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Abstract

Due to the wavelength dependent light attenuation and scat-
tering, the color of the underwater organism usually appears
distorted. The existing underwater image enhancement meth-
ods mainly focus on designing networks capable of gener-
ating enhanced underwater organisms with fixed color. Due
to the complexity of the underwater environment, ground
truth labels are difficult to obtain, which results in the non-
existence of perfect enhancement effects. Different from the
existing methods, this paper proposes an algorithm with color
enhancement and color fine-tuning (CECF) capabilities. The
color enhancement behavior of CECF is the same as that of
existing methods, aiming to restore the color of the distorted
underwater organism. Beyond this general purpose, the color
fine-tuning behavior of CECF can adjust the color of organ-
isms in a controlled manner, which can generate enhanced
organisms with diverse colors. To achieve this purpose, four
processes are used in CECF. A supervised enhancement pro-
cess learns the mapping from a distorted image to an en-
hanced image by the decomposition of color code. A self re-
construction process and a cross-reconstruction process are
used for content-invariant learning. A color fine-tuning pro-
cess is designed based on the guidance for obtaining various
enhanced results with different colors. Experimental results
have proven the enhancement ability and color fine-tuning
ability of the proposed CECF. The source code is provided
in https://github.com/Xiaofeng-life/CECF.

Introduction
Underwater image enhancement (UIE) (Wei, Zheng, and
Jia 2022; Mu, Qian, and Bai 2022; Tang et al. 2022) is an
important research topic in the field of computer vision.
Due to the absorption and attenuation of light, underwa-
ter images will suffer from color shift and detail distortion
(Xu et al. 2023; González-Sabbagh and Robles-Kelly 2023;
Jiang et al. 2022b). As the depth of water increases (Wang
et al. 2023), the red, orange, yellow, green and blue lights
gradually disappear, respectively. This means that blue and
green lights are the last to disappear. As a result, underwater
images that we typically observe tend to have a blue-green
or blue effect. Correspondingly, the colors of colorful un-
derwater organisms also become dull. To improve the visual
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(a) x→ ŷmx (b) ŷmx,g (c) organism (d) g

Figure 1: The color enhancement process and color fine-
tuning process of CECF. The color enhancement process is
shown in (a), where the distorted underwater image x (in
the first row) is enhanced to an enhanced image ŷmx (in the
second row, where α = 0.3). The color fine-tuning process
is shown in (b) and (c). When guidances are given and the
controllable parameter α is set, the color of ŷmx will change
toward the guidance. The guidance g, as shown in (d), can
be an underwater image or a natural image.

quality of underwater images and organisms inside the im-
ages (Sun et al. 2022; Zhou et al. 2023), different UIE al-
gorithms have been proposed. The current UIE algorithms
are mainly divided into two categories (Zheng et al. 2022;
Huang et al. 2022). They are non-deep learning-based UIE
algorithms (NDL-UIE) and deep learning-based UIE algo-
rithms (DL-UIE), respectively.

Statistical assumptions and physical models are widely
adopted by the existing NDL-UIE methods, such as SMBL
(Song et al. 2020), MLLE (Zhang et al. 2022), and ICSP
(Hou et al. 2023a). In addition, digital image enhancement
methods (Raveendran, Patil, and Birajdar 2021; Jian et al.
2021) that do not utilize physical model and image forma-
tion model are also used in NDL-UIE. DL-UIE methods
mainly focus on learning the mapping from distorted im-
ages to clear images, such as UWNet (Naik, Swarnakar, and
Mittal 2021), ADMNNet (Yan et al. 2022), CLUIE (Li et al.
2023), and SGUIE (Qi et al. 2022).

The well-designed UIE algorithms may help underwater
photographers restore the color information of the underwa-
ter organism. However, existing research (Fu et al. 2022) has
shown that the color information of distorted image fails to
be restored perfectly. To alleviate this issue, UIESS (Chen
and Pei 2022) proposes to obtain diverse enhanced results
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by adjusting the enhancement level. Different from UIESS,
this paper proposes a novel UIE method, namely Color En-
hancement and Color Fine-tuning (CECF) algorithm, with
the ability of color fine-tuning1.

