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Abstract

Hyperspectral image super-resolution (HSI-SR) is a tech-
nology to improve the spatial resolution of HSI. Existing
fusion-based SR methods have shown great performance, but
still have some problems as follows: 1) existing methods
assume that the auxiliary image providing spatial informa-
tion is strictly registered with the HSI, but images are dif-
ficult to be registered finely due to the shooting platforms,
shooting viewpoints and the influence of atmospheric turbu-
lence; 2) most of the methods are based on convolutional
neural networks (CNNs), which is effective for local fea-
tures but cannot utilize the global features. To this end, we
propose a multi-modal cross-scale deformable transformer
network (M2DTN) to achieve unregistered HSI-SR. Specif-
ically, we formulate a spectrum-preserving based spatial-
guided registration-SR unified model (SSRU) from the view
of the realistic degradation scenarios. According to SSRU,
we propose the multi-modal registration deformable module
(MMRD) to align features between different modalities by
deformation field. In order to efficiently utilize the unique
information between different modals, we design the multi-
scale feature transformer (MSFT) to emphasize the spatial-
spectral features at different scales. In addition, we propose
the cross-scale feature aggregation module (CSFA) to accu-
rately reconstruct the HSI by aggregating feature information
at different scales. Experiments show that M2DTN outper-
forms the-state-of-the-art HSI-SR methods. Code is obtain-
able at https://github.com/Jiahuiqu/M2DTN.

Introduction
Hyperspectral imaging can obtain hyperspectral images
(HSI) with hundreds of spectral bands. Since the intensity of
electromagnetic waves reflected by various ground objects
is varying in different bands, HSI provides detailed infor-
mation of different ground objects. However, due to the lim-
itations of imaging systems, HSI has low spatial resolution,
and remote sensing tasks such as change detection (Qu et al.
2023), classification (Zhang et al. 2022a), and semantic seg-
mentation (Zeng et al. 2023) require high accuracy images
to obtain meaningful results. In order to obtain HSI with
high spatial resolution, hyperspectral image super-resolution
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Figure 1: The figure shows the panchromatic and low-
resolution hyperspectral images for ideal and realistic con-
ditions, as well as ground truth. Spectral curves for the three
HSI are also shown, with data from the Pavia Center dataset.

(HSI-SR) has appeared and gained widely concern in re-
cent years. HSI-SR can be divided into two categories: sin-
gle image super-resolution (SISR) and fusion-based super-
resolution (fusion-based SR) according to whether high spa-
tial resolution auxiliary images are used. Compared with
SISR, the fusion-based SR methods provide the high spatial
resolution hyperspectral images (HrHSI) with higher spatial
and spectral fidelity.

In recent years, with the rapid development of deep learn-
ing (DL), a series of fusion-based SR models based on HSI
such as HyperPNN (He et al. 2019), LPPNet (Dong et al.
2021b), and PS-GDANet (Dong et al. 2021a) have emerged,
and shown excellent performance. However, these models
fuse low spatial resolution hyperspectral images (LrHSI)
and high spatial resolution multispectral image (HrMSI) on
the premise that the two images are strictly registered. In
reality, images are difficult to be registered finely due to
the imaging platforms, imaging viewpoints and the influ-
ence of atmospheric turbulence as shown in Figure 1, and
how to achieve image registration in the fusion process is
a more realistic problem. Meanwhile, most of the previous
fusion-based SR methods are based on convolutional neural
networks (CNNs) such as WSRCNN (Aburaed et al. 2020).
Although the CNNs with deep layers can properly fuse the
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spatial-spectral features to a certain extent, the limited recep-
tive field of the convolution kernel cannot utilize the global
information of the feature map, resulting in the performance
degradation of HSI-SR methods.

