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Abstract

When training on a long-tailed dataset, conventional learn-
ing algorithms tend to exhibit a bias towards classes with a
larger sample size. Our investigation has revealed that this
biased learning tendency originates from the model param-
eters, which are trained to disproportionately contribute to
the classes characterised by their sample size (e.g., many,
medium, and few classes). To balance the overall parame-
ter contribution across all classes, we investigate the impor-
tance of each model parameter to the learning of different
class groups, and propose a multistage parameter Decouple
and Optimisation (DO) framework that decouples parameters
into different groups with each group learning a specific por-
tion of classes. To optimise the parameter learning, we ap-
ply different training objectives with a collaborative optimi-
sation step to learn complementary information about each
class group. Extensive experiments on long-tailed datasets,
including CIFAR100, Places-LT, ImageNet-LT, and iNatu-
raList 2018, show that our framework achieves competitive
performance compared to the state-of-the-art.

Introduction
Real-world datasets normally exhibit a long-tailed class dis-
tribution, where certain classes possess a large number of
samples, while rarer classes are characterised by a limited
sample size (Zhang et al. 2021c). Such class imbalances
pose a significant challenge when training Deep Convolu-
tional Neural Networks as the head classes with dominant
amounts of instances tend to overwhelm the model learn-
ing on tail classes by influencing the learning of most of the
gradients, consequently leading to subpar performance on
minority classes. This is a critical issue, especially in do-
mains like autonomous driving (Yurtsever et al. 2020) and
computer-aided diagnostics (Marrakchi, Makansi, and Brox
2021; Cong et al. 2022a,b) where models trained on long-
tailed datasets are required to demonstrate high performance
across all classes.

Early attempts to alleviate this issue include upsampling
rare classes (Zhang et al. 2021b), knowledge transfer (Wang
et al. 2021a; Li et al. 2021) and loss re-weighting (Wang
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to different class groups

 
Figure 1: a) Classification accuracies of different class
groups comparing the baseline ResNet model, PaCo (Cui
et al. 2021), CMO (Park et al. 2022), RIDE (Wang et al.
2020), and our proposed method. b) Averaged parameter
importance for different class groups comparing the various
approaches. We notice a positive correlation between accu-
racy and parameter importance. More visualisation results
are provided in Supplementary Material.

et al. 2021c; Ren et al. 2020). Recent works discover that im-
proving feature quality, especially via self-supervised learn-
ing (Liu et al. 2021a; Li et al. 2022b), can effectively en-
hance model performance on imbalanced datasets. Some
studies find that feature learning and classifier learning
favour different learning strategies, therefore applying a
two-stage decoupled learning scheme further improves per-
formance (Kang et al. 2019; Zhou et al. 2020). Moreover,
the model ensemble based on multi-expert learning repre-
sents the state-of-the-art, with each expert model focusing
on distinct partitions of the data distribution (Zhang et al.
2022).

Our analysis shows that each model parameter holds vary-
ing degrees of importance in learning different class groups.
In long-tailed classification, model parameters tend to be
generally more important for the classes with many sam-
ples, i.e., the many class group. The measurement of the
importance of a parameter here is similar to that used dur-
ing model pruning, i.e., being estimated by the changes in
the final loss induced by removing it from the model. Fig.
1 (b) shows the averaged parameter importance across vari-
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ous class groups through different long-tailed learning meth-
ods. A positive correlation is found between the accuracy
of each class group and the average importance of param-
eters for that class group. When the naive ResNet model
(Base) is trained on the long-tailed ImageNet dataset, it
exhibits a highly biased parameter importance towards the
many group, resulting in notably higher accuracy for this
group compared to the others. Conversely, the long-tailed
methods demonstrate enhanced performance on the medium
and few groups as well as increased parameter importance
on these specific class groups.

