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Abstract

With the rapid development of 3D movie and light-field dis-
plays, there is a growing demand for stereo videos. However,
generating high-quality stereo videos from planar videos re-
mains a challenging task. Traditional depth-image-based ren-
dering techniques struggle to effectively handle the problem
of occlusion exposure, which occurs when the occluded con-
tents become visible in other views. Recently, the single-view
multiplane images (MPI) representation has shown promis-
ing performance for planar video stereoscopy. However, the
MPI still lacks real details that are occluded in the current
frame, resulting in blurry artifacts in occlusion exposure re-
gions. In fact, planar videos can leverage complementary
information from adjacent frames to predict a more com-
plete scene representation for the current frame. Therefore,
this paper extends the MPI from still frames to the tempo-
ral domain, introducing the temporal MPI (TMPI). By ex-
tracting complementary information from adjacent frames
based on optical flow guidance, obscured regions in the cur-
rent frame can be effectively repaired. Additionally, a new
module called masked optical flow warping (MOFW) is in-
troduced to improve the propagation of pixels along optical
flow trajectories. Experimental results demonstrate that the
proposed method can generate high-quality stereoscopic or
light-field videos from a single view and reproduce better
occluded details than other state-of-the-art (SOTA) methods.
https://github.com/Dio3ding/TMPI

Introduction
With the growing popularity of virtual reality, 3D movies
and light-field display technology (Su et al. 2020), there
is an increasing demand for stereoscopic videos. The most
straightforward way to obtain stereo videos is multi-view
capturing, which simultaneously records the same scene
with multiple cameras. For 3D movies, two cameras can
simulate human eyes and capture videos synchronously. In
the case of light-field videos, more cameras are required
to capture data from different viewpoints. However, after
decades of accumulation, there are a huge number of pre-
cious planar video resources. At the same time, the cost and
difficulty of single camera capturing are still much lower
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than that of multi-view capturing. Therefore, there is signif-
icant value in transforming classic planar videos into stereo
vision using stereoscopic vision conversion techniques.

To generate stereo videos from monocular input, tradi-
tional methods usually estimate depth maps from single-
view frame and then use depth-image-based rendering
(DIBR) (Fehn 2004) algorithms to synthesize novel views.
But DIBR process usually leaves holes in the occlusion ex-
posure regions. Then, some deep neural network (DNN)-
based 2D-to-3D video conversion methods have been pro-
posed, e.g., Deep3D (Xie, Girshick, and Farhadi 2016) and
depth estimation-based models (Lee et al. 2017). However,
although recent monocular depth estimation methods (Ran-
ftl, Bochkovskiy, and Koltun 2021; Godard et al. 2019;
Zhang et al. 2023) have achieved promising performance,
good depth maps can not guarantee satisfactory view syn-
thesis. It is still difficult to acquire accurate dense 3D ge-
ometry or fill in the occluded contents of the scene. Implicit
neural representation is another highly regarded approach to
synthesize novel views (Wang et al. 2023; Peng et al. 2021).
However, these methods require training specific representa-
tions for each scene, which greatly limits their application in
the field of stereo video conversion, as each video contains
a large number of constantly changing scenes.

Recently, the multiplane images (MPI) has gained a lot of
attention (Zhou et al. 2018; Mildenhall et al. 2019; Srini-
vasan et al. 2019; Li et al. 2021; Han, Wang, and Yang
2022), which consists of N fronto-parallel RGB-α planes
in the frustum of the source viewpoint, arranged at depths
(z1, · · · , zN ) from nearest to farthest. Each plane in MPI
contains both RGB values and α value, which denotes vol-
ume density or transparency. By means of MPI, planes at
different depths can better represent the details and spa-
tial structure of the scene. Recent MPI-based methods (Li
et al. 2021; Tucker and Snavely 2020; Han, Wang, and Yang
2022) can render multiple views from planar video frames,
achieving planar video stereoscopy. However, these methods
predict MPI without considering the temporal information
and still cannot regenerate obscured details.