In this paper, we propose a multi-modal cross-scale de-
formable transformer network (M2DTN) to solve above
problems. We formulate a spectral-preserving based spatial-
guided registration-SR unified model (SSRU), and expand it
to M2DTN. We take the degenerate scenario in reality as the
starting point, deducing and demonstrating the feasibility of
SSRU. M2DTN can be considered as the mapping of each
part of SSRU in the deep network, which means that SSRU
unitizes each module of M2DTN as a whole. In M2DTN,
the multi-modal registration deformable module (MMRD)
is proposed to generate the deformation field by learning
the difference between the spatial distribution of features
of HrMSI and LrHSI and then register the LrHSI. For both
HrMSI and LrHSI, multi-scale feature transformer (MSFT)
is designed to focus on spatial-spectral features at multi-
scales. Meanwhile, for better image reconstruction, we pro-
pose cross-scale feature aggregation module (CSFA) to ag-
gregate the spatial-spectral features of multi-scale to learn
the relationship between the input and the desired HrHSI.

The main contributions of this paper are summarized as
follows:

• Based on the realistic degradation scenarios, we formu-
late a novel model called SSRU, and under the guidance
of it, we propose M2DTN to achieve excellent results on
the task of unregistered HSI-SR.

• We propose MMRD for registering HSI, which makes
the network learn the spatial distribution of each modal-
ity by spatial relation matrix to generate the deformation
field.

• Our designed MSFT and CSFA make full use of the
multi-scale spatial-spectral information of multi-modal
images, which helps generate more refined HrHSI.

Related Work
HSI-SR
Classical HSI-SR methods can be divided into four cate-
gories: component substitution (CS), multiresolution analy-
sis (MRA), Bayesian and CNMF. CS-based methods first de-
compose LrHSI into spectral and spatial components. Sub-
sequently, the spatial component is substituted with the PAN
image and both components are converted to the original
space. The MRA methods inject spatial features to LrHSI
by employing a spatial filter. The limitations of single CS
or MRA have led to the emergence of hybrid methods such
as guided filtered PCA (GFPCA) (Kang, Li, and Benedikts-
son 2013). The above classcial methods are prone to spatial
blur or spectral distortion due to the mismatch problem when
injecting information. Bayesian methods formulate the fu-
sion problem in a Bayesian inference framework, such as
Bayesian Fusion (BF) (Wei, Dobigeon, and Tourneret 2015),
sparse BF (BSF) (Wei et al. 2015). Bayesian methods like
BF and BSF rely on the posterior distribution of LrHSI and
HrMSI to estimate the desired image. The Bayesian-based

methods consider the problem comprehensively from the
model constructed by it, but it usually has large compu-
tational costs and requires certain prior conditions. CNMF
(Yokoya, Yairi, and Iwasaki 2011) reconstructs the image
with the abundance matrix of HrMSI and the endmember
matrix of LrHSI.

For the past few years, deep learning (DL) has shown
great potential in the field of image processing. A large
amount of DL methods have been proposed for HSI-SR,
including CNN-based methods, GAN-based methods, and
have achieved satisfactory results. (He et al. 2019) proposed
an HSI-SR framework named HyperPNN, which designed a
spectral prediction capability to spectral difference between
HSI and panchromatic images. Following the idea of MRA,
(Dong et al. 2021b) proposed LPPNet to reconstruct HrHSI
by using Laplacian pyramid to extract multi-scale informa-
tion. (Mei et al. 2017) utilized 3D-Conv to achieve HSI-
SR because 3D-Conv is easier to exploit the properties of
HSI. (Dong et al. 2021a) proposed a dual-branch discrim-
inator to compare spectral information with HSI and spa-
tial information with multispectral images (MSI) to achieve
HSI-SR. (Yao et al. 2020) designed a coupled convolution
autoencoder network (CUCaNet), which attempted to solve
the problem of unregistered HSI-SR. Other methods are also
proposed for unregistered HSI-SR such as NonRegSRNet
(Zheng et al. 2021), etc.