The aforementioned observations illustrate the advan-
tages of rebalancing parameter importance across class
groups to improve imbalanced classification. This motivates
us to propose a novel multi-stage optimisation framework
aimed at achieving equilibrium in parameter importance
across all classes. Specifically, this framework decouples the
model parameters into different subsets, each optimised to
cater to a specific class group in the training set. In each
stage, we first apply a Collaborative Parameter Optimisa-
tion (CPO) procedure that is designed to improve parameter
importance to a particular group of classes. Following this,
we employ a Taylor-guided Parameter Decoupling (TPO)
method to select parameters that hold greater importance
with regard to the learning of the current preferred class
group. Parameters of less importance are then re-initialised
and used for optimisation in the subsequent stage. At the
end of each stage, a sub-model is constructed, comprising
parameters that exhibit high importance to the current stage
of learning. In the inference phase, the outputs of these
sub-models are aggregated using an Instance-level Test-time
learning mechanism to obtain the final prediction. As de-
picted in Fig. 1, our approach demonstrates a well-balanced
parameter importance across all class groups, resulting in
a substantial enhancement in performance. Specifically, our
contributions are summarised as follows:

• We propose a multi-stage parameter decoupling and op-
timisation (DO) framework that well balances the impor-
tance of parameters across all classes.

• Our framework employs a Collaborative Parameter Opti-
misation (CPO) procedure that adopts a group-enhanced
sampling strategy and a compensation loss to enforce
model parameters to learn complementary information
about different classes.

• We employ a Taylor-guided Parameter Decoupling (TPD)
method that adopts Taylor expansions to approximate the
parameter importance and use it to select important pa-
rameters for different groups of classes.

• A novel instance-level test time learning algorithm is pro-
posed to obtain more precise predictions when assem-
bling from models with different expertise.

• Extensive experiments on the CIFAR100 (Krizhevsky,
Hinton et al. 2009), ImageNet-LT (Liu et al. 2019),
Places-LT (Liu et al. 2019), and iNaturalist18 (Van Horn
et al. 2018) show that our method achieves superior
performance over recent methods with performance im-
provement in many, medium and few groups.

Related Work
Long-tailed learning aims to train models on datasets that
follow a long-tailed class distribution. Existing algorithms
can be roughly categorised into single model imbalance
learning and multi-expert imbalance learning.

Single Model Imbalance Learning. These works can
be further divided into three subcategories: re-balancing,
knowledge transfer, and multi-stage learning. Re-balancing,
which enhances the impact of minority classes in the
model training procedure, is normally achieved via class re-
sampling (Zhang et al. 2021b) and loss re-weighting (Wang
et al. 2021b,c; Ren et al. 2020). These approaches assign
higher weights to minority class samples at either the cat-
egory or instance level. Other studies attempt to transfer
knowledge from the majority classes to knowledge-starved
minority classes via distribution calibration (Wang et al.
2021a; Liu, Li, and Sun 2022) or augmentation (Chu et al.
2020; Li et al. 2021). Multi-stage learning is an effec-
tive training scheme for long-tailed classification, as fea-
ture learning and classifier learning favour different train-
ing strategies (Kang et al. 2019). Self-supervised learning
(SSL) has been employed to improve feature quality in pre-
vious studies (Li et al. 2022b; Cui et al. 2021), demonstrat-
ing that SSL produces more robust features to class imbal-
ance and substantially enhances model performance in long-
tailed classification. Other methods have been proposed to
improve calibration between the two learning stages. For
instance, (Li, Wang, and Wu 2021) implements an extra
self-distillation stage to better incorporate label correla-
tion in multi-stage learning. Moreover, Zhang et al. (Zhang
et al. 2021a) improve the current two-stage methods using
a lightweight distribution alignment module for calibrating
the classification scores.

Multi-expert Imbalance Learning. Existing single model
approaches reduce model bias for the minority classes but
increase the model variance across all classes, leading to de-
creased accuracy for majority classes (Wang et al. 2020).
Therefore, multi-expert imbalance learning frameworks are
proposed, e.g., RIDE (Wang et al. 2020), allowing the mul-
tiple expert models to capture complementary knowledge.
Following this line of research, NCL (Li et al. 2022a) is pro-
posed to enhance knowledge transfer between experts via an
online distillation module, SADE (Zhang et al. 2022) explic-
itly focuses each expert on different data distributions, is em-
ployed to fuse experts’ outputs using a self-supervised test-
time aggregation mechanism. Moreover, SHIKE (Jin et al.
2023) incorporates features from different layers to exploit
information encoded at different depths of a network, and
BalPoE (Aimar et al. 2023) encourages an unbiased and
well-calibrated ensemble via logit adjustment and Mixup.

