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Abstract

Image-based virtual try-on aims to transfer a target clothing
onto a specific person. A significant challenge is arbitrarily
matched clothing and person lack corresponding ground truth
to supervised learning. A recent pioneering work leveraged
an improved cycleGAN to enable one network to generate
the desired image for another network during training. How-
ever, there is no difference in the result distribution before
and after the clothing changes. Therefore, using two different
networks is unnecessary and may even increase the difficulty
of convergence. Furthermore, the introduced human parsing
used to provide body structure information in the input also
have a negative impact on the try-on result. How to employ
a single network for supervised learning while eliminating
human parsing? To tackle these issues, we present a Cycle
mapping Virtual Try-On Network (CycleVTON), which can
produce photo-realistic try-on results by using a cycle map-
ping framework without the parser. In particular, we intro-
duce a flow constraint loss to achieve supervised learning
of arbitrarily matched clothing and person as inputs to the
deformer, thus naturally mimicking the interaction between
clothing and the human body. Additionally, we design a skin
generation strategy that can adapt to the shape of the target
clothing by dynamically adjusting the skin region, i.e., by first
removing and then filling skin areas. Extensive experiments
conducted on challenging benchmarks demonstrate that our
proposed method exhibits superior performance compared to
state-of-the-art methods.

Introduction
Image-based virtual try-on aims to provide users with photo-
realistic online try-on services. Recently, it has gained sig-
nificant attention due to its immense practical and commer-
cial value. However, two inherent challenges exist for this
task. First, target clothing images are flat and must be de-
formed non-rigidly to fit the body’s posture, thus mimicking
the natural interaction between clothing and body. Second,
unpaired input data lacks ground truth leading to the inabil-
ity to conduct supervised learning (see Fig. 1).

In 2D space, non-rigidly deforming the clothing image to
naturally fit the human pose is highly challenging. Earlier
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Figure 1: Comparison of (a, b) actual dataset cases and (c)
non-existent dataset case. Comparison of (d) cycle consis-
tency pipeline, DCTON, and (e) our cycle mapping pipeline.

works (Han et al. 2018; Wang et al. 2018) employed a learn-
able network with Thin-plate Spline (TPS), which achieved
clothing warping by fitting estimated control points to tar-
get points. However, it mainly focused on pixel variations
around control points, leading to excessive distortion, es-
pecially in regions with complex changes such as sleeves.
Although over-distortion is constrained by regularizing TPS
(Yang et al. 2020), this global deformation approach can
still result in significant misalignments between the clothing
and the human body. An advantageous approach is the semi-
rigid Moving Least Squares (MLS) (Schaefer, McPhail, and
Warren 2006; Yang, Yu, and Liu 2022), which fits a local
surface based on the neighborhood of control points, ensur-
ing the best alignment with the surrounding data points. This
method (Yang, Yu, and Liu 2022) effectively balances the
deformation in both non-rigid and rigid regions of the cloth-
ing. However, when dealing with highly flexible non-rigid
regions like sleeves, MLS struggles to achieve precise and
effective alignment. Another effective method is the learn-
able appearance flow (AF) (Zhou et al. 2016). It estimates
a dense pixel offset field by focusing on the variations of
each pixel, enabling clothing deformation (Han et al. 2019).
However, excessively flexible AF can still lead to excessive
deformation. In addition, the above-mentioned methods take
only semantic information as input and lack ground truth
flow; therefore, they cannot perceive the spatial and depth
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information of the human body, thereby hindering natural
clothing deformation.

Regarding the second challenge, there are currently
three coping architectures: inpainting-based, knowledge
distillation-based, and cycle consistency-based pipelines.
The inpainting-based methods (Han et al. 2018; Yang et al.
2020; Yang, Yu, and Liu 2022) achieve self-supervised train-
ing by reconstructing the removed regions (skin and cloth-
ing) of variation in the mannequin during the try-on pro-
cess. These methods only repetitively learn to reconstruct
the clothing corresponding to each mannequin. Therefore,
they may fail when there are significant differences between
the given clothing style and the mannequin’s clothing style.
Additionally, if there are errors in the human parsing used as
input, it can also lead to failed try-on results. Then, knowl-
edge distillation-based methods (Ge et al. 2021b; He, Song,
and Xiang 2022) are proposed to eliminate this interference.
They provide ground truth of unpaired input images to the
student network from a teacher network pre-trained by the
parser. However, their teacher-knowledge still is negatively
impacted by the parser, which inevitably introduces irre-
sponsible knowledge, leading to erroneous knowledge trans-
fer to the student network. Another pioneering approach (Ge
et al. 2021a; Du et al. 2023) is based on CycleGAN (Zhu
et al. 2017) to achieve translations between different cloth-
ing, enabling one CNN to provide ground truth for another
CNN (see Fig. 1 (d)). However, it was difficult for this dual-
network structure to converge due to the lack of ground truth
during training. Moreover, this paradigm is still subject to
the negative impact of the parser, as it relies on human pars-
ing as input.