Image Registration
In recent years, image registration has become one of the hot
issues in the field of HSI processing. These traditional reg-
istration algorithms commonly use an iterative approach to
progressively optimize the problem under constraint. Some
feature-based methods usually pick some feature points
through a scale-invariant Fourier transform or Harris corner
detector, and approximate the nonrigid transform with the
thin-plate spline or Gaussian radial basis function. With the
development of DL, image registration has made significant
progress. (Jaderberg et al. 2015) designed the spatial trans-
former network (STN) to solve the problem of affine trans-
formation between image pairs, which can be inserted any-
where in the framework to learn the transformation parame-
ters of the input feature map. (Li and Fan 2018) used a fully
convolutional network (FCN) to execute non-rigid registra-
tion of 3D brain magnetic resonance (MR) images by self-
supervised. (Shu et al. 2018) proposed a coarse-to-fine unsu-
pervised deformable registration method, in which the mean
squared error (MSE) was used as the loss function between
the fixed and warped moving images. (Balakrishnan et al.
2019) proposed an unsupervised learning-based method for
medical image registration VoxelMorph that could be used
to predict a dense deformation field. (Zhao et al. 2019) de-
signed a recursive cascaded network for performing progres-
sive deformation for the registration of deformable images.

Transformer-based Image SR
Transformer architectures have found great success across
various computer vision tasks such as image recognition,
object detection, and semantic segmentation. Owing to their
strong feature representation capability, they are extended
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Figure 2: The overview of the M2DTN. In the figure, i ∈ [0, N ] indicates the scale size, and the scale corresponding to the
number 0 is the largest scale.

to HSI-SR tasks. However, navie self-attention (Dosovit-
skiy et al. 2020) is not suitable for HSI, because it has
quadratic complexity, and HSI usually contains hundreds
of bands. In order to improve the computational efficiency,
some efficient transfomer architectures have been proposed.
(Liang et al. 2021) used window self-attention blocks along
with convolutional layers to improve the efficiency of the
model. (Zhang et al. 2022b) divided the input features into
five groups equally and used shift convolution to shift the
first four groups of features along different spatial dimen-
sions, including left, right, up, and down, leaving the last
group unchanged. (Yang et al. 2020) added soft attention
map and hard attention map to attention block to transfer
texture information from the reference image. (Bandara and
Patel 2022) utilized the soft attention of multiple features to
obtain better spatial and spectral properties.

The above methods rarely consider the data characteris-
tics of HSI and the problem of image misregistration of dif-
ferent modals simultaneously. We explore this issue next in
this paper.

Method
Promblem Formulation
Given two images, LrHSI YH ∈ RC×h×w and HrMSI YM ∈
Rc×H×W , their mathematical relationship to HrHSI X ∈
RC×H×W under ideal circumstances is shown below

YH ≈ (X) ↓spa = XB (1)
YM ≈ (X) ↓spe = RX (2)

where X represents the HrHSI, B ∈ RHW×hw represents
the spatial downsampling matrix containing a blurring op-
erator and a downsampling operator, R ∈ Rc×C represents
the spectral response matrix of the multispectral image sen-
sor, and H , W , C denote the height, width, and number of
channels of the HSI, which are much larger than h, w, c,
respectively.

In practice, due to the limitations of imaging systems and
imaging conditions, the obtained images are often distorted.
Eqs. (1), (2) can be rewritten as

YH = (X ⊗ DH)B (3)
YM = R (X ⊗ DM) (4)

where DH and DM ∈ RH×W×2 denote the distorted defor-
mation fields of HSI and MSI with respect to X, and ⊗ de-
notes that deformation field acts on X. Thus, we could define
XM = X ⊗ DM as the ground truth corresponding to YM. In
the same way, XH = X ⊗ DH as the ground truth corre-
sponding to YH. The relation among X, XM, and XH can be
expressed as

X = XM ⊗ D∗
M = XH ⊗ D∗

H (5)
where D∗

M and D∗
H denote the inverse operations of DH and

DM, respectively.
Usually, XM is considered closer to X because HrMSI

receives less interference during imaging and has higher
spatial resolution. Therefore, we choose XM as the desired
HrHSI, and the relationship between XM and XH can be ex-
pressed as