Continual Learning. Our work draws inspiration from
Continual learning, where model parameters are continu-
ously adapted to accommodate non-stationary data distribu-
tions. Current approaches can be classified into three cate-
gories. Regularisation-based methods, which use extra regu-
larization terms, are proposed to strike a balance between the
previous and current tasks (Kirkpatrick et al. 2017). While
they have shown effectiveness, they may encounter diffi-
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Figure 2: The overall workflow of DO. During training, a
multi-stage training schema is used. In each stage, we first
apply a CPO step, which strategically targets a set of learn-
able parameters and trains them to carry complementary
information related to a specific group of classes. Then a
TPD step is applied to reserve important parameters for the
current learning stage and set the remaining parameters as
learnable parameters for the subsequent stage. During the
inference phase, instance-level test-time learning is used to
obtain aggregation weights for fusing the outputs from each
sub-model to get the final prediction.

culties when dealing with challenging settings or complex
datasets (Mai et al. 2022; Wu et al. 2019). Rehearsal-based
techniques, on the other hand, use a compact memory buffer
or employ an additional generative model to store or gener-
ate representative data from previous tasks (Shin et al. 2017).
Numerous recent studies have enhanced this concept by in-
tegrating knowledge distillation (Chaudhry et al. 2021) or
SSL (Pham, Liu, and Hoi 2021). Nevertheless, the applica-
bility of these approaches is generally constrained by the
substantial memory requirements. The Architecture-based
methods focus on constructing task-specific parameters. The
model architecture can be fixed (Mallya, Davis, and Lazeb-
nik 2018; Jin and Kim 2022) or dynamic (Hung et al. 2019;
Ostapenko et al. 2019) in size when allocating parameters to
each task.

Differences from previous works The single model
methods show improved performance in minority classes,
but might decrease the accuracy for majority classes. While
multi-expert models can alleviate this issue, they lack effi-
cient interaction between sub-models and they typically fix
an expert’s capacity at model initialisation. In contrast, our
work innovates upon conventional multiple expert training
by dynamically allocating model parameters into sub-groups
and explores how to efficiently improve minority classes’
performance without compromising the accuracy of major-
ity classes and additionally enhance the parameter interac-
tion. We have incorporated the concept of architecture-based
continual learning in our approach. However, our focus is on
designing more reliable criteria to quantify parameter impor-
tance and balance their importance across all classes in order
to enhance long-tailed classification.

Methodology
Since there is a positive correlation between the accu-
racy of each class group and the corresponding parame-
ter importance, we propose a novel optimisation frame-
work named Decoupled Optimisation (DO) for long-tailed
visual recognition to balance parameter importance across
class groups explicitly. Given a classification model F pa-
rameterised with θ, we conduct training on a long-tailed
dataset D in T stages and decouple θ into T different groups
{θ1, θ2, · · · , θT } where each focuses on a specific group of
classes {Y1, Y2, · · · , YT }.

Fig. 2 shows the workflow of our framework. Following
previous long-tail studies (Liu et al. 2019), which define
three class groups (many, medium group, and few groups)
on D, we set T=3 and start learning from the many group
in the first stage and then gradually move to the groups with
fewer samples. In each stage t, a Collaborative Parameter
Optimisation (CPO) process is firstly conducted to encourage
θt to carry important information in representing the spe-
cific class group t. The importance of a parameter wi∈θt to
class y is approximate using the first-order Taylor expansion
around wi, i.e., Ey

wi
= (wig

y
wi
)2, where gywi

represents the
first-order derivatives with regard to the class y. Once θt is
optimised in that stage, we apply a Taylor-guided Parameter
Decoupling (TPD) method based on parameter importance
to decouple θt into the important parts θ̄t and unimportant
parts θ̂t. Then, θ̄t are fixed, and θ̂t are re-initialised for fur-
ther optimisation for other groups of classes, except for the
last stage, i.e., θ̄T =θT . To conduct the CPO process in the
next stage t, θ̄t−1 from previous stages is also activated. This
offers a twofold benefit. Firstly, parameters optimised across
distinct stages synergistically interact, amplifying the over-
all performance. Secondly, the reservoir of knowledge from
prior stages contributes to the learning in the present stage.
This setting is especially important for learning the classes
with fewer samples since they are less represented by the
learned parameters.

To optimally balance parameter importance during infer-
ence, two operations are adopted: 1) at the end of each train-
ing stage, {θ̄1···t−1∪θ̄t} are stored as a sub-model and 2) an
instance-level test-time learning algorithm is applied to ob-
tain the aggregation weight λt for these T sub-models based
on their prediction stability. The final result is the weighted
sum of these T sub-models.