To address the above challenges, a novel Cycle mapping
Virtual Try-On Network (CycleVTON) is proposed in this
work, which consists of two pipelines with shared weights,
namely forward pipeline and reverse pipeline, as shown in
Fig. 2. Recalling that the dataset only has three parts: i) an
arbitrary clothing 1, ii) a certain clothing 2, and iii) a person
wearing clothing 2, as shown in Fig. 1. In this case, unpaired
person and clothing 1 can serve as inputs in the forward
pipeline but lack corresponding ground truth. Moreover, the
person can be ground truth in the reverse pipeline, its input
should be clothing 2 and the person wearing clothing 1, but
that is also non-existent. Therefore, we assume that gener-
ating the person wearing clothing 1 in the forward pipeline
provides the missing input for the reverse pipeline, thus re-
alizing a cyclic structure; however, during training, this fails
to converge.

To address this issue, we considered that when the per-
son changes clothing, only the upper body’s skin region and
clothing region change, while the rest remain unchanged.
Therefore, we only need to focus on generating the skin and
clothing regions in the forward pipeline. Accordingly, we
design: 1) A flow-constraint loss (FCL) is applied directly
to supervise the flow field in the forward pipeline, which
cascades two pipelines to enable the network to perceive the
depth and spatial information of the human body. 2) A skin
generation strategy (SGS) that cascades jointly two pipelines
to supervise the generation of skin regions cleverly. Note
that our framework is without the parser and does not take

any person representations (e.g. parsing) as input, thereby
eliminating the impact of flawed parsing.

The main contributions of our paper are as follows:

• We propose a parser-free cycle mapping framework, a
novel perspective, for the virtual try-on task. It achieves
translation end-to-end between different clothing using
only a single network.

• We introduce a flow-constraint loss to achieve supervised
learning of arbitrarily matched clothing and person as in-
puts to the deformer.

• We design an effective skin generation strategy to gener-
ate the missing skin region. It learns skin changes adap-
tively by generating skin in the reverse pipeline that is
removed in the forward pipeline.

Related Work
Image-based Virtual Try-On Recently, image-based vir-
tual try-ons have been widely discussed. Regarding the ar-
chitecture’s input, the person representation (pose points,
human parsing, etc.) is often introduced to guide cloth-
ing deformation and try-on result synthesis. VITON (Han
et al. 2018) and CP-VTON (Wang et al. 2018) utilize rough
body shapes and pose point maps as person representations.
ACGPN (Yang et al. 2020), DCTON (Ge et al. 2021a), and
RT-VTON (Yang, Yu, and Liu 2022) introduce human pars-
ing provided by a separate parser as person representations.
WUTON (Issenhuth, Mary, and Calauzenes 2020), PF-AFN
(Ge et al. 2021b), and Flow-Style (He, Song, and Xiang
2022) incorporate human parsing in their teacher network.
USC-PFN (Du et al. 2023) utilizes human parsing as per-
son representations for generating pseudo-labels of the hu-
man body. Although it has been proven that introducing ad-
ditional person representations can eliminate partial artifacts
and occlusions (Yang et al. 2020), flawed human parsing can
bring undesirable outcomes (Ge et al. 2021b). For example,
when white clothing is erroneously segmented as the white
background, in the generated results, the clothing region will
not change according to the appearance of the target garment
but will continue to be generated as part of the background.