XH = X ⊗ DH = XM ⊗ D∗
M ⊗ DH = XM ⊗ D (6)
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where D represents the combined deformation field of D∗
M

and DH. According to the above theoretical derivation, Eqs.
(3), (4) can be further written as

YH = (XM ⊗ D)B (7)

YM = RXM (8)
Our goal is to solve for XM, which reconstructs the HrHSI

by fully considering the spatial details of YM and spectral
information of YH in the case of the unregistered images.
We formulate SSRU, which is defined as follows

XM = αR∗YM + β(YHB∗)⊗ D∗ (9)

where R∗, B∗, and D∗ denote the inverse operations of R,
B, and D, respectively, and α, β ∈ [0, 1] satisfy α + β = 1.
Unlike Eq. (9), there is more than one XM if only Eq. (7) or
Eq. (8) is satisfied, which obviously incompatible with the
ground truth. In other words, the real XM is a superposition
of two modal images, which conforms to the spatial prior of
YM and the spectral characteristics of YH.

Overall Pipeline
In the previous section, we construct the SSRU according to
the realistic degradation scenarios. The M2DTN is proposed
to map the parts of SSRU. The overall pipeline of M2DTN
is shown in Figure 2.

According to SSRU, it is crucial to learn the spatial distri-
bution and positional differences between HrMSI and LrHSI
to generate the deformation field. To this end, we propose
MMRD to learn the spatial distribution by directly modeling
the relationship of the spatial dimension between the multi-
modal images on the spatial dimension of the two modals.
Each layer of MMRD can be expressed as follows

F̂
i

H = MMRD(Fi
H,Fi

M) = Fi
H ⊗ Di∗ (Fi

H,Fi
M

)
(10)

where Fi
H, Fi

M, and F̂
i

H denote multi-scale unregistered
LrHSI features, multi-scale HrMSI features, and multi-scale
registered LrHSI features, respectively, MMRD(·) denotes
MMRD, and Di∗ denotes the deformation field between Fi

H
and Fi

M.
In M2DTN, our proposed CSFA completes the process

of image reconstruction. Before that, in order to improve
the performance of M2DTN, we also design MSFT to ef-
fectively utilize the information of both modals.

MSFT is a pyramid structure consisting of N global spec-
tral transformer blocks (GSTB), which can focus on spatial
features at different scales. Meanwhile, in GSTB, we apply
global spectral feature attention to focus on spectral infor-
mation. The MSFT module is adopted to parallel extract
multi-scale features of HSI and MSI in M2DTN, in which
HrMSI is progressively downsampled and LrHSI is progres-
sively upsampled to obtain feature maps of the same size.
Each layer of MSFT can be expressed as follows

Fi
M =

{
GSTB

(
Fi−1

M

)
, otherwise

YM , i = 0
(11)

Fi
H =

{
GSTB

(
Fi+1

H

)
, otherwise

YH , i = N
(12)

where Fi
M and Fi

H denote the features with serial number
i ∈ [0, N ]. The scale size of feature with the serial number
i to be Rn× H

2i
×W

2i , and n denotes the number of channels of
the corresponding modal.

Finally, the registered multi-scale features are processed
with double-layer convolution to generate reconstructed fea-
tures Xi

M. The multi-scale reconstructed features are fed into
CSFA to reconstruct HrHSI, which aggregates information
across scales to obtain more powerful feature representa-
tions. The process of CSFA to reconstruct HrHSI can be
mathematized as follows

XM = CSFA(X0
M, · · · ,Xi

M, · · · ,XN
M ) (13)

where Xi
M represents the reconstructed feature with scale

index i, XM represents the final reconstruction result of
M2DTN, and CSFA(·) represents the CSFA. In the follow-
ing sections, we detail MSFT, MMRD, and CSFA.