Collaborative Parameter Optimisation
The CPO process is proposed to explicitly improve param-
eter importance about a particular class group. This is done
with a group-preferred sampling strategy and optimised with
a compensation loss. Let’s define Ni as the number of im-
ages in i-th class, K as the total number of classes, and
L = [Ni/

∑
j∈K Nj : i ∈ 1 · · ·K] is a list containing la-

bel frequencies.

Group-preferred sampling strategy. The model changes
its learning preferences by altering the sampling ratio per
class. In our approach, we use different sampling strategies,
pt(x, y), for each stage, where (x, y) denotes a data sample
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x and its corresponding class label y. Specifically, we fol-
low the original long-tailed distribution for data sampling
for many-preferred learning in Stage 1, i.e., p1(x, y)=L[y]
and an inverse long-tailed distribution, i.e., p3(x, y)=1/Ny

for sampling during few-preferred learning in Stage 3. For
the learning of medium group classes during Stage 2, we in-
troduce the medium-enhanced ratio ρm and define p2 using
the following equation:

p2(x, y) =

{
ρm y ∈ Y2

1− ρm else
(1)

Here, ρm controls the degree of how strongly we want to en-
hance the medium group learning. Further discussions and
insights regarding the impact of ρm are provided in the ab-
lation studies.

Compensation loss. The commonly used cross-entropy
loss treats each class equally, which may lead to sub-optimal
performance when the objective is to emphasise learning
from specific categories. To address this limitation, we pro-
pose incorporating a compensation term αt to dynamically
enhance the importance of certain model parameters con-
cerning the currently preferred class group.

Lt
comp =

1

n

∑
x∈D

−y log σ(Fθt(x)− logαt) (2)

where σ is the softmax function and αt alternates between
stages according to:

αt =

{
1.0 t = 1
ρm t = 2

τ(y) t = 3
(3)

Here τ(y)=R(L)[y] where R (·) denotes the reverse order
operation. The compensation term αt serves as a margin,
exerting a stronger regularisation that encourages the model
to prioritise learning on the currently preferred class group.

Taylor-guided Parameter Decoupling
Not all parameters have equal importance to learning, and
removing those low-importance parameters may not signif-
icantly impact the model’s performance (Denil et al. 2013).
The importance of a parameter can be estimated by the
changes in the loss induced by removing it from the model.
We design a Taylor-guided Parameter Decoupling (TPD)
method to approximate the importance of a parameter.

Specifically, we rank each parameter wi based on Ey
wi

and then prune γ of parameters out and leaving the rest as
important parameters. We argue that the best pruning ra-
tio γbest should generate the most compact model while
maintaining its performance. Thus, we iterate values from
γi = i for i ∈ 0 · · · 90 with a step of 10 and record the as-
sociated performance. γbest is selected based on the highest
variation observed in the recorded performances. Moreover,
instead of directly pruning γi parameters out, we prune grad-
ually with γt with gradual pruning (Zhu and Gupta 2017):

γt = γi+1 + (γi − γi+1)(1−
t

∆t
)3 (4)

where γt increased from γi to γi+1 with a step of ∆t. After
each pruning step involving γt, we will proceed by retrain-
ing the model for a single iteration, ensuring that its discrim-
inatory capabilities for the task are preserved. In our experi-
ment, we noticed that varying ∆t from 10 to 100 had a negli-
gible impact on the performance, thus we set ∆t = 10. Once
the γbest is selected, we prune out γbest of the total param-
eters and set them as unimportant parameters θ̂t, which are
used for further optimisation and decoupling, whereas the
retained parameters are regarded as important parameters θ̄t
which will remain fixed.

Instance-level Test-time Learning
After training, we have T sub-models, each containing a
subset of parameters (θ̄∗t ={θ̄1···t−1∪θ̄t}) that pose high im-
portance to each class group. Since θ̄1···t−1 are activated dur-
ing the optimisation of θ̄t, thus both are included. During
inference, to optimally balance the parameter importance
across different classes, we use an instance-level test-time
self-supervised learning method to generate aggregation
weights (λt) for each sub-model fθ̄∗

t
, based on maximising

prediction stability. This is inspired by (Zhang et al. 2022),
which highlights the positive correlation between model ex-
pertise and prediction stability. However, they generate λt on
a group level, i.e., λ={λt}Tt=1. We argue that such coarse-
grained λ can only partially reflect the model’s stability
across different classes. Therefore, in our approach, we ap-
ply aggregation on the instance level, i.e., λ={{λt}Tt=1}Ui=1,
where U denotes the number of test samples.