Cycle Mapping Framework Starting from the initial pro-
posal of CycleGAN (Zhu et al. 2017), which allows unpaired
image-to-image translation between different style domains,
this framework has undergone extensive research and de-
velopment. In virtual try-on tasks, CycleGAN was adapted
(DCTON (Ge et al. 2021a)), which generates the clothing
and skin of the person separately, and then performs syn-
thesis cyclically. However, this dual-model structure with
the parser poses significant challenges in terms of conver-
gence and computation cost (see Fig. 1 (d)). In virtual try-on
tasks, there is no transformation between different style do-
mains, meaning the input and output of the network maintain
the same distribution. Therefore, USC-PFN (Du et al. 2023)
proposed a shared-weight CycleGAN architecture, which
utilizes the same network for the cyclic synthesis of differ-
ent try-on results. However, its architecture is complex and
dispersed.
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Figure 2: The overall pipeline of our CycleVTON. The person image and the clothing image are fed into CycleVTON to directly
generate the try-on result.

Method
Overview
Given a reference person image (I ∈ R3×H×W ) and an ar-
bitrary clothing image (CR ∈ R3×H×W ), the virtual try-
on task aims at synthesize a photo-realistic person (IR ∈
R3×H×W ) wearing the clothing CR, i.e., the desired try-on
result IR. In this paper, our work is formulated in general
terms:

IR = CycleVTON
⟨CR,I⟩∈D

< CR, I >, (1)

where D is training set. As illustrated in Fig. 2, our CycleV-
TON is composed of two pipelines: a forward pipeline and
a reverse pipeline. Each pipeline is comprised of a clothing
deformation network (CDN) and a try-on synthesis network
(TSN). The CDN and TSN in the forward pipeline and those
in the reverse pipeline share weights separately.

End-to-End Cycle Mapping Training
The CycleVTON is trained end-to-end. However, due to the
lack of ground truth in the forward pipeline (see Fig. 1),
some process differences between the forward and reverse
pipelines exist during training.

Forward Pipeline of Framework In the forward pipeline,
we take the person I and the arbitrary clothingCR that exists
in the dataset as inputs, to generate the try-on result IR that
the person I wearing the clothing CR.

First, I andCR are fed into CDN (ψw) to estimate a defor-
mation field (FR ∈ R2×H×W ). Then, bilinear interpolation
is utilized to deform CR based on FR, thereby obtaining the
deformed clothing ĈR, formulated as:

ĈR = bilinear
(
CR | FR

)
, FR = ψw

(
CR, I

)
. (2)

Since (CR, I) lacks corresponding ground truth in the
dataset, FR and ĈR cannot be optimized directly through

supervised learning (Zhou et al. 2016). Following (Du et al.
2023), we pre-generated a pseudo ground truth field F̄R to
fit the real ground truth.

Flow-Constraint Loss (FCL). Different from (Du et al.
2023), which employs an auxiliary network to correct the
pre-trained deformer. In order to simplify the structure to fa-
cilitate end-to-end training, we utilize two networks to con-
struct the flow constraint loss to constitute the supervision
learning for this pipeline.

First, we employ C (paired with I) and Densepose de-
scriptor (Guler, Neverova, and DensePose 2018) ID of I ,
which contain human spatial information as inputs to train
a Res-UNet ω (Diakogiannis et al. 2020). Meanwhile, we
take pairedC and I as inputs to simultaneously train another
Res-UNet τ . Due to their deformation fields are identical in
an ideal state, they are constrained by the L1 norm during
the training phase to minimize their differences as much as
possible.

Here, due to the limited shape and structural information
contained in ID, ω relying on ID as input is unable to estab-
lish dense correspondences between I and C. τ takes C and
I as inputs, so the feature space of τ includes the rich appear-
ance (color, shape, and texture), depth, lighting, and other in-
formation between I and C. However, the appearance infor-
mation therein may have a negative impact, namely, τ may
fail when encountering different clothing. Therefore, we uti-
lize the aforementioned structure to supplement all informa-
tion of τ except for appearance into ω, aiming to enhance
the accuracy of deformation.

To supervise the flow FR to optimize CDN based on pre-
trained ω∗, following (Xie et al. 2023), we estimate three
deformation fields to deform different garment parts sepa-
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rately, represented as:

Lfc =
M∑
i=1

∥∥∥FR
i − F̄R

i

∥∥∥ , (3)

where F̄R
= ω∗(CR, ID), M = 3. ∥ ∥ denotes L1 norm.