Multi-Scale Feature Attention Transformer
Due to the inconsistency of spatial resolution between
LrHSI and HrMSI, it is difficult to obtain the size matched
features. To this end, MSFT, a pyramid structure consisting
of a series of GSTB, is proposed to generate multiple im-
age pairs from both modals with consistent scales. For the
spectral information, GSTB applies global spectral feature
attention across channel dimensions to focus on the chan-
nel information of HSI. Global spectral feature attention use
1 × 1 convolution in projection layers to aggregate the in-
formation of different channels, while deep convolution is
used to calculate contextual features channel by channel. On
the other hand, MSFT employs a series of GSTB designed
for hierarchical multi-scale feature extraction for the spatial
information, thereby efficiently capturing the intricate spa-
tial details of HrMSI and adeptly accommodating features
across varying scales. Taking the generation of Fi

H on the
HSI branch as an example, the computational procedure of
GSTB is expressed as follows

Qi
H,Ki

H,Vi
H = Wq

(
Fi+1

H

)
,Wk

(
Fi+1

H

)
,Wv

(
Fi+1

H

)
(14)

Attni
H = Softmax

(
Qi

H(K
i
H)

T

√
dk

)
Vi

H (15)

F′i
H = Attni

H + Fi+1
H (16)

Fi
H = ReLU

(
Conv

(
F′i

H

))
· Conv

(
F′i

H

)
+ F′i

H (17)

where Qi
H, Ki

H, Vi
H, Attni

H represent the qurey, key, value
and attention map at the i-th scale in the HSI branch, respec-
tively. Similar to the HSI branch, we adopt a series of GSTB
to generate the feature Fi

M corresponding to the feature Fi
H

in the MSI branch.

Multi-modal Registration Deformable Block
As mentioned before, the spatial distribution of the feature
at the same scale on the two modals is not completely con-
sistent. Therefore, we propose MMRD to align the features
of LrHSI under the guidance of the spatial information of
HrMSI. Inspired by the cross-attention mechanism, we com-
pute the spatial relationship matrix by multiplying the query
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Figure 3: The specific process of MMRD.

matrix Qi, derived from the projection of Fi
M, with the key

matrix Ki, obtained from the projection of Fi
H. This matrix

is then concatenated with the value matrix Vi, which also
comes from the projection of Fi

H. In this process, instead
of reshaping the projection, we directly compute the spatial
relationship matrix in the spatial dimension. We fit deforma-
tion field using a U-net structure with a symmetric structure
containing one encoder and decoder as shown in Figure 3.
It can be considered that the common effect produced by
multi-scale deformation fields at all scales is the same as D∗

in the ideal state in Eq. (9). The process of registering Fi
H

and Fi
M by MMRD can be expressed as follows

Qi,Ki,Vi = Wq

(
Fi

M

)
,Wk

(
Fi

H

)
,Wv

(
Fi

H

)
(18)

Spai = Qi(Ki)T (19)

Di∗ = fD(concat(Spai,Vi)) (20)

F̂
i

H = Fi
H ⊗ Di∗ (21)

where Spai and Di∗ represent the spatial relationship matrix
and the deformation field at the i-th scale, respectively, and
fD(·) represents the function of U-net.

Cross-scale Feature Aggregation Module
We design CSFA for HrHSI reconstruction as shown in Fig-
ure 2. According to SSRU, the process of reconstructing
HrHSI is to solve for Eq. (9). CSFA is capable of aggregat-
ing feature information at different scales, which contains
N feature transfer structures. Our goal is to get the HSI with
the largest scale, so CSFA does not have a branch that trans-
fers features from large scale to small scale. Taking a node
in CSFA as an example, it can be expressed as

X(i)(j)
M = g(F̂

i

H,Fi
M), j = 0, i ∈ [0, N ] (22)

X(i)(j)
M = fR(X

(i)(j−1)
M ,X(i+1)(j−1)

M , · · · ,

X(j−1)(j−1)
M ), j ∈ [1, N ], i ∈ [0, N − j]

(23)
where X(i)(j)

M denotes the feature node at the i-th scale of
layer j in CSFA, g(·) denotes the double-layer convolution
operation used to generate the reconstructed features at the
first layer, and in the following three layers, fR(·) stands for
feature transfer structure consisting of a sequence of convo-
lutions.