Specifically, given an input test image x, we conduct two
stochastic data augmentations to produce two views of x,
denoted as x1 and x2. We then obtain the corresponding pre-
dictions ỹ1=

∑T
t=1 λtfθ̄∗

t
(x1) and ỹ2=

∑T
t=1 λtfθ̄∗

t
(x2). Our

objective is to maximise the cosine similarity between the
predictions from these two views using

λ = argmax
λ

ỹ1
T ỹ2 (5)

Note that λ=[λ1, · · · , λt] are the only learnable hyper-
parameters in these functions. By maximising the cosine
similarity between the two predictions, the corresponding λt

with respect to fθ̄∗
t

(which demonstrates more stable predic-
tions for samples from specialised classes) will be learned
to increase. Consequently, these learned λt can effectively
reflect the confidence of fθ̄∗

t
in predicting an unseen sam-

ple. The higher the stability of predictions for a particular
sub-model fθ̄t on a given class, the more the corresponding
aggregation weight λt will be emphasised during the infer-
ence process, leading to a more reliable and accurate overall
prediction for that class.

Experiments
Datasets
ImageNet-LT (Liu et al. 2019) is a long-tailed version of
ImageNet (Deng et al. 2009). It was generated by sampling
a subset with the Pareto distribution using a power value α =
6. It contains 115.8K images from 1,000 categories in which
the class cardinality ranges from 5 to 1,280.
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Method Many Medium Few All
Single Model
CE (baseline) 68.2 42.2 12.6 48.2
LWS 61.8 47.6 30.9 50.8
BSCE 64.1 48.2 33.4 52.3
MiSLAS 62.0 49.1 32.8 51.4
LADE 64.4 47.7 34.3 52.3
CMO 62.0 49.1 36.7 52.3
RSG 63.2 48.2 32.3 51.8
PaCo 64.8 55.9 39.1 57.0
TSC 63.5 49.7 30.4 52.4
GCL - - - 54.9
CC-SAM 61.4 49.5 37.1 52.4
Multi-Expert Model
RIDE 67.0 52.2 36.0 55.7
ACE - - - 54.7
SHIKE - - - 59.7
NCL - - - 59.5
SADE 66.5 57.0 43.5 58.8
BalPoE - - - 59.7
DO (ours) 67.0 57.3 52.2 60.4

Table 1: ImageNet-LT test accuracy (%) comparisons.

iNaturalist2018 (Van Horn et al. 2018) is a large-scale
species classification dataset. It contains 8,142 classes which
suffer from severe class imbalance issues with class cardi-
nality ranging from 5 to 4,980.
CIFAR100-LT (Krizhevsky, Sutskever, and Hinton 2012)
has 60,000 images, where 50,000 are used for training and
10,000 for validation. This work used a long-tailed version
of CIFAR100 where the imbalance ratio (β) is manually se-
lected using β=Nmax

Nmin
where Nmax and Nmin are the num-

bers of instances for the most and least frequent classes.
Places-LT (Liu et al. 2019) is a long-tailed version of the
original Places-2 (Zhou et al. 2017), which contains 184.5K
images which come from a total of 365 categories where the
class cardinality ranges from 5 to 4,980.

Implementation Details
We use ResNet50 (He et al. 2016) for experiments on
ImageNet-LT and iNaturalist2018, ResNet152 on Places-
LT, and ResNet32 for experiments on CIFAR100-LT. For
Stage1, we conduct training for 100 epochs and decay the
learning rate by a cosine scheduler from 0.02 to 0 for
ImageNet-LT, iNaturalist2018 and Places-LT, and 0.05 to 0
for CIFAR100-LT. For the remaining two stages, since we
only fine-tune part of the model, we only train for 50 epochs
and the learning rate is equal to 0.002 for ImageNet-LT,
iNaturalist2018, and Places-LT, and 0.005 for CIFAR100-
LT. All pieces of training are conducted with a batch size of
256. In all reported experiments, we use strong augmenta-
tions (Cubuk et al. 2020) that have demonstrated effective-
ness in previous studies (Cui et al. 2021). All reported mod-
els are trained using 4 NVIDIA Tesla V100 GPUs.