The main innovation of this paper is shown in Figure 1.
To achieve the color fine-tuning capability shown in Figure
1, we propose a scheme to obtain the color code and con-
tent code during the enhancement process, where the color
code and content code represent the visual color information
and content information of the enhanced image. By manip-
ulating the color code of the guide image and the distorted
image, various enhanced images can be obtained. CECF is
designed as four processes as shown in Figure 2, namely
enhancement, self-reconstruction, cross-reconstruction and
color fine-tuning process. The contributions of this paper in-
clude the following three points.
• We propose a method called CECF, which is capable of

fine-tuning the color of enhanced organisms by selecting
different guidances and controllable parameters. For the
selection of guidance, we present the observation that the
hue of long-wavelength colors is approximately invariant
during the enhancement process.

• An encoder-decoder network is adopted to extract the
color code and content code of the underwater image dur-
ing the enhancement process. By fusing the color codes
of the guidance and the distorted image during the fine-
tuning process, the color effect of the enhanced image
can be fine-tuned in a controllable way.

• We introduce a three-step joint training procedure since
the color code and content code cannot be directly
learned. A self-reconstruction process and a cross-
reconstruction process are adopted to assist in the learn-
ing of content code during the enhancement process. Un-
der this setting, the color code will be learned implicitly.

CECF can adjust the color of a specific organism when
the mask of this organism is provided by well-studied seg-
mentation algorithms (Islam et al. 2020; Nezla, Haridas, and
Supriya 2021; Kim and Park 2022; Alshdaifat, Talib, and
Osman 2020). Since segmentation is not the research scope
of this paper, we do not discuss how to segment underwater
organisms.

Related Work
NDL-UIE
NDL-UIE methods (Ding et al. 2022) mainly adopt sta-
tistical assumptions and physical models (Liu et al. 2023;
Xue et al. 2023). ICSP (Hou et al. 2023a) proposes an il-
lumination channel sparsity prior, which can be used in a
guided variational framework for nonuniform illumination
situations. SMBL (Song et al. 2020) designs a background
light estimation method for underwater image restoration
and color correction, which is based on the statistical anal-
ysis of the distribution characteristics of each channel. A
locally adaptive color correction method built on the min-
imum color loss principle is proposed by MLLE (Zhang

1Noticed, in this paper, the “color” in “color fine-tuning” refers
to the tint, shade and tone.

et al. 2022). HLRP (Zhuang et al. 2022) proposes a hyper-
laplacian reflectance prior, which is based on the retinex
variational model. These NDL-UIE methods are proven ef-
fective for the color correction of underwater images. How-
ever, limited by the complexity of the underwater situation,
they may encounter difficulties in parameter estimation (Qi
et al. 2022).

DL-UIE
Deep learning (Hou et al. 2023b) are widely used in im-
age process tasks (Gui et al. 2023). DL-UIE methods (Anil,
Sreelatha et al. 2023; Wang et al. 2021; Sharma, Bisht, and
Sur 2023; Qiao, Dong, and Sun 2022; Jiang et al. 2022a;
Liu et al. 2022; Kang et al. 2022) typically rely on un-
derwater datasets with a sufficient number of images. An
attention-guided dynamic multibranch neural network is de-
signed by ADMNNet (Yan et al. 2022), which is shown to be
effective in extracting the multiscale features. Aiming at im-
proving the deployability of enhancement models, UWNet
(Naik, Swarnakar, and Mittal 2021) is proposed to reduce
the compute and memory resources. A fully-convolutional
conditional GAN-based mode and a multimodal objective
function are used by FUnIE (Islam, Xia, and Sattar 2020).
Semi-UIR (Huang et al. 2023) uses semi-supervised and
contrastive learning strategies for incorporating unlabeled
data into network training. Dilated convolution and resid-
ual convolution are used by PhyNN (Chen et al. 2021) and
URes (Liu et al. 2019) for the network design of UIE, re-
spectively. SGUIE (Qi et al. 2022) introduces semantic in-
formation into the training process to improve feature learn-
ing performance. These DL-UIE methods have been proven
to be effective in enhancing underwater images. However,
as a recent study (Chen and Pei 2022) points out, diverse
outputs can not be obtained by these methods.