Afterward, ĈR and I are fed into TSN (ψt) to generate
the desired try-on result IR, which can be formulated as:

IR = ψt

(
ĈR, I

)
. (4)

Similarly, ψt cannot be optimized directly through su-
pervised learning. To address this problem, we considered
that only the upper body region changes when the person
changes clothes, while the rest remains unchanged. There-
fore, we only need to focus on generating the skin and cloth-
ing regions in the forward pipeline. We first optimize ψt

by minimizing the identity information (unchanged head,
trousers, etc.) dissimilarity between I and IR. Meanwhile,
ĈR is continuously optimized synchronously. It can be for-
mulated as:

Lsave =
∑
Iid∈I

Dis
(
IRid + ĈR, Iid + ĈR

)
, (5)

where id represents the identity information. Dis(, ) is a
distance function measuring the similarity.

Dynamic Data Interception. In order to achieve cyclic
skin generation through self-supervision, we design a dy-
namic data interception strategy to pick out persons with
more skin than the target try-on result as input during the
training phase. Following (Ge et al. 2021b; Yang, Yu, and
Liu 2022), we pretrain a generator capable of generating the
semantic map S for the target try-on result IR. Let P denote
the semantic map of the original person I , the calculation
method for the skin area ratio can be expressed as:

Θ(S, P ) =
1

H ×W

H−1∑
i=0

W−1∑
j=0

(
S

P + ϵ

)
ij

, (6)

where ϵ denotes a small positive constant to avoid numeri-
cal issues. H and W represent the height and width of the
image, respectively. Thus, we can obtain an interception co-
efficient κ. When κ equals 0, the training is skipped to the
next batch of data. When κ equals 1, training can proceed as
usual:

κ =

{
1, if Θ(Sa, Pa) < r and Θ(Sn, Pn) < r,
0, otherwise. (7)

where Sa and Pa represent semantic maps of the arms, while
Sn and Pn represent semantic maps of the neck. r is a con-
trollable target skin area ratio. Due to possible errors in the
semantic map, r is typically less than 1.0.

Note that, due to the random pairing of clothing and per-
sons during the training process, ideally, there are a total of
n × n combinations (n is paired sample sizes). Therefore,
under this strategy, the sample size is abundant.

Skin Generation Strategy (SGS). After the data is filtered,
we observed that when translating from I to IR and back to
I , (I → IR → I), the removed excess skin regions of I
during I → IR will be replenished during IR → I . In this
way, self-supervised training can be conducted on the skin
regions in the forward pipeline. The skin loss Lskin at this
stage is then defined as:

Lskin =
∑
I∈D

Dis
(
I ⊙ Sa ⊙ Pa, I

R ⊙ Sa ⊙ Pa

)
, (8)

where ⊙ denotes entry-wise multiplication. Dis(, ) is a dis-
tance function measuring the similarity.

Reverse Pipeline of Framework In this pipeline, the in-
puts of CDN and TSN have been generated in the forward
pipeline, i.e. IR. Therefore, we take IR and the clothing C
in pairs with I as inputs, to reconstruct the person I , i.e.
I ≈ I ′. It can be formulated as:

I ′ = ψt

(
Ĉ, IR

)
, (9)

where

Ĉ = bilinear (C | F) , F = ψw

(
C, IR

)
. (10)

Since Ĉ and I ′ have the ground truth in this pipeline, ψt

and ψw can be directly optimized through self-supervised
learning. They can be formulated as:

Lclt =
∑
C̄∈I

Dis (Ĉ, C̄), Ltry =
∑
I∈D

Dis (I ′, I) , (11)

where C̄ is the clothing region segmented from I . Dis(, ) is
a distance function measuring the similarity.

In the forward pipeline, similar to (Du et al. 2023), the
deformation effect of clothing is constrained by the perfor-
mance of ω (FCL), meaning that the effect of CDN will
never exceed ω because ω provides prior knowledge to
CDN. Unlike (Du et al. 2023), in the reverse pipeline, we
introduce Lclt to further optimize CDN, which can break
through the limitation imposed by ω, as there is ground truth
available in the reverse pipeline to optimize CDN. As shown
in Table 1, we experimentally verify the above statement,
which also indirectly validates the effectiveness of our pro-
posed cycle mapping framework in optimizing clothing de-
formation performance.

Learning objectives Corresponding to notation Dis(, ),
the pixel-wise L1 loss and VGG perceptual loss Lper (John-
son, Alahi, and Fei-Fei 2016) are combined to measure the
similarity.