The ρm in medium-enhanced sampling is set to 80% for
ImageNet-LT, iNaturalist2018 and Places-LT, and 70% for
CIFAR100-LT. To select γbest, we iterate through ten possi-
ble values from 0% to 100%, with a step size of 10%. The

Method Many Medium Few All
Single Model
CE (baseline) 78.8 68.3 55.4 64.5
LWS 71.0 69.8 68.8 69.5
BSCE 70.9 70.4 70.1 70.6
MiSLAS 71.5 69.7 70.7 71.7
LADE 68.7 70.2 69.3 68.9
CMO 68.8 70.0 72.3 70.9
PaCo 70.3 73.2 73.6 73.2
TSC 70.6 67.8 69.7 72.6
GCL - - - 72.0
CC-SAM 65.4 70.9 72.2 70.9
Multi-Expert Model
RIDE 70.0 71.7 71.8 71.5
ACE - - - 72.9
SHIKE - - - 75.4
NCL - - - 74.9
SADE 75.5 73.7 75.1 74.5
BalPoE - - - 73.5
DO (ours) 77.1 73.6 75.6 75.8

Table 2: iNaturalist2018 test accuracy (%) comparsions.

Method Many Medium Few All
Single Model
CE (baseline) 46.2 27.5 12.7 31.4
BSCE 42.6 39.8 32.7 39.4
MiSLAS 41.6 39.3 27.5 37.6
LADE 42.6 39.4 32.3 39.2
CC-SAM - - - 40.6
PaCo 36.1 47.9 35.3 41.2
Multi-Expert Model
RIDE 43.1 41.0 33.0 40.3
SHIKE 43.6 39.2 44.8 41.9
NCL - - - 41.8
SADE 40.4 43.2 36.8 40.9
DO (ours) 43.7 43.2 40.1 42.8

Table 3: Places-LT test accuracy (%) comparsions.

γbest for Stage 1 is set to 50% for all used datasets, whereas,
for Stage 2, the γbest is set to 80% for ImageNet-LT, Places-
LT, and CIFAR100 (β=100) and 60% for iNaturalist2018
and CIFAR100 (β=50). We tune parameters on the valida-
tion set and report the test set results for ImageNet-LT. For
the other datasets that only have train-val sets, the same val-
idation set is used for tuning and benchmarking.

Comparison to the Prior Art
We compared DO with previous state-of-the-art methods.
We show the results on ImageNet-LT (Tab. 1), iNatural-
ist2018 (Tab. 2), CIFAR100 (Tab. 4 and Tab. 5) and Places-
LT (Tab. 3). For all compared methods, we report their per-
formance with strong augmentation if used in their works.
Specifically, we chose single model-based (SE) approaches
(e.g., loss reweight (BSCE (Ren et al. 2020), LADE (Hong
et al. 2021), GCL (Li, Cheung, and Lu 2022)), knowledge
transfer (CMO (Park et al. 2022), RSG (Wang et al. 2021a)),
decouple-based methods (MiSLAS (Zhong et al. 2021), WB
(Alshammari et al. 2022)) and feature learning (PaCo (Cui
et al. 2021),(Li et al. 2022b))) and multi-expert (ME) meth-
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Method Many Medium Few All
Single Model
CE (baseline) 66.8 37.4 15.5 45.6
BSCE 62.1 45.6 36.7 50.9
MiSLAS 61.8 48.9 33.9 51.5
WB - - - 57.5
LADE 60.2 46.2 35.6 50.1
GCL - - - 53.6
CC-SAM - - - 53.9
Multi-Expert Model
RIDE 66.6 46.2 30.3 51.7
NCL - - - 58.2
SADE 61.5 50.2 45.0 53.9
BalPoE - - - 58.7
DO (ours) 66.1 56.1 52.2 58.2

Table 4: CIFAR100-LTβ=50 test accuracy (%) comparsions.

Method Many Medium Few All
Single Model
CE (baseline) 68.6 41.1 9.6 41.4
BSCE 64.1 48.2 33.4 50.8
MiSLAS 60.4 49.6 26.6 46.8
WB 71.4 51.2 35.3 53.8
LADE 58.7 45.8 29.8 45.6
GCL - - - 48.7
CC-SAM - - - 50.8
Multi-Expert Model
RIDE 67.4 49.5 23.7 48.0
ACE 66.1 55.7 23.5 49.4
NCL - - - 54.2
SADE 65.4 49.4 29.3 49.8
BalPoE - - - 54.7
DO (ours) 67.5 47.8 44.6 53.8

Table 5: CIFAR100-LTβ=100 test accuracy (%) comparsions.

ods (RIDE (Wang et al. 2020), ACE (Cai, Wang, and Hwang
2021), SADE (Zhang et al. 2022), NCL (Li et al. 2022a),
SHIKE (Jin et al. 2023) and BalPoE (Aimar et al. 2023)).