Existing studies (Chen and Pei 2022; Li et al. 2023) have
pointed out that it is difficult to obtain accurate reference
(ground-truth) underwater images. This means that it is also
challenging for DL-UIE models to perfectly restore the color
of underwater images and organisms. Recent studies (Ye
et al. 2022; Kim, Park, and Kwon 2021; Chen and Pei 2022)
have proposed methods that enable the acquisition of diverse
underwater images. A light field retention method on under-
water images is proposed by UWNR (Ye et al. 2022) to ob-
tain diverse rendering images. However, it is mainly used
for scene rendering rather than underwater image enhance-
ment. A pixel-wise wasserstein autoencoder (PWAE) (Kim,
Park, and Kwon 2021) for image dehazing task, is verified
for style transformation for UIE. However, the training pro-
cess of PWAE needs to use an extra dataset for the training
of style transformation. UIESS (Chen and Pei 2022) adopts
the strategy of separation of content and style, but its coding
space is used to manipulate the degree of image enhance-
ment instead of color control. Different from UWNR, PWAE
and UIESS, the CECF proposed in this paper is used to con-
trol the color of the enhanced organism for the UIE task.

Method
The overall training and inference process of CECF are
shown in Figure 2, which contains four processes in total.
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Figure 2: The overall pipeline of CECF. The P1, P2, P3 and P4 denote the enhancement, self-reconstruction, cross-
reconstruction and fine-tuning process, respectively.

The distorted underwater image is denoted as x ∈ X, and
the clear underwater image is represented by y ∈ Y. The
guidance is marked as g ∈ G. The enhanced image obtained
by CECF is ŷmx . The diversified underwater enhanced im-
ages are denoted by ŷmx,g . There are three encoders for pro-
cessing x, namely Ec

x, Em
x and Es

x. Two decoders are used
to process the encoded information of x, namely Pm

x and
P r
x . There are two encoders and one decoder for y, which

are Es
y , Ec

y and P r
y . Furthermore, the discriminators for the

x domain and y domain are denoted as Dx and Dy , respec-
tively. In the notation of encoder and decoder and discrimi-
nator, the abbreviations are color (m), encoder (E), decoder
(P ), style (s), content (c), discriminator (D), reconstruction
(r), distortion domain (x), clear domain (y). Therefore, a to-
tal of 10 networks are involved in the training process. In
the inference stage, only two encoders (Em

x and Ec
x) and

one decoder Pm
x are used. The role of each network and the

meaning of symbols will be introduced in this section.

Enhancement Process
As shown in Figure 2, the aim of the enhancement process
P1 is to improve the quality of distorted image x. In this pro-
cess, our method can achieve the same purpose as existing
single-output methods (Yan et al. 2022; Hu et al. 2022), that
is to obtain the enhanced image ŷmx with fixed color. Beyond
this general purpose, we also aim at fine-tuning the color of
ŷmx . Therefore, we split the enhancement process P1 into
two parts, which are the encoding path and decoding path,
respectively. Two codes with specific semantic meanings are
learned in the encoding path. The content encoder Ec

x is re-
sponsible for learning content code cx, which represents the
content and structural information of x. The color encoder

Em
x is designed for learning the color code mx, which de-

notes the color information for enhancement. The content
code and color code are obtained by

cx = Ec
x(x), (1)

mx = Em
x (x). (2)

Then, with the help of color decoder Pm
x , we are able to

obtain the enhanced image ŷmx by

ŷmx = Pm
x (cx,mx). (3)

The enhancement network composed of Ec
x, Em

x and Pm
x

is Underwater Enhancement Network (UE-Net). Among all
sub-networks of CECF, UE-Net is the only required sub-
network in the inference stage. To constrain the ŷmx and the
ground truth y, the enhancement process is optimized by

Lm = Ex,y∼p(x,y)[||ŷmx − y||2 − φ(ŷmx , y)], (4)

where p(x, y) denotes the joint data distribution of paired
data (x, y). The function −φ(·, ·) is the Structural Loss pro-
posed by (Zhao, Gallo, and Frosio 2016).

Color Fine-tuning Process
As depth increases, the light with longer wavelength disap-
pears earlier. The order of disappearance is red, orange, yel-
low, green and blue (Wang et al. 2023). Therefore, as the
depth of the water increases, the underwater images we see
will have fewer colors with long wavelengths (such as pure
red, orange and yellow) (González-Sabbagh and Robles-
Kelly 2023). The datasets may contain images with less dis-
tortion, which approximately preserve the long-wavelength
colors, such as approximately pure red, orange, and yellow.
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At this point, our enhancement network should ensure that
these long wavelength colors are approximately preserved.
This means that the hue corresponding to these colors should
not be changed. We refer to this observation as the hue in-
variance of the long wavelength colors.