Clothing Deformation Network (CDN). The flow-
constraint loss is only used to optimize CDN. The loss for
the forward pipeline can be represented as: LFC = λfcLfc.
Corresponding to Equation (11), Lfc, Lclt, and additional
flow regularization loss Lreg (Minar et al. 2020) are
adopted to optimize CDN in the reverse pipeline, which can
be represented as: LRC = λcltLclt + λfcLfc + λregLreg .
λ denotes the hyperparameter used to balance the individual
sublosses and defaults to 1.
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Methods CDP Paired Unpaired
FID↓ KID↓ FID↓ KID↓

V
IT

O
N

CP-VTON TPS 43.95 2.23 42.13 2.11
ACGPN TPS 42.10 2.01 41.48 2.05
DCTON TPS 42.80 2.17 42.19 2.13
PFAFN AF 22.81 0.79 23.90 0.86

Flow-Style AF 20.07 0.55 20.38 0.48
FCL (Lfc) AF 19.52 0.44 20.14 0.42

Ours AF 18.44 0.36 19.64 0.37

H
D

VITION-HD TPS 32.97 1.41 32.93 1.35
HR-VITON AF 23.51 0.77 24.83 0.76

Ours AF 19.15 0.42 22.51 0.55

Table 1: Quantitative results of the clothing deformation
module between baselines and ours (256×192). CDP repre-
sents the different clothing deformation pipelines. Note val-
ues of KID are multiplied by 102 for readability. The up-
/down arrow next to metric indicates that the higher/lower
the better. The best result is in bold.

P
er
so
n

C
lo
th
es

F
lo
w
-S
ty
le

O
u

rs

HR-VITON Ours HR-VITON Ours

Person Clothes Person Clothes

VITON Dataset VITON-HD Dataset 

Figure 3: Qualitative results of clothing deformation be-
tween Flow-Style, HR-VITON, and our method in the un-
paired setting.

Try-on Synthesis Network (TSN). We introduce the ad-
versarial loss Ladv to prevent the generation of abnormal re-
sults. Additionally, corresponding to Equation (5), the loss
for the forward pipeline can be represented as: LFT =
λsaveLsave + λskinLskin + λadvLadv . Corresponding to
Equation (11), Ltry is used to optimize TSN in the reverse
pipeline, which can be represented as: LRT = λtryLtry .

Overall Objectives. We employ two optimizers to sepa-
rately optimize CDN and TSN. Therefore, we design two
total loss functions, LC and LT , represented as:

LC = LFC + LRC , LT = LFT + LRT . (12)

Experiments
Dataset
VITON We use VITON dataset (Han et al. 2018), which
consists of 16,253 image groups with the resolution of 256×
192. Each group includes a frontal-view woman image I , a
top clothing image C paired with I , a semantic map, and
a pose heatmap. The dataset is split into a training set with
14,221 groups and a testing set with 2,032 groups.

Methods Publication CDP Mode P.R. SSIM↑ FID↓
VITON CVPR’18 TPS IP Y 0.74 55.71

CP-VTON ECCV’18 TPS IP Y 0.72 24.45
Cloth-flow ICCV’19 AF IP Y 0.84 14.43

CP-VTON+ CVPRW’20 TPS IP Y 0.75 21.04
ACGPN CVPR’20 TPS IP Y 0.84 16.64
DCTON CVPR’21 TPS CC Y 0.83 14.82
PF-AFN CVPR’21 AF KD N 0.89 10.21
ZFlow ICCV 21 AF IP Y 0.88 15.17

RT-VTON CVPR’22 MLS IP Y - 11.66
SDAFN ECCV’22 AF IP N 0.88 12.05

Ours This Work AF CM N 0.92 9.41
− : official code or data are not provided.

Table 2: Quantitative results of try-on synthesis between
baselines and ours on VITON. Mode represents the type of
pipelines. P.R. indicates whether the person representation
is used during inference. The up/down arrow next to metric
indicates that the higher/lower the better. The best result is
in bold.

VITON-HD We also use VITON-HD dataset collected by
(Choi et al. 2021) to demonstrate the generalization of han-
dling high-resolution images, which comprises 13,679 im-
age groups with the resolution of 512×384. It is also down-
sampled to a low resolution 256× 192. All components are
the same as VITON, and are split into a training set with
11,647 groups and a testing set with 2,032 groups.

Implementation Details
Our framework is implemented using PyTorch and trained
on 1 Nvidia Tesla V100 GPU running Ubuntu 16.04. Dur-
ing training, we use the AdamW optimizer (β1 = 0.5 and
β2 = 0.999) (Loshchilov and Hutter 2017) with a batch size
of 1 and an initial learning rate of 1e−4. Our framework is
iteratively optimized for 200 epochs, the learning rate is lin-
early reduced to 0 in the last 100 epochs. Our CycleVTON
consists of CDN and TSN, which are implemented by Res-
UNet (Diakogiannis et al. 2020).