To utilize the temporal information of videos, this paper
extends MPI to temporal domain and proposes a tempo-
ral MPI (TMPI) representation, as illustrated in Fig.1 (a).
TMPI combines the MPIs of neighbor frames and presents
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Figure 1: Framework and performance of the proposed temporal multiplane images (TMPI) method, (a) overall framework of
TMPI, (b) input planar frame, (c) reconstructed stereo video frames of TMPI (displayed in red-cyan format), (d) reconstructed
light-field frames of TMPI (8 viewpoints).

a masked optical flow warping (MOFW) module to obtain
fused TMPI based on optical flow and mask prediction. The
proposed method leverages complementary features from
adjacent frame to fill in the occluded regions in the fused
TMPI representation. The generated TMPI can then be ren-
dered to multiple viewpoints. Fig.1 (c) shows an example
of stereo frame (red-cyan format) generated by means of
TMPI. The proposed method can also reproduce more syn-
thetic viewpoints for light-field video conversion, as illus-
trated in Fig.1 (d).

The main contributions can be summarized as follows:

• This paper proposes a temporal MPI to extract additional
information from adjacent frames to fill in occluded re-
gions during the synthesis of new viewpoints. Compared
to normal MPI, the proposed TMPI can capture more
complete structure description of scene in planar videos.

• To avoid introducing artifacts caused by temporal fusion,
a novel flow warping module is designed to propagate
and fuse features from adjacent frames to the current
frame using masked flow. Compared to conventional op-
tical flow warping, our approach avoids the negative im-
pacts caused by inaccurate optical flow estimation.

• A stereo video dataset is built to train our model by ex-
tracting frames from 3D movies. Experimental results of
stereo video and light field video conversion demonstrate
the proposed method can reproduce high-quality results
with significantly improved performance in occluded re-
gions compared to SOTA methods.

Related Work
Single-View View Synthesis
Predicting new views from single-view is a challenging
problem with high ambiguity. Srinivasan et al. (Srinivasan
et al. 2017) synthesize a 4D RGBD light field from 2D
RGB image. More approaches (Niklaus et al. 2019; Wiles
et al. 2020) generate new views based on predicted depth
maps. Layered depth image (LDI)-based methods (Shade
et al. 1998; Tulsiani, Tucker, and Snavely 2018; Shih et al.
2020) store multiple RGBD pixels, which can use differ-
ent numbers of layers at each pixel location. However, The
LDI suffers from depth discontinuities and struggles with
complex 3D scene structures. Recently, MPI representation
(Zhou et al. 2018; Mildenhall et al. 2019; Srinivasan et al.
2019; Tucker and Snavely 2020; Li et al. 2021; Han, Wang,
and Yang 2022) becomes popular as it can explicitly model
occluded contents in the scene. Original MPI apporaches
(Zhou et al. 2018; Mildenhall et al. 2019; Srinivasan et al.
2019) use multiple views as input to predict the scene repre-
sentation, while some recent methods (Tucker and Snavely
2020; Li et al. 2021; Han, Wang, and Yang 2022) merely
rely on a single input view. However, single-frame MPI ne-
glects the temporal complementarity and content relevance
of neighbor frames, and still cannot regenerate high-quality
occluded regions.

Flow-Based Video Inpainting
Optical flow is commonly used for alignment and fu-
sion of neighbor frames in many video processing tasks,
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such as video object segmentation (Cheng et al. 2017; Hu
et al. 2018; Jampani, Gadde, and Gehler 2017; Li and Loy
2018), and video super-resolution (Liao et al. 2015; Haris,
Shakhnarovich, and Ukita 2020; Xin et al. 2020). Addition-
ally, optical flow has contributed to video inpainting, which
tends to restore missing regions in corrupted videos. For in-
stance, DFG (Xu et al. 2019) uses a flow-guided inpainting
network that employed an adaptive fusion module to smooth
the boundaries between different frames. FGVC (Gao et al.
2020) presents an end-to-end framework consisting of a flow
completion module and a content completion module. Li et
al. (Li et al. 2022) introduce a scene template to ensure con-
sistency between the flow and the scene. These methods pri-
marily rely on pixel propagation, where holes are filled by
bidirectionally propagating pixels from visible areas guided
by the optical flow.