Following this observation, we introduce the concept of
guidance g. Specifically, we refer to the images with long
wavelength colors as guidances. During the training process
of CECF, the hue of the g is approximately invariant. There-
fore, we can incorporate the color codemg of g into the color
code mx of x to change the color of x. The color fine-tuning
process is shown in P4 of Figure 2. For a trained UE-Net,
the color controller is defined as f(·, ·, ·). Given x ∈ X, the
color controller f(·, ·, ·) can obtain the enhanced image with
fix color as

ŷmx = f(x, x, 0). (5)
Beyond this purpose, CECF aims to obtain color control-

lable output ŷmx,g under the guide of g. Specifically, we hope
to obtain color-diversified ŷmx,g while the content of the scene
remains unchanged, as

ŷmx,g = f(x, g, α), (6)

where g is a guidance and α denotes the degree of color
change. The color code mx can be transformed to gener-
ate color-controllable outputs. The transformation function
t (Mi et al. 2021) of color code can be expressed as

t : RN×RN×[0, 1] 3 (mx,mg, α) 7→ mx,mg ∈ RN , (7)

where N denotes the dimensionality. Selecting a guidance
g, the color code mg corresponding to g can be obtained by

mg = Em
x (g). (8)

Then, the mx and mg are fused in the encoding space by

mx,g = ψ(mx,mg) =
(1− α) ·mx + α · κ(mg)√

(1− α)2 + α2
, (9)

where κ denotes the truncation operation, so that the value
of mg is clipped in to the specific range. Then, the color
controllable enhanced image ŷmx,g is obtained by

ŷmx,g = Pm
x (cx,mx,g). (10)

When the mask of the organism is available (Laradji et al.
2021; Patil et al. 2019; Chen et al. 2019; Zhang, Wu, and
Bao 2022; Li et al. 2021), the organism can be obtained by
ŷmx,g �mask, where � is element-wise multiplication.

Three-step Joint Training by Self-reconstruction
and Cross-reconstruction Processes
Based on the above purposes, an important question is how
to ensure that the codes learned by Ec

x and Em
x have the se-

mantic features we want. It is difficult to optimize theEc
x and

Em
x directly during the training of the enhancement process

since we have no idea what the color code and content code
look like. Therefore, we decompose the training process into
a three-step solution.

Suppose the Ec
x can represent the content information in

each iteration. Then, another encoder Em
x is able to repre-

sent the color information by optimizing the enhancement

loss (Equation 4) in a supervised way. It is worth point-
ing out that the semantics of Ec

x and Em
x are related to a

particular Pm
x . Without the decoder, the outputs of the en-

coders are meaningless. Inspired by existing study (Huang
et al. 2018), we adopt a self-reconstruction process and a
cross-reconstruction process to assist the enhancement pro-
cess. These two processes can help Ec

x to learn the content
information of the scene.

The self-reconstruction P2 and cross-reconstruction P3
in the X domain are shown in Figure 2. The pipeline for the
self-reconstruction and cross-reconstruction processes in Y
domain are symmetrical with P2 and P3. Es

x is responsible
for learning the style code (Huang et al. 2018; Jain, Matta,
and Mitra 2022) of x. It is worth pointing out that the style
code is different from the color code proposed in this paper.
An enhancement result close to the reference image can be
obtained by color code but not by style code. Ec

y and Es
y

are used to learn the content information and style informa-
tion of y, respectively. Meanwhile, decoder P r

x and P r
y are

responsible for the reconstruction of x and y, respectively.

Self-reconstruction The purpose of self-reconstruction is
that x and y can be reconstructed after encoding and decod-
ing, as follows

Lr
x,y = Ex,y∼p(x,y)[||P r

x (E
c
x(x), E

s
x(x))− x||1+

||P r
y (E

c
y(y), E

s
y(y))− y||1].

(11)

Cross-reconstruction For the content code, after cross-
domain encoding and decoding, it can be reconstructed as

Lr
cx,cy = Ecx∼p(cx),ṡy∼q(ṡy)[||E

c
y(P

r
y (cx, ṡy))− cx||1]+

Ecy∼p(cy),ṡx∼q(ṡx)[||Ec
x(P

r
x (cy, ṡx))− cy||1],

(12)

where q(ṡx) and q(ṡy) denote the Gaussian prior N(0, I).
The cx and cy denote Ec

x(x) and Ec
y(y), respectively.