Baselines
To objectively compare and evaluate the performance of
our model, we leverage thirteen publicly available state-
of-the-art methods as baselines. It consists of specialized
high-resolution methods, including VITON-HD (Choi et al.
2021) and HR-VITON (Lee et al. 2022), and popular low-
resolution methods, including VITON (Han et al. 2018), CP-
VTON (Wang et al. 2018), Cloth-flow (Han et al. 2019),
CP-VTON+ (Minar et al. 2020), ACGPN (Yang et al. 2020),
DCTON (Ge et al. 2021a), PF-AFN (Ge et al. 2021b), ZFlow
(Chopra et al. 2021), Flow-Style (He, Song, and Xiang
2022), SDAFN (Bai et al. 2022), and RT-VTON (Yang, Yu,
and Liu 2022).

Evaluation Metrics
To perform the quantitative evaluation, we employ the fol-
lowing metrics in paired and unpaired settings:
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CP-VTON+ ACGPN DCTON PF-AFN SDAFN Flow-Style RT-VTON OursClothesPerson
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CVPR

2020
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2021
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2021

ECCV

2022

CVPR

2022

CVPR

2022
This WorkFigure 4: Qualitative results between baseline methods and our method in the unpaired setting. Red boxes denote defects.

Unpaired Setting The unpaired setting is to generate the
desired try-on result with the unpaired clothing-person im-
ages, i.e. trying on arbitrary clothing. We take widely used
Fréchet Inception Distance (FID) (Heusel et al. 2017) and
Kernel Inception Distance (KID) (Bińkowski et al. 2018) as
the evaluation metrics to evaluate the distribution similarity
between the generated image and the real image. FID calcu-
lates the distance between two data distributions. KID mea-
sures the similarity between two sets of samples based on
their kernel embeddings. It provides a more nuanced com-
parison of the generated samples against the real samples. A
lower score for FID and KID indicates a higher quality of
the result.

Paired Setting The paired setting is to reconstruct the de-
sired try-on result with the paired clothing-person images,
i.e. trying on original clothing. We employ widely used
Structure Similarity (SSIM) (Seshadrinathan and Bovik
2008) as the evaluation metric to evaluate the structure sim-
ilarity between the generated image and the real image. It
quantifies the degradation of structural information, color in-
formation, and luminance changes between the real and the
generated images.

Qualitative Results
Clothing Deformation Comparisons To demonstrate the
superior clothing deformation performance of our method
compared to traditional AF-based approaches, we select the
most state-of-the-art Flow-Style and HR-VITON for quali-

tative experiments, as shown in Fig. 3. Flow-Style may en-
counter occlusions due to inadequate handling capability for
pixel continuity (1st and 2nd columns), and excessive distor-
tions caused by weak space and depth perception (3rd and
4th columns). HR-VITON may encounter inadequate de-
formation caused by weak space and depth perception (5th
columns), and inaccurate alignment due to flawed human
parsing. However, our results demonstrate that the problems
above are effectively mitigated through the cycle mapping
strategy and flow-constraint loss. Our method can naturally
warp the clothing to align with the body pose while preserv-
ing its fine details.

Try-on Synthesis Comparisons To demonstrate the ef-
fectiveness of our cycle mapping framework, we compare
our method with seven SOTA baseline methods, as shown
in Fig. 4. In the 3rd column, CP-VTON+ encounters severe
artifacts due to arm detail loss, and excessive deformation
caused by TPS. ACGPN addresses these by introducing hu-
man parsing, but the misalignment caused by TPS still re-
mains significant. DCTON exhibits similar artifacts due to
its disentangled strategy that has not considered optimiz-
ing clothing deformation. Recent SDAFN handles clothing
deformation and try-on synthesis through a single network.
However, its unique structure lacks the precise extraction of
semantic information about the body, resulting in excessive
clothing deformation and less accurate try-on synthesis, thus
generating some artifacts. Both PF-AFN and Flow-Style
seem to have the same issue of excessive clothing deforma-
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Methods Mode #Params FLOPs FPS
V