The Proposed Method
Given a video sequence {It ∈ RH×W×3|t = 1 · · ·T}
with sequence length T and corresponding frame-wise depth
maps {Dt ∈ RH×W×1|t = 1 · · ·T} , we aim at syn-
thesizing a TMPI representation {P t ∈ RH×W×N×4|t =
1 · · ·T}, where N denotes the number of planes. Then new
view can be rendered from the TMPI representation.

TMPI Representation

The MPI representation uses N RGB-α planes that are
fronto-parallel to a reference camera’s frustum to represent
the scene, with each plane placed at a fixed depth. Each
plane in MPI is composed of 4 channels of values, i.e., 3
channels of RGB color values {Ci|i = 1 · · ·N}, and one
channel of transparency values {αi|i = 1 · · ·N}. In the
TMPI, density maps {σi|i = 1 · · ·N} are predicted instead
of transparency maps, because the density maps can produce
clearer results as noted in (Li et al. 2021). The transparency
map αi can be converted from density map σi as,

αi = exp(−δiσi), (1)

where δi represents the distance map between two ad-
jacent planes. The Cartesian coordinate conversion from
the perspective 3D coordinate [x, y, z]

T is defined as
C
(
[x, y, z]

T
)

. Then, the distance map between (i+1)-th
plane and i-th plane can be computed as,

δi =
∥∥∥C(

[x, y, zi+1]
T
)
− C

(
[x, y, zi]

T
)∥∥∥

2
, (2)

In this paper, the TMPI is designed to leverage the comple-
mentary information of two neighbor frames It and It+1.
Each plane {P t

i |i = 1 · · ·N} is thus composed of fused
RGB information T (Ct

i ,C
t+1
i ) and fused density informa-

tion T (σt
i ,σ

t+1
i ), where T denotes the proposed TMPI cal-

culation model which can extract complementary features
from adjacent frame It+1 and then fuse the warped fea-
tures into the current frame It. Then, the image It can be
remapped back from TMPI representation by blending the

N RGB-σ planes P t
i from back to front in an iterative man-

ner, as follows,

It =
N∑
i=1

Ti

(
1− exp

(
T (σ

t
i,σ

t+1
i )δi

)
T (C

t
i,C

t+1
i )

)
,

(3)

Ti = exp

−
i−1∑
j=1

T (σ
t
j ,σ

t+1
j )δj

, (4)

where Ti denotes the transmittance from the camera to the i-
th plane. For synthesizing new views from TMPI, each plane
P t

i is firstly warped according to its depth and the target
camera parameters as in (Hartley and Zisserman 2003; Zhou
et al. 2018):

[xs , ys , 1]
T ∼ K

(
R− vTn

T

zi

)
K−1 [xt , yt , 1]

T
, (5)

where xs, ys denote the pixel coordinates in the source cam-
era, xt, yt are the pixel coordinates in the target camera,
K represents the camera intrinsic matrix, R denotes the
camera rotation matrix, vT is the camera translation vector,
n = [0, 0, 1]T is the plane normal vector, and zi denotes the
distance from the plane to the source camera.

Network Architecture
As shown in Fig.2, the proposed network is composed of
two mask branches and a RGB-σ branch. The mask branch
tends to predict assign masks, which determine which pix-
els should be placed in which plane in MPI. The two mask
branches share the same structure and parameters for two ad-
jacent frames It and It+1. The RGB-σ branch then adopts
masked flow warping to fuse intermediate features and pro-
duces the final TMPI representation. In each mask branch,
the depth map Dt of frame It is firstly obtained by a monoc-
ular depth estimation model DPT (Ranftl, Bochkovskiy, and
Koltun 2021). Then, Dt and It are simultaneously fed into a
RGBD encoder ERGBD to encode scene structure with depth
information. The RGBD feature Et is calculated as,