Ec
y(P

r
y (cx, ṡy)) denotes the crx in Figure 2. For the style

code, the reconstruction loss after cross-domain encoding
and decoding is

Lr
ṡx,ṡy = Ecx∼p(cx),ṡy∼q(ṡy)[||E

s
y(P

r
y (cx, ṡy))− ṡy||1]+

Ecy∼p(cy),ṡx∼q(ṡx)[||Es
x(P

r
x (cy, ṡx))− ṡx||1]

(13)

where Es
y(P

r
y (cx, ṡy)) denotes the ṡry in Figure 2. GAN loss

(Goodfellow et al. 2014) is also used to match the distribu-
tion of generated images to the distribution of real images.
Adversarial losses are

LD
x = Ecy∼p(cy),ṡx∼q(ṡx)[log(1−Dx(P

r
x (cy, ṡx)))]+

Ex∼p(x)[logDx(x)],
(14)

LD
y = Ecx∼p(cx),ṡy∼q(ṡy)[log(1−Dy(P

r
y (cx, ṡy)))]+

Ey∼p(y)[logDy(y)],
(15)

where P r
y (cx, ṡy) denote the ẏrx in Figure 2. The purpose of

all losses (Lr
x,y , Lr

cx,cy , Lr
ṡx,ṡy

, LD
x , LD

y ) mentioned above
is to assist the learning of cx by Ec

x.
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(a) Distorted (b) ADMNet (c) FUnIE (d) MLLE (e) URes (f) HLRP (g) WaterNet

(h) PhyNN (i) SMBL (j) UWNet (k) UGAN (l) SGUIE (m) Ours (n) Reference

Figure 3: Comparison of visual results. The scenes in the first and second rows are from UIEB and EUVP-I, respectively.

Loss Functions
In order to train UE-Net to obtain the color code and con-
tent code, three processes are jointly optimized, which are
enhancement, self-reconstruction and cross-reconstruction.
The overall loss function is

min
M

max
N
L(M,N) =LD

x + LD
y + λ1 · (Lm + Lr

x,y)+

λ2 · (Lr
cx,cy + Lr

ṡx,ṡy ),
(16)

where λ1 and λ2 are factors that control the weight of each
loss function. The networks represented by M and N are

M = {Em
x , E

c
x, E

s
x, E

c
y, E

s
y, P

r
x , P

m
x , P r

y }, (17)

N = {Dx, Dy}. (18)

Experiments
Settings
Experiments for evaluation are conducted on two datasets.
In detail, the UIEB (Li et al. 2019) dataset is split into 800
training images and 90 test images. The Underwater Ima-
geNet (EUVP-I) in the EUVP (Islam, Xia, and Sattar 2020)
dataset is split into 3300 training images and 400 test im-
ages. To ensure that the color code can be learned by CECF,
the dataset needs to contain a subset of images with less
distortion. Therefore, in this paper, the Underwater Scenes
(EUVP-S) provided by EUVP are used for analyzing the
color fine-tuning ability. The EUVP-S is split into 1967
training images and 218 test images. The masks for testing
are from (Islam, Luo, and Sattar 2020). Evaluation metrics
include full-reference metrics Peak Signal-to-Noise Ratio
(PSNR) (Shen, Zhao, and Zhang 2023; Shen et al. 2023) and
Structural Similarity Measure (SSIM) (Cong et al. 2020).
No-reference metrics include Underwater Image Quality
Measure (UIQM) (Panetta, Gao, and Agaian 2015) and Un-
derwater Color Image Quality Evaluation (UCIQE) (Yang
and Sowmya 2015; Qi et al. 2022).

The interval of the truncation operation κ(·) of mg is
[−3, 3]. The learning rate is set to 0.0001, the Adam opti-
mizer is used, and the batch size is 4. The values of λ1 and λ2
are 10 and 1, respectively. We need to emphasize two points.
First, compared with (Huang et al. 2018), color encoder Em

x
and color decoder Pm

x are newly added networks in this pa-
per. Since the network design is not the main research pur-
pose of this paper, our color encoder Em

x and color decoder
Pm
x simply use the similar structures to the Style Encoder

and Style Decoder proposed by (Huang et al. 2018). The de-
tails about Em

x and Pm
x are placed at Supplementary Mate-

rial (see our code repository). The rest networks remain the
same as (Huang et al. 2018). The method in (Huang et al.
2018) cannot provide fixed results and it cannot be used as
a comparative experiment. Second, the UIE algorithms for
comparison include ADMNet (Yan et al. 2022), FUnIE (Is-
lam, Xia, and Sattar 2020), MLLE (Zhang et al. 2022), URes
(Liu et al. 2019), HLRP (Zhuang et al. 2022), WaterNet (Li
et al. 2019), PhyNN (Chen et al. 2021), SMBL (Song et al.
2020), UWNet (Naik, Swarnakar, and Mittal 2021), UGAN
(Fabbri, Islam, and Sattar 2018) and SGUIE (Qi et al. 2022),
respectively.