IT
O

N ACGPN IP 139M 206G 10
DCTON CC 153M 194G 19
PF-AFN KD 99M 69G 34

Ours CM 87M 29G 39

H
D

VITON-HD IP 154M 1690G 3
HR-VITON IP 148M 1555G 4

Ours CM 87M 468G 23

Table 3: Computational complexity analysis. Mode repre-
sents the type of pipelines. The best result is in bold.

tion due to inadequate handling of irresponsible knowledge
(inappropriate guidance and constraint) in their teacher mod-
els. RT-VTON reintroduces human parsing as input, where
flawed parsing hinders the generation of high-quality try-
on results, and its proposed semi-rigid clothing deformation
network also struggles to effectively handle clothing defor-
mation for complex poses. Overall, these baselines gener-
ally struggle to effectively handle the challenges of clothing
deformation, and in the try-on synthesis phase, the use of ir-
responsible teacher knowledge or flawed human parsing re-
sults in significant artifacts and occlusions. In contrast, our
designed cycle mapping framework enables mutual learn-
ing, constraint, and supervision between the two stages, re-
sulting in highly realistic try-on results that effectively im-
prove the above challenging factors.

Quantitative Results
Clothing Deformation Comparisons Table 1 lists the
FID and KID scores between baselines and our method. In
the paired setting, the FID and KID metrics outperform the
best TPS-based methods (DCTON and VITON-HD) on VI-
TON and VITON-HD datasets by 24.36, 1.81, 13.82, and
0.99, respectively. Outperforming the best AF-based meth-
ods (Flow-Style and HR-VITON) by 1.63, 0.19, 4.36, and
0.35, respectively. In the unpaired setting, surpassing the
best TPS-based methods by 22.55, 1.76, 10.42, and 0.8, re-
spectively. Outperforming the best AF-based methods by
0.74, 0.11, 2.32, and 0.21, respectively. This demonstrates
that our CycleVTON significantly outperforms the baseline
methods in terms of clothing warping, validating the superi-
ority of our clothing deformation network and strategies.

Try-on Synthesis Comparisons Tables 2 lists SSIM and
FID scores of baselines and our method. In the paired set-
ting, SSIM results indicate that our CycleVTON outper-
forms SOTA method, SDAFN by 0.04 on VITON. In the
unpaired setting, FID results indicate that our CycleVTON
surpasses RT-VTON and SDAFN by 2.25 and 2.64, respec-
tively. These results demonstrate the effectiveness and ro-
bustness of the proposed CycleVTON.

Computational Complexity Analysis In addition, to
demonstrate that our method not only achieves superior vi-
sual results and performance but also has lower compu-
tational complexity and cost, we measure the parameters

Person Clothes

Figure 5: Ablation study of the proposed CycleVTON.

(#Params), floating point operations (FLOPs), and frames
per second (FPS) of the baseline methods under the iden-
tical configuration (a Tesla V100 GPU). The results show in
Table 3 that the FLOPs of our method is lower than half of
PFAFN, while achieving FPS with low parameters on VI-
TON. On VITON-HD dataset, the FLOPs of our method is
one-third of HR-VITON, while achieving six times the FPS
of HR-VITON with nearly half of #Params. This demon-
strates that our method can be applied to real-time services.

Ablation Study
Fig. 5 shows that our framework without FCL and the skin
generation strategy (Gskin) is not working.

Effectiveness of Lfc (FCL) When we add FCL to super-
vise the generation of clothing in the forward pipeline, the
network learns to deform any clothing onto anybody well,
demonstrating the positive contribution of FCL to CycleV-
TON (Table 1). However, the skin suffers from neglect.

Effectiveness ofGskin (SGS) When we introduce the skin
generation strategy, the generated body’s skin corresponds
to the deformed clothing, enabling the network to adapt to
the body layout corresponding to any given clothing.

Conclusion
In this paper, we propose a new architecture for virtual
try-on tasks, called the cycle mapping framework (CycleV-
TON), to generate highly photo-realistic try-on results with-
out human parsing. We present a shared-weight framework
that takes only clothing and person images as inputs to mit-
igate occlusions and artifacts caused by irresponsible prior
knowledge and flawed human parsing. To ensure its effec-
tive convergence, we introduce a skin generation strategy
for variable skin regions and a flow constraint loss to estab-
lish spatial correlations between unpaired clothing and per-
son images. Objective experiments on popular benchmarks
show the superiority of our proposed network. In the future,
we plan to extend this framework to more vision tasks.
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