Loss Function
In order to optimize the parameters of the proposed M2DTN,
we choose l1 norm as the loss function to constrain the re-
constructed HSI. The loss function can be shown as

Loss =
∥∥XM − X̃M

∥∥
1

(24)

where X̃M and XM represent the reference HrHSI and the
reconstruction result of the M2DTN respectively.

Experiment
Dataset
We conduct experiments on three publicly available
datasets: Pavia Center (PaviaC), Houston, and Harvard.

The PaviaC dataset is acquired by ROSIS sensor over the
city of Pavia, Italy, in the wavelength range of 430–860 nm.
After removing 13 absorbent and noise bands, 102 bands
are used for the dataset. We intercept a part of the whole
graph of size 960 × 640 × 102. To increase the number of
samples, we further divide the image into 252 patches of size
160× 160× 102, of which 189 patches are used for training
and 63 patches for testing.

The Houston dataset is acquired by ITRES-CASI 1500
HS sensor covering the campus of the University of Houston
and its neighboring urban areas in the wavelength range of
380–1050 nm. The size of the entire Houston image is 349
× 1905 × 144. An image of size 320×1280×144 is used
as the ground truth image. We also divide it into 8 parts, and
each part is then split into 41 patches of size 160×160×144.

Harvard dataset (Chakrabarti and Zickler 2011) contains
a total of 50 indoor and outdoor images acquired using a
commercial hyperspectral camera (Nuance FX, CRI Inc.).
The pictures contain 31 bands with a wavelength interval
of 10 nm from 420 to 720 nm. We randomly select 30 im-
ages of size 960×960×31 as training set and split it into
160×160×31 patches to increase the number of samples.
Among the remaining 20 images, we randomly select 10 im-
ages of size 960×960×31 as the testing set.

To evaluate the performance of the proposed method, the
LrHSI and HrMSI in the above three datasets are obtained
by Wald’s protocol. Moreover, we spatially distort the LrHSI
using an elastic transformation to simulate Eq. (6). Elas-
tic transformation is used for nonlinear distortion of camera
lens, which is equivalent to the distortion and blur produced
by different imaging devices when the sensor has jitter.

Competing Methods and Quality Assessment
In this section, we present the competing methods of this
paper as well as the quality assessment metrics.

1) Competing Methods: We select fusion-based HSI-
SR methods for unregistration images, including NonReg
(Zheng et al. 2021), PixAwa (Wei et al. 2020), CUCaNet
(Yao et al. 2020), and u2MDN (Qu et al. 2021) as compet-
ing methods. The fusion-based HSI-SR method designed for
registration images named Hyperformer (Bandara and Patel
2022) is also used for comparison. The traditional fusion-
based HSI-SR methods including GSA (Aiazzi, Baronti,
and Selva 2007), Hysure (Lanaras, Baltsavias, and Schindler
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Figure 4: Visual results and the MAE images generated by different HSI-SR algorithms for unregistered Pavia Center Dataset.

Figure 5: Visual results and the MAE images generated by different HSI-SR algorithms for unregistered Houston Dataset.

Figure 6: Visual results and the MAE images generated by different HSI-SR algorithms for unregistered Harvard Dataset.

2015), CNMF (Yokoya, Yairi, and Iwasaki 2011), and SFIM
(Liu 2000) are also selected to evaluate the effectiveness of
the proposed method.

2) Quality Assessment: To evaluate the similarity between
the reconstructed image and the ground truth image, we se-
lected five widely used quality assessment metrics, namely
the saptial measure cross correlation (CC), the spectral mea-
sure spectral angle mapper (SAM) and the global measure
peak signal-to-noise ratio (PSNR), root mean squared error
(RMSE) and erreur relative globale adimensionnelle de syn-
these (ERGAS). The lower the SAM, RMSE, and ERGAS,
and the higher the PSNR, and CC, the better the performance
of the reconstructed images.