Quantitative and Visual Results

When comparing with existing UIE algorithms, no guid-
ing image is adopted by CECF. The quantitative evalua-
tion values in Table 1 show that CECF achieves relatively
good results on both PSNR and SSIM. Moreover, for the no-
reference evaluation metric UIQM, CECF still outperforms
most algorithms. Figure 3 shows the visual effect compari-
son of CECF and other UIE algorithms. The visual enhance-
ment effects obtained by various algorithms demonstrate
that CECF has a relatively better effect on color restoration.
Overall, quantitative and visual results demonstrate the ef-
fectiveness of CECF on the UIE task.
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x→ ŷmx α = 0.1 α = 0.2 α = 0.25 α = 0.3 α = 0.35 α = 0.4 α = 0.45 α = 0.5 g → ŷmg

(a) Guided by underwater images. The g and ŷmg are images at the top and bottom, respectively.

(b) Guided by natural images. The g and ŷmg are images at the top and bottom, respectively.

Figure 4: Visual comparisons when taking different images as guidances.

Underwater and Natural Images as Guidance

Natural images with long wavelength colors are easier to ac-
quire than underwater images with long wavelength colors.
Therefore, the generalization ability of CECF in natural im-
ages is worthy of exploration. The color fine-tuning ability
of CECF is verified in underwater images in Figure 4-(a) and
natural images in Figure 4-(b). The experimental results pro-
vide two conclusions. First, the degree of the color transfor-
mation increases as α increases. Second, different rendering
effects can be obtained using different guidances.

Ablation Study and Discussions
Length of Color Code When the length of the color code
is set to 8, 16, 24 and 32, the corresponding evaluation re-
sults are shown in Table 2. The results demonstrate that
color codes of different lengths do not significantly affect the
quantitative evaluation results. Therefore, setting the color
code to 8 is a reasonable choice.

Values of Color Code During the training process of
CECF, the constraint of color code is added implicitly.
Therefore, we need to explore whether the neurons of Em

x
are dead (Em

x (x) ≈ 0) or not. The histograms of the train-
ing outputs from the first two dimensions (the length of mx
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Config. UIEB EUVP-I
PSNR↑ SSIM↑ UIQM↑ UCIQE↑ PSNR↑ SSIM↑ UIQM↑ UCIQE↑

ADMNet 21.138 0.882 2.887 0.608 24.668 0.844 3.000 0.557
FUnIE 18.707 0.800 3.081 0.607 21.899 0.796 3.032 0.567
MLLE 17.207 0.739 1.991 0.617 16.233 0.608 2.519 0.583
URes 18.324 0.841 2.892 0.580 23.327 0.825 3.016 0.541
HLRP 16.519 0.718 2.463 0.667 15.217 0.562 2.499 0.628

WaterNet 21.198 0.858 2.978 0.612 23.673 0.832 2.991 0.562
PhyNN 18.386 0.802 2.785 0.594 23.583 0.814 2.983 0.553
SMBL 16.647 0.764 2.050 0.631 16.083 0.651 2.195 0.617
UWNet 17.453 0.794 2.773 0.553 22.485 0.815 2.960 0.532
UGAN 21.472 0.860 3.276 0.622 24.586 0.833 3.053 0.557
SGUIE 21.757 0.894 3.058 0.609 24.797 0.840 3.038 0.559

Ours 21.819 0.894 3.122 0.615 25.156 0.856 2.991 0.558

Table 1: Quantitative results on UIEB and EUVP-I. The best results are in bold.

Config. UIEB EUVP-I
PSNR↑ SSIM↑ UIQM↑ PSNR↑ SSIM↑ UIQM↑

l = 16 -0.1148 0.0017 -0.0185 -0.0294 0.0002 0.0318
l = 32 -0.1459 0.0025 -0.0138 -0.0415 0.0036 0.0319
l = 48 -0.1159 0.0034 -0.0116 0.0861 0.0025 0.0369

Table 2: Evaluation of different length (denoted by l) of mx. The values in the table are the variations relative to l = 8.