Et = ERGBD(It,Dt). (6)

The RGBD feature Et is then replicated by N times, and
each copy is used to predict the mask and RGB-σ value for
each plane. Motivated by ESPNetv2 (Bae, Moon, and Im
2023), the depth maps Dt is downsampled through an av-
erage pooling layer favp and then concatenated to Et, so
that the spatial and depth information loss can be reduced.
The mask decoder Dm takes the concatenated features and
a single depth value zi(i = 1, · · · , N) as input. Specifi-
cally, we sample the disparity value di(i = 1, · · · , N) in
the perspective geometry and zi = 1/di. Note that di is uni-
formly distributed from 1 to 0.001. Finally, N assign masks
{M t

i |i = 1 · · ·N} are produced after a softmax layer:

M t
i = Softmax(Dm(Et, zi, favp(D

t))). (7)

Next, the optical flow F t+1→t from frame It+1 to frame
It is estimated using the flow estimation model RAFT (Teed
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Figure 2: The network architecture of the proposed TMPI method.

and Deng 2020). The proposed MOFW module is then used
to propagate the features of adjacent frames and fuse them
with Et to generate the fused feature Êt

i as follows,

Êt
i = fMOFW (Et,Et+1,M t

i ,M
t+1
i ,F t+1→t). (8)

Finally, the RGB-σ decoder DRGB−σ reconstructs the
fused feature Êt

i into the i-th plane in TMPI, as follows:

P t
i = DRGB−σ(Ê

t
i ), (9)

where P t
i denotes the plane which contains 4 channels of R,

G, B values Ct
i and density value σt

i . After the calculation of
each P t

i , the TMPI representation is obtained, which can be
used to synthesize stereo viewpoints by using Eq.3 and Eq.5.
In this paper, the RGBD encoder, mask decoder, and RGB-
σ decoder adopt the same backbone structure as in (Zhang
et al. 2023).

Masked Optical Flow Warping

Directly applying traditional optical flow warping to fuse
features of two frames may lead to blurry, ringing or ghost-
ing artifacts due to inaccurate flow estimation. Moreover,
we do not require all information from the adjacent frame,
but only the valid region where the areas occluded in It

but visible in It+1. Hence, a MOFW module is designed.
First, the context feature {Et

i |i = 1 · · ·N} and context flow{
F t+1→t
i

∣∣i = 1 · · ·N
}

are calculated for each plane of
TMPI as follows,

Et
i = Et ⊙

N∑
j=i

M t
j , (10)

F t+1→t
i = F t+1→t ⊙

N∑
j=i

M t+1
j , (11)

where symbol ⊙ represents element-wise multiplication,
M t

j denotes the estimated assign mask, and
∑N

j=i M
t
j de-

notes the context regions for plane P t
i that can fill in the oc-

cluded pixels. To avoid the influence of the occluding con-
tent in the front, we set the context mask to be the combi-
nation of the pixels on and behind the i-th plane. Similarly,∑N

j=i M
t+1
j denotes the context regions for calculating the

context flow. For each plane, the contained information is
the feature selected by the context mask

∑N
j=i M

t
j , while

the other regions are holes (near 0 values). In other words,
the mask of hole regions is the inversion of the context mask
(1 −

∑N
j=i M

t
j ), namely inpainting mask. Next, we hope

to inpainting the missing hole regions by fusing the context
features Et+1

i extracted from the neighbor frame. We can in-
tuitively obtain the warped features Êt+1

i by forward warp-
ing the Et+1

i to current frame with the context flow F t+1→t
i .

Then the warped features Êt+1
i is concatenated with Et

i to
provide additional context features.

As mentioned before, most of the information in Êt+1
i is

redundant with Et
i . What we need is only the information

that is missing from the Et
i , i.e., Êt+1

i ⊙
(
1−

∑N
j=i M

t
j

)
.