DO outperforms the existing SE methods; for example,
it achieves 3.4% and 2.6% improvements over PaCo on
ImageNet-LT and iNaturalist2018, respectively. Moreover,
DO is only trained for 200 epochs, which is much less than
the 400-epoch training used in contrastive learning-based
methods. Compared with ME methods, DO demonstrates
state-of-the-art performance on three particularly challeng-
ing datasets (60.4% on ImageNet-LT, 75.8% on iNatural-
ist2018, and 42.8% Places-LT) and achieves competitive re-
sults on the CIFAR100-LT dataset (58.2% β=50 and 53.8%
β=100) However, most ME methods use three or more com-
plete networks as their experts during inference, whereas
our DO employs sub-models that utilise only a subset of
the entire model parameters, which not only reduces com-
putational overhead but also achieves comparable or even
superior performance.

Discussion & Ablations
Sensitivity analysis of ρm and γ. ρm controls the degree
of how much the model concentrates on the medium group
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Figure 3: Senstivity analysis of medium enhanced sampling
ratio ρm.

0 10 20 30 40 50 60

0
−2 · 10−2

−4 · 10−2

−6 · 10−2

−8 · 10−2

−0.1
−0.12
−0.14
−0.16

Pruning ratio [%]

Pe
rf

or
m

an
ce

D
ro

p
[%

]

L1 norm
Fisher Info

Taylor Approx.

(a) Stage1 on ImageNet-LT.

0 10 20 30 40 50 60 70 80 90

0
−0.5
−1

−1.5
−2

−2.5
−3

−3.5
−4

−4.5
−5

·10−2

Pruning ratio [%]

L1 norm
Fisher Info

Taylor Approx.

(b) Stage2 on ImageNet-LT.

0 10 20 30 40 50 60

0

−1

−2

−3

−4

−5

−6

·10−2

Pruning ratio [%]

Pe
rf

or
m

an
ce

D
ro

p
[%

]

L1 norm
Fisher Info

Taylor Approx.

(c) Stage1 on iNaturalist2018.
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(d) Stage2 on iNaturalist2018.

Figure 4: Performance Drop vs. different pruning ratio with
different pruning methods. γbest is selected where the max-
imum variation in performance drop is observed.

learning. Fig. 3 shows that increasing ρm improves medium
group performance as more classes from the medium group
can be sampled. However, improving ρm also suppresses the
learning in the other two groups. Thus, the degree of im-
provement becomes marginal with large ρm.

We show the performance changes regarding different
pruning ratios in different stages in Fig. 4. When the prun-
ing ratio is small, the performance drop is also minor. This
implies that the model might be over-parameterised, and re-
moving a partition of parameters will not significantly im-
pact the performance. Moreover, a marked drop in perfor-
mance is observed with a larger pruning ratio, e.g., 50% in
Stage 1 and 80% in Stage 2 for ImageNet-LT. Thus, we set
this value as γbest as it produces the most compact model
with the lowest performance drop. In addition, we com-
pare different parameter importance estimation methods: L1
norm (Hung et al. 2019), Taylor approximation (Xia et al.
2020), and Fisher information (Liu et al. 2021b). Among
them, the L1 norm has the largest performance drop. In con-
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Many Medium Few Avg
2-stage 66.5 47.8 50.4 50.3
3-stage 67.0 57.3 52.2 60.4

Many Medium-top Medium-few Few Avg
4-stage 66.0 59.8 56.4 53.0 60.8

Table 6: ImageNet-LT test accuracy (%) comparison with
different numbers of stages.