Experimental Detail
The proposed method was implemented on NVIDIA GTX
3090 GPUs based on PyTorch framework and trained using
Adam optimizer with learning rate set to 0.001. In the exper-
iment, we designed the scale layers as 4.

Experimental Result
Table 1 shows the five metrics of each method on the three
datasets. As shown in Table 1, the proposed M2DTN out-
performs the existing SOTA methods on each dataset. Ac-

cording to the experimental results, when dealing with the
task of unregistered HSI-SR, the traditional methods such
as CNMF, SFIM, GSA, and Hysure perform better on the
Harvard dataset than the other datasets, which means the
traditional methods are greatly affected by the data imag-
ing conditions. Unsupervised unregistered HSI-SR methods
such as PixAwa, CUCaNet, and NonReg are generally better
than traditional methods, but they still fall short of the cur-
rent baseline of HSI-SR tasks. Only u2MDN performs well
but is still not comparable to our method. Hyperformer has
shown excellent performance on registered datasets, but it
can be seen from the experimental results that it cannot deal
with the problem of unregistered HSI-SR.

Figures 4, 5, and 6 show the visual evaluation results on
the Pavia Center, Houston, and Harvard datasets, respec-
tively. We randomly select an image from the testing set of
each dataset to display the pseudo-color images of the SR
results and the mean absolute error (MAE) images between
the reference images and SR results. The more obvious the
texture in the MAE image, the greater its difference from
the reference image. It can be seen from the pseudo-color
images of the experimental results that the reconstructed im-
age of the proposed method is closest to the reference image.
The pseudo-color images and MAE images together reflect
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Method PaviaC Dataset Houston Dataset Harvard Dataset

CC SAM RMSE ERGAS PSNR CC SAM RMSE ERGAS PSNR CC SAM RMSE ERGAS PSNR

CNMF 0.7918 8.2464 0.0523 8.8173 25.6260 0.8553 8.2503 0.0184 5.8324 26.3058 0.9709 3.6563 0.0110 5.3531 38.7914
SFIM 0.7538 7.1549 0.0572 8.7713 24.6293 0.8287 6.9124 0.0200 5.8130 25.6253 0.9378 3.3160 0.0168 7.3863 35.4870
GSA 0.9754 11.5657 0.0242 3.8124 32.0559 0.9710 3.7143 0.0076 2.316 33.8073 0.9907 2.8778 0.0060 3.7092 43.1363

Hysure 0.9452 14.0991 0.0447 7.0190 28.3515 0.9491 5.7847 0.0122 3.9145 29.5606 0.9916 3.4182 0.0055 2.9784 44.4775
Hyperformer 0.9787 7.3411 0.0185 3.5237 34.1979 0.9848 3.1672 0.0085 2.6772 36.2336 0.9128 6.1338 0.0190 12.0280 33.7227

PixAwa 0.8677 12.2810 0.0406 7.2424 28.0620 0.8608 7.5308 0.0198 5.7020 29.3526 0.9679 5.5013 0.0311 5.8107 29.5829
CUCaNet 0.9557 6.5692 0.0179 5.3505 29.9352 0.9926 5.9353 0.0256 5.7003 29.1805 0.9485 4.812 3 0.0137 6.6638 38.1548
NonReg 0.9743 5.5621 0.0223 3.8024 33.2368 0.9792 4.2441 0.0134 3.1238 34.4541 0.9915 4.6948 0.1240 5.3448 37.6673
u2MDN 0.9902 4.9743 0.0093 2.4019 41.0935 0.9913 1.4987 0.0037 1.2662 42.6521 0.9903 4.0214 0.0055 2.8396 44.5377

Ours 0.9917 2.7471 0.0057 1.5308 45.3475 0.9932 1.0295 0.0021 1.0228 48.8570 0.9928 2.9371 0.0041 2.3960 45.8886

Table 1: Unregistered HSI-SR results obtained by the proposed method and its competing methods on the Pavia Center, Houston
and Harvard dataset. Bold font is best.