As a result, the final warped feature can be further merged
with current context feature Et

i as follows,

Êt
i = P

Et
i ,W(Et+1

i , F t+1→t
i )⊙

1−
N∑
j=i

M t
j

 ,

(12)
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(f) (g) (h) (i) (j)

Figure 3: Visualization of MOFW process, (a) RGBD feature Et, (b) RGBD feature Et+1, (c) Optical Flow F t+1→t, (d)
Inpainting Mask (1−

∑N
j=9 M

t
j ), (e) Fusion Features Êt

9, (f) Context Feature Et
9, (g) Context Feature Et+1

9 , (h) Context Flow

F t+1→t
9 , (i) W

(
Et+1

9 ,F t+1→t
9

)⊙(
1−

∑N
j=9 M

t
j

)
, (j) 4-channel plane P t

9 in TMPI. For the sake of intuition, the frame is
used in these figures instead of feature maps.

where W(·) denotes the forward warping operation based
on optical flow, and the propagation function P(·) consists
of two 3× 3 convolutional layers.

Fig.3 visualizes the process of how our MOFW module
generates the fused feature Êt

9 of the 9-th plane. It utilizes
the context feature Et

9 in Fig.3 (f), context feature Et+1
9 in

Fig.3 (g), context flow F t+1→t
9 in Fig.3 (h), and inpainting

mask
(
1−

∑N
j=i M

t
j

)
in Fig.3 (d) to propagate comple-

mentary features from adjacent frame, as shown in Fig.3
(i). Then the features of current frame and the complemen-
tary features are fused to generate the final feature Êt

9. The
fused features are then fed into the aforementioned RGB-σ
decoder to produce the 4-channel plane P t

9 .

Loss Functions

There are total five terms in the loss function, i.e., RGB L1
loss L1, RGB SSIM loss LSSIM , RGB perceptual loss (Liu
et al. 2018) Lper, L1 loss of depth map Ld1, and the mask
assign loss Lmask. The total loss is given by:

L = λ1L1 + λ2LSSIM + λ3Lper + λ4Ld1 + λ5Lmask,
(13)

where the weights λ1, λ2, λ3, λ4, and λ5 are experimentally
set to 1, 1, 1, 1, and 10, respectively.

Inspired by (Han, Wang, and Yang 2022), Lmask can
measure the error to represent the depth map Dt using N

discrete planes at depth {zi}Ni=1 with masks {M t
i }

N
i=1, as

follows,

Lmask =
1

HW

N∑
i=1

∑
(x,y)

M t
i ⊙

∣∣Dt − zi
∣∣ . (14)

Experiments
Datasets and Implementation Details

Training set We introduce a training dataset contained
12388 pairs of 720 × 480 stereo frames collected from 20
recent 3D movies. As 3D movies provide binocular perspec-
tives, the binocular depth estimation network DPSNet (Im
et al. 2019) is applied to obtain depth maps for each frame.

In addition, in order to further improve the scale and di-
versity of training samples, we adopt the approach proposed
in (Watson et al. 2020) to transform a collection of single-
view RGB videos into stereo training data. In our experi-
ments, this method is applied to the widely used Vimeo90K
video dataset, which consists of 73, 171 3-frame sequences
with a fixed resolution of 448× 256.

2D-to-3D video conversion test set For evaluating the
performance of 3D video conversion, 10 3D movies differ-
ent from that in training set are used to create the test set con-
tained 3323 five-frame sequences. The left view of the 3D
movies is used as input and the right view is reconstructed
with different methods. The differences between the ground-
truth (GT) right view and the reconstructed right view are
measured for quantitative and qualitative evaluation.

Light-field video conversion test set Due to the lack of
light field video datasets, a test set is built to simulate
sparse light field data based on Middlebury stereo dataset
(Scharstein and Pal 2007; Hirschmuller and Scharstein
2007), which consists of high-resolution stereo sequences
with complex geometry. Each sequence contains 7 views,
with views 1 and 5 providing pixel-accurate ground-truth
disparity data. However, this dataset lacks temporal varia-
tions between frames. Therefore, we use view 1 as the cur-
rent frame and view 5 as the adjacent frame, and then com-
pare three synthesized views with the GT views.
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Figure 4: The 2D-to-3D conversion results of different methods on 3D movie test set.

