel views that moves away from the two obser-
vations in Figure 4 (last two rows). The office desk is fairly
maintained until moving away, as there is enough clue of
its shape and appearance. Unfortunately, the cabinet appears
with only its surface, and the books on top of the cabinet are
completely missed of generation. Since there is no clue of
their occurrence, the model tends to generate a white wall to
maintain consistency.

Time & Memory & Model Size
The experiments are conducted on NVIDIA V100 GPUs.
The reconstruction of a neural point cloud takes from a few
seconds to less than 1 minutes depending on the number of
input views. This is only performed once before rendering
the scene. The inference time of image generations is 0.83s
per batch of 24 images. The training of the neural geometry
module takes about 1 day using 1 GPU (batch size 1, mem-
ory ≤ 20G depends on scene size). The training of the image
generator module takes about 1 week using 2 GPUs (batch

size 16, 20.9G). VQ decoder uses the pre-trained checkpoint
from (Ren et al. 2022) and is not further fine-tuned. The
parameter counts of the three modules are: 0.724M (Point-
NeRF), 88M (convolution and transformer network), and
76M (VQ decoder).

Conclusions & Limitations

In this paper, we study the problem of novel view syn-
thesis of indoor scenes given sparse RGB-D input views.
To generate both photorealistic and consistent novel views,
we propose SparseGNV: a learning framework that marries
explicit 3D structures with image generative models. The
framework is designed with three network-based modules.
The neural geometry module builds a 3D neural point cloud
to produce rendered images from arbitrary viewpoints. The
view generator module takes the rendered images to form
the scene context and queries, which are fed into a convo-
lution and transformer-based network to generate the target
novel views represented in VQ codebook tokens. The im-
age converter module finally reconstructs the tokens back to
the novel view images. SparseGNV is trained across scenes
to learn priors, and infers novel views of unseen scenes in
a feed-forward manner. The evaluation results on real-world
indoor scenes demonstrate the exceeding performance of the
method over recent baselines.
Limitations. SparseGNV synthesizes novel views using an
image generation model based on the VQ codebook. The
outputs are therefore less 3D consistent compared to the
volume rendering-based methods. For example, the object
details and lighting could be altered. The framework also
requires camera poses which can be unavailable when the
input views are extremely sparse.
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