Method Dataset CC SAM RMSE ERGAS PSNR

MSA
PaviaC 0.9778 4.1225 0.0142 2.7990 36.4423

Houston 0.9489 4.0193 0.0134 3.7225 32.5845
Harvard 0.9001 7.6965 0.0275 5.5798 23.2044

Proposed
PaviaC 0.9917 2.7471 0.0057 1.5308 45.3475

Houston 0.9932 1.0295 0.0021 1.0228 48.8570
Harvard 0.9928 2.9371 0.0041 2.3960 45.8886

Table 2: Experimental results of multi-head self-attention
and our model.

the effectiveness of the proposed M2DTN in dealing with
the task of unregistered HSI-SR and the ability to deal with
details.

Ablation Study
Multi-scale feature attention transformer In order to ver-
ify the powerful feature extraction ability of the proposed
MSFT, we replace the global spectral feature attention with
the ordinary multi-head self attention, and to control the
variables, we retain the multi-scale structure in MSFT. The
experimental results are shown in Table 2, and the results
show that the MSFT with global spectral feature attention
designed in this paper achieves better results.

Multi-modal registration deformable module In order
to reflect the fine registration effect of the proposed MMRD,
in the ablation study, we delete MMRD while retaining other
modules, and directly cascade the extracted features into
CSFA. The experimental results are shown in Table 3, and
the experimental results show that MMRD can fine register
the HSI to achieve better results.

Cross-scale feature aggregation module We believe that
information aggregation across scales can better exploit the
complex spatial-spectral features of HSI. In the third set of
ablation studies, we replace CSFA with a traditional U-net
decoder whose information is transmitted only at a single
scale. The experimental results are shown in Table 4. Com-
pared with the traditional U-net decoder, CSFA achieves bet-
ter results.

Method Dataset CC SAM RMSE ERGAS PSNR

without PaviaC 0.9893 3.0732 0.0068 1.7713 43.6667

MMRD Houston 0.9908 1.3384 0.0030 1.2600 45.2705
Harvard 0.9889 3.8842 0.0073 3.5382 43.0694

Proposed
PaviaC 0.9917 2.7471 0.0057 1.5308 45.3475

Houston 0.9932 1.0295 0.0021 1.0228 48.8570
Harvard 0.9928 2.9371 0.0041 2.3960 45.8886

Table 3: Experimental results with MMRD and without
MMRD.

Method Dataset CC SAM RMSE ERGAS PSNR

UNet
PaviaC 0.9889 3.3087 0.0082 1.8581 41.6127

Houston 0.9890 1.5877 0.0037 1.4582 43.1989
Harvard 0.9800 5.9059 0.0084 4.0775 39.7439

Proposed
PaviaC 0.9917 2.7471 0.0057 1.5308 45.3475

Houston 0.9932 1.0295 0.0021 1.0228 48.8570
Harvard 0.9928 2.9371 0.0041 2.3960 45.8886

Table 4: Experimental results using CSFA and using U-net
in the feature reconstruction part.

Conclusion

In this paper, we formulate SSRU and derive the model from
the realistic degradation scenarios. According to this model,
we design M2DTN to solve the problem of unregistered
HSI-SR. Specifically, in M2DTN, we design MSFT for fea-
ture extraction, MMRD for feature registration, and CSFA
for feature reconstruction. MSFT uses multi-scale structure
and global feature attention to efficiently extract the spatial-
spectral features of the image. MMRD registers the HSI at
multiple scales according to the spatial distribution of the
features. Finally, CSFA aggregates the multi-scale feature
information to reconstruct the HrHSI. We conduct experi-
ments on three public datasets, and the experimental results
show that the proposed method achieves excellent results on
five widely accepted objective indicators.
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