Figure 5: The histogram of mx, where the x and y axis coor-
dinates represent the value range and amount, respectively.

Figure 6: The variation curves of UIQM when α ∈ [0, 0.5].

is 8) are shown in Figure 5. The results prove that Em
x is

capable of providing a non-zero numerical output.

Retention of Content Information When performing
color fine-tuning, we aim at the contents of image keep un-
changed. It can be seen from the visual effect in Figure 1 and
Figure 4 that the contents of the images are preserved.

The Values of Weight Factors The Equation 16 contains
two weighting factors, which are λ1 and λ2, respectively.
Since the values of λ1 and λ2 are theoretically infinite. We
empirically set λ2 to 1. Then, the ratio of λ1 : λ2 is set to five
representative values, namely 10, 8, 6, 4 and 2, respectively.
The results (on UIEB) in Table 4 show that the influence
of the weight ratio on the enhancement performance is not
obvious. Setting the λ1 to 6 or 10 is a reasonable choice.
Thus, we set λ1 and λ2 to 10 and 1, respectively.

Quantitative Evaluation of Color Fine-tuning To ver-
ify the quality of the diversified enhanced images ob-
tained by the color controller f(·, ·, ·), the changes of no-
reference evaluation metric UIQM (UIQM(f(x, g, α)) −
UIQM(f(x, x, 0))) are calculated on UIEB test dataset and
presented in Figure 6. The guidances we choose are the un-
derwater and natural images in Figure 1. As shown in Figure
6, when α increases, the value of UIQM first increases and
then decreases. Overall, we can draw two conclusions. First,
the results show that the value range ofα is relatively reason-
able between [0, 0.3]. Second, the quality of the enhanced
images obtained with different guidances is different.

Evaluation of Structure Loss The evaluation results in
Table 3 show the ablation of the Structure Loss (SL) which
is used in Equation 4. The results show that the performance
on the UIEB is significantly improved, especially the SSIM
value is improved from 0.883 to 0.894. The improvement of
SL on the EUVP-I is not obvious. The reason may be that the
EUVP-I has relatively simple degradation since the distorted
images are generated by a single algorithm (Islam, Xia, and
Sattar 2020). Overall, the use of SL is beneficial to CECF.
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Config. UIEB EUVP-I
PSNR↑ SSIM↑ UIQM↑ PSNR↑ SSIM↑ UIQM↑

SL 21.819 0.894 3.122 25.156 0.856 2.991
No-SL 21.693 0.883 3.117 25.040 0.856 3.018

Table 3: Evaluation of Structural Loss (SL).

Config. PSNR↑ SSIM↑ UIQM↑ PSNR↑ SSIM↑ UIQM↑
λ1 : λ2 = 2 λ1 : λ2 = 4

Values -0.282 -0.007 -0.024 -0.307 -0.004 0.012
λ1 : λ2 = 6 λ1 : λ2 = 8

Values -0.065 0.001 0.028 -0.288 -0.002 -0.025

Table 4: Evaluation of Weight Factors. The values in the table represent the improvements compared to λ1 : λ2 = 10.

Hue Approximately-invariant to the Guidance Figures
4 show the original guidance g and the corresponding en-
hanced ŷmg . The results demonstrate that the hues they be-
long to are approximately invariant. This proves that the mg

approximately preserves the color information of g.

How to Choose the Guidance There are no strict restric-
tions on the selection of guidance, except that the dominant
colors in g should be of long wavelength. The color fine-
tuning effect obtained by different guidances may be differ-
ent. When users want to determine whether an image g can
be used as a guidance, all that is required is to put the g in the
color controller f(g, g, 0) to obtain ŷmg . This g can serve as
suitable guidance if the hue of the ŷmg is almost unchanged.

Conclusions
This paper proposes an algorithm capable of fine-tuning
the color of underwater organisms via decomposition and
guidance. A three-step joint training procedure is adopted
to learn the color code. The self-reconstruction and cross-
reconstruction strategies are used as auxiliary training for
the learning of the contents of the scene. Quantitative and
qualitative experimental results show that underwater organ-
isms with diverse colors can be obtained by manipulating the
color code.
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