Method LPIPS↓ PSNR↑ SSIM↑ Param (M)

ADAMPI 0.036 35.44 0.956 57.12
MINE 0.057 30.78 0.877 38.06
3D Photo 0.068 29.15 0.859 114.56
Deep3d 0.070 31.41 0.898 84.01
DIBR 0.036 35.14 0.928 4.19
Ours 0.027 36.33 0.960 37.55

Table 1: PSNR, SSIM, LPIPS scores and Parameters of dif-
ferent methods on 3D movie test set

In addition, to verify the generalization and robustness of
the light field synthesis models, we select 10 planar video
clips from the Youku2K video set (Youku 2019), and then
convert them to light field videos with 8 views using differ-
ent methods.

It is noted that these simulated light field videos are still
different from the real dense light field data, and mainly fo-
cus on horizontal disparity, thus they are only used to verify
the potential capability of different methods when synthe-
sizing multiview light-field-like data.

Implementation We first train our network on stereo
training data generated from Vimeo90K for 800,000 steps
with an initial learning rate of 0.0002 for the encoder, and
0.001 for the decoder. Then we use 3D movies dataset to
finetune the model for 200,000 steps. Our model is opti-
mized by Adam with weight decay 1e− 4 in training stage.
The number N of planes in TMPI is set to 64.

Experimental Results

To verify the effectiveness of the proposed method, sev-
eral stereo vision conversion methods are used for compari-
son, such as Deep3d (Xie, Girshick, and Farhadi 2016), DP-
SNet+DIBR, 3D-Photo (Shih et al. 2020), MINE (Li et al.
2021), and ADAMPI (Han, Wang, and Yang 2022). We aug-
ment Deep3d with depth map, as it does not utilize depth
information.

Figure 5: Visual comparisons of synthetic views of different
methods on Middlebury stereo dataset.

3D Video Conversion Results Fig.4 illustrates 2D-to-
3D conversion results of different methods. Firstly, DIBR
causes holes artifacts and Deep3D tends to produce blurry
results. Secondly, 3D-Photo and MINE produce smaller dis-
parities than GT, which leads to weaker stereoscopic percep-
tion. Thirdly, ADAMPI still cannot recover occluded con-
tents and generates unsatisfying halos. Overall, these meth-
ods cannot well restore the difficult occlusion exposure re-
gions, while the proposed method can obtain better subjec-
tive results than other methods.

For objective testing, we adopt two commonly used dis-
tortion metrics, i.e., PSNR and SSIM, and one perceptual
similarity measure LPIPS (Zhang et al. 2018). Table 1 lists
the quality scores of these methods, it can be found that our
method outperforms other methods on all metrics, which in-
dicates that the proposed TMPI can achieve less distortion
and higher fidelity. In addition, the parameters of the pro-
posed method do not exceed recent SOTA models.

Light Field Video Synthesis Results Compared with
stereo videos, multiview light-field-like videos have much
larger disparities. Fig.5 shows synthesized results on Mid-
dlebury stereo dataset. By comparing the reconstructed oc-
cluded contents, we can get the following observations.
Firstly, DIBR remains holes and 3D-Photo may inpaint er-
ror contents. Secondly, ADAMPI still cannot handle un-
known occluded contents and produce blur halos. Benefit
from the temporal complementary information in TMPI, the
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View0 View2 View3

Method LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
ADAMPI 0.036 29.71 0.950 0.034 32.22 0.956 0.052 28.71 0.916
3D Photo 0.052 27.21 0.916 0.053 26.97 0.890 0.065 25.50 0.853
DIBR 0.060 27.34 0.922 0.036 31.66 0.954 0.061 28.38 0.916
Ours 0.032 30.51 0.957 0.030 32.46 0.959 0.050 28.75 0.919

Table 2: Comparison results of different views on Middlebury stereo dataset

Figure 6: Comparison of light field synthesis results from
planar video clips.