Stage Order Many→ Few→ Med Many→ Med→ Few
Many Med Few Many Med Few

Stage1-CPO 68.2 42.2 12.6 68.2 42.2 12.6
Stage1-TPD 67.7 40.5 10.1 67.7 40.5 10.1
Stage2-CPO 24.4 42.3 51.8 31.5 57.6 14.4
Stage2-TPD 32.7 47.1 51.7 45.0 57.4 29.5
Stage3-CPO 52.2 53.3 33.9 25.9 42.1 54.5

Overall 67.1 53.6 51.0 67.0 57.3 52.2

Table 7: ImageNet-LT test accuracy (%) comparison with
different stage orders.

trast, the two gradient-based methods yield more reliable
estimations. While the Fisher estimation assumes that the
importance of all neurons is strictly positive (which is only
sometimes true, as indicated in (Molchanov et al. 2019)),
the Taylor approximation explicitly estimates changes in the
loss and proves to be a better importance estimator.

Influence of stage selection. In Tab. 6, we list two con-
figurations of the proposed framework: two-stage and four-
stage. The former one only conducts many and few group
learning. It achieves good performance for many and few
groups, but the medium group still requires further improve-
ments. For the four-stage configuration, we evenly divide
the medium group into Medium-top (100∼50 samples) and
Medium-low (50∼20 samples), respectively. This requires
longer training but only brings marginal enhancement.

The stage order also matters, as shown in Tab. 7. Besides
the default setting, we conducted a few group first learning,
which significantly improves the medium group accuracy.
In contrast, our default setting shows further improvements
in both medium and few groups. This might be attributable
to two reasons. Firstly, Stage 2 always has more free pa-
rameters, which can improve medium group performance.
Secondly, the parameters learned from many and medium
classes embed much information, which may facilitate the
learning on the few classes.

Effectiveness of Medium-preferred sampling strategy
and Lcomp As shown in Tab. 8, replacing the uniform
sampling with the enhanced sampling strategy increases per-
formance from 55.8% to 57.6%, indicating that enhancing
the medium group learning is useful. Furthermore, changing
the loss function from cross-entropy to compensation loss is
important as it encourages each parameter group to focus on
learning complementary information. The best performance
is achieved by combining all proposed components.

Effectiveness of instance-level test-time Learning. As
shown in Tab. 8, test-time learning is beneficial for per-

Aggint Agggp Aggavg Suni Smed Lcomp Lce Acc
✓ ✓ 52.4

✓ ✓ ✓ 53.6
✓ ✓ ✓ 55.8
✓ ✓ ✓ 57.6

✓ ✓ ✓ 57.9
✓ ✓ ✓ 60.4

Table 8: Ablation studies on ImageNet-LT. “Aggint/gp/avg”:
the instance-level test-time aggregation, group-level test-
time aggregation, and average aggregation. “Suni/med”:
uniform or enhanced sampling for medium group and
“Lcomp/ce”: the compensation or cross-entropy loss.

Many Medium Few
Stage 1 Params (λ1) 0.82 0.21 0.09
Stage 2 Params (λ2) 0.16 0.73 0.18
Stage 3 Params (λ3) 0.02 0.10 0.69

Table 9: The averaged λt for instances of different groups.

formance improvement. Instance-level test-time learning
strategy can approximately increase the performance by
2%∼3%, compared to the group-level aggregation strat-
egy (Zhang et al. 2022). Moreover, results in Tab. 9 show
our instance-level test-time learning strategy learns suitable
weights for sub-models with different expertise. For the
sub-model with weights learned from Stage 1, λ1 for the
many groups is higher, while for the sub-model with weights
learned from Stage 3, λ3 for the few groups is higher. To bet-
ter understand the trade-off between performance and com-
putational costs, in Tab. 10, we compare the test-time cost
with PaCo (a method without test-time learning) and SADE
(a method with test-time learning). The results show that
our instance-level test-time learning incurs higher compu-
tational overhead but leads to substantially superior results.
To address the challenge of high computational costs, we
propose an alternative approach where we replace test-time
learning (TTL) by averaging outputs from all sub-models
(Ourswo TTL). This version still delivers competitive perfor-
mance while significantly speeding up the inference process.
This outcome underscores the efficacy of balancing weight
importance in mitigating the long-tailed issue.

Conclusion
We proposed a novel parameter decoupled and optimisation
framework for long-tailed visual recognition in this work.
The proposed framework optimally balances the parameter
importance across all classes by decoupling the model pa-
rameters into different groups in which each is optimised
for a separate class partition. Extensive experiments have
demonstrated the effectiveness of the proposed framework.

PaCo SADE Ourswo TTL Ours
Per-epoch Time (s) 90 253 95 268

Acc (%) 57.0 58.5 57.9 60.4

Table 10: Evaluation of run-time cost.
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