Method paq2piq↑ ava↑ spaq↑ MOS↑

ADAMPI 72.70 4.54 61.71 3.33
3D Photo 72.40 4.42 59.84 2.65
DIBR 72.13 4.51 61.29 2.92
Ours 72.91 4.59 62.26 3.96

Table 3: BIQA and MOS results of light field video conver-
sion from planar clips

proposed method can synthesize occluded regions that are
more consistent with GT. Related quantitative results are
listed in Table 2, from which we can find the proposed
method sill outperforms other SOTA methods.

To verify the generalization ability, a planar video set is
used to synthesize light field videos with different meth-
ods. As illustrated in Fig.6, DIBR, 3D-Photo, and ADAMPI
methods suffer from the missing information of occluded
areas, and thus cause blur, holes or halos. The proposed
method can reproduce natural and high quality results. Be-
cause GT are unavailable in this test set, mean opinion score
(MOS) and some blind image quality assessments (BIQA)
are listed in Table 3, i.e., paqpiq (Ying et al. 2020), ava (Ke
et al. 2021) and spaq (Ke et al. 2021). To obtain MOS, 16 ob-
servers are invited to score the visual quality of synthetic re-

Figure 7: Subjective results for ablation study on 3D video
conversion, (a) without using adjacent frame, (b) without
MOFW module, (c) Ours.

LPIPS↓ PSNR↑ SSIM↑

w/o adjacent frame 0.029 36.28 0.954
w/o MOFW 0.049 34.72 0.944

Ours 0.027 36.33 0.960

Table 4: Ablation study results on 3D movie test set

sults from 1 (the worst) to 5 (the best). The proposed method
still achieves the highest BIQA and MOS values, which ver-
ifies the robustness of the proposed TMPI methods.

Ablation Study

Ablation experiments are conducted on the 3D movie test
set to evaluate the effects of adjacent frames and the MOFW
module. The results of the ablation tests are shown in Ta-
ble 4. When adjacent frame is not used, there is a slight
decrease in these metrics. It is worth noting that the lim-
ited decrease in numerical values is due to the fact that our
method only utilizes complementary information from the
exposed regions in the adjacent frames. Although these re-
gions are visually noticeable, their area is relatively small
compared to the entire image, resulting in only a small de-
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crease in the metrics computed over the entire image. On the
other hand, when the MOFW module is removed, traditional
flow warping may introduce ghosting artifacts, thus leading
to a significant drop of quality scores.

Fig.7 illustrates subjective comparisons of the ablation
study. In the current frame, the face in background is oc-
cluded by the foreground character, resulting in an unreal-
istic blurred face when he is visible in other viewpoints, as
shown in Fig. 7 (a). By using the adjacent frame, the miss-
ing facial details can be effectively reconstructed. As in Fig.
7 (b), without the MOFW module, traditional warping pro-
cess may introduce severe artifacts, which confirms the ef-
fectiveness of the proposed MOFW module.

Limitation
While the TMPI model exhibits robust performance, its cur-
rent inference speed is inadequate for real-time applications
on devices with limited computational capabilities. In our
future work, we aim to enhance the inference speed by op-
timizing the network architecture and simplifying the plane
representation based on the scene structure. Furthermore, we
plan to utilize the TMPI model to distill a lightweight model.

Conclusion
This paper proposes a novel Temporal Multiplane Images
(TMPI) representation for stereo vision conversion from
planar videos. In comparison to the single-frame MPI, the
TMPI can extract complementary information from adja-
cent frames, effectively addressing the challenging task of
recovering details in the occluded regions. Specifically, a
TMPI network is designed with two mask branches and one
plane reconstruction branch. To overcome fusion artifacts
arising from inaccurate flow estimation, a masked optical
flow warping module is introduced. This module can refine
the occluded regions by fusing specific masked context fea-
tures of neighboring frames. Experimental results demon-
strate that the proposed TMPI can reproduce high-quality
occlusion exposure areas and outperforms SOTA methods.
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