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Abstract

In the dynamic field of film and game development, the
emergence of human motion synthesis methods has revolu-
tionized avatar animation. Traditional methodologies, typi-
cally reliant on single modality inputs like text or audio,
employ modality-specific model frameworks, posing chal-
lenges for unified model deployment and application. To ad-
dress this, we propose Everything2Motion, a unified model
framework. Everything2Motion consists of three key mod-
ules. The Input-Output Modality Modulation module tai-
lors structures for specific multimodal inputs, eliminating
the need for modality-specific frameworks. The Query-aware
Autoencoder, based on the transformer encoder-decoder ar-
chitecture, enables efficient latent motion generation. Lastly,
the Prior Motion Distillation Decoder, a pretrained module,
enhances the final skeleton sequence’s naturalness and flu-
idity. Comprehensive experiments on several public datasets
demonstrate the effectiveness of Everything2Motion, high-
lighting its potential for practical applications and setting a
new benchmark in human motion synthesis.

Introduction
The task of synthesizing realistic human motions — a cor-
nerstone in the animation of robots (Khatib et al. 2009)
and digital avatars (Lee et al. 2002) — is an imperative
at the crossroads of various disciplines such as film mak-
ing (Huang et al. 2019), video game development (Menache
2000), and live broadcasting (Fan et al. 2022). The pursuit of
authenticity in digital human movements, particularly those
that exhibit a nuanced response to environmental stimuli,
has traditionally been under the purview of action direc-
tors and artists, facilitated by sophisticated equipment. De-
spite remarkable strides made using these methods, the as-
sociated expenses are often prohibitive, particularly for en-
gines tasked with continuous, long-term motion synthesis.
This economic challenge has catalyzed the need for alterna-
tive approaches that efficiently generate human-like motions
given suitable input guidance. Not only would such meth-
ods be more economical, but they would also streamline the
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process of designing character movements across an array
of practical applications.

Figure 1: The framework of Everything2Motion. In contrast
to previous modality specific works, we design a unified
framework for diverse input modalities.

Fortunately, the rapid advancements in deep learning have
made it possible to synthesize human motion in a cost-
effective and real-time manner (Holden, Saito, and Komura
2016). Two tasks that have particularly benefited from these
advancements are: text-to-motion (Guo et al. 2022a,b; Petro-
vich, Black, and Varol 2022) and music-to-dance (Sun et al.
2020; Zhuang et al. 2022; Li et al. 2021) synthesis. In the
former, a sequence of human motions is generated based on
textual descriptions, while in the latter, a dance motion se-
quence is produced corresponding to a given piece of music.
Benefiting from variational autoencoder (Petrovich, Black,
and Varol 2021; Yan et al. 2018), generative adversarial net-
works (Barsoum, Kender, and Liu 2018; Liu et al. 2019),
diffusion models (Dabral et al. 2023; Zhang et al. 2022),
et al., these tasks have made significant strides in terms of
progress and performance. The ability to transform textual
or musical input into realistic human motion sequences not
only demonstrates the power of deep learning but also opens
up new avenues for efficient and dynamic character anima-
tion.
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Despite these advancements, a pertinent issue is that most
existing algorithms for text-to-motion and music-to-dance
synthesis operate in isolation; different tasks are addressed
by designing task-specific models, with no unified frame-
work encompassing motion sequence synthesis under dif-
ferent modalities, even though the output across these tasks
is highly similar. This lack of uniformity in model archi-
tectures poses a significant challenge to their practical ap-
plication. For instance, animation production platforms of-
ten deploy these tasks within a single application. In such
platforms, it is desirable to input data of different modali-
ties, such as music, text, or video, and output corresponding
motion sequences. Implementing a different deep learning
model for each input modality introduces significant chal-
lenges in terms of environment configuration, resource al-
location, and underlying software design. Consequently, we
pose the question: Is it possible to develop a single network
and training framework that can accommodate multiple in-
put modalities?

In response to the aforementioned challenge, we present
Everything2Motion, a novel, lightweight framework in this
work, as shown in Fig. 1. This unified structure is de-
signed to handle diverse input modalities, creating a con-
sistent protocol for human motion synthesis. Inspired by the
multi-modal perceiving capabilities of Perceiver-IO (Jaegle
et al. 2021), Everything2Motion leverages a Transformer-
based autoencoder architecture specifically designed for uni-
form motion generation. Firstly, Everything2Motion em-
ploys an Input-Output Modality Modulation (IOM) module.
This module utilizes flexible Residual Convolutional blocks
and Self-attention mechanisms that cater to inputs with vary-
ing attributes. The IOM module plays a crucial role in trans-
forming the input modality into a shared latent space, serv-
ing as a bridge that connects diverse input modalities and
ensures that they can be processed using a unified approach.
Secondly, a Query-aware Autoencoder (QA) module is in-
corporated. This module, based on the transformer encoder-
decoder architecture, initializes a latent query and an out-
put query. It then applies Cross-attention between the la-
tent and output query to extract motion-related information
from the latent features. The Query-aware Autoencoder is
pivotal in efficiently generating the latent motion represen-
tation, thereby providing a critical step in the transforma-
tion from input to motion. Lastly, a Prior Motion Distil-
lation Decoder (PDA-VR) module is deployed. This mod-
ule, pre-trained on an extensive motion dataset, refines the
output from the Query-aware Autoencoder and maps it to
a real-length motion sequence. The Prior Motion Distilla-
tion Decoder enhances the smoothness and authenticity of
the generated motion, enabling the creation of more realis-
tic and natural-looking movements. Everything2Motion is
a specialized framework for unifying diverse input modali-
ties. It only requires simple adaptations to the input, elimi-
nating the need to design a separate deep learning model for
each input modality. This unified approach alleviates com-
mon challenges encountered during model deployment, such
as environment configuration, resource allocation, and un-
derlying software design.

Our model is rigorously evaluated on both text-to-motion

and music-to-dance tasks, and benchmarked against pre-
vious state-of-the-art methods. The comprehensive experi-
ments conducted on several public datasets underscore the
effectiveness of Everything2Motion, demonstrating its po-
tential for real-world applications and setting a new standard
in human motion synthesis.

In general, our contributions are summarized: 1)We pro-
pose Everything2Motion, a novel framework adept at uni-
fying diverse input modalities for human motion synthesis,
thereby eliminating the need for distinct deep learning mod-
els for each modality. 2)In our Everything2Motion frame-
work, we introduce a novel triad of components: an Input-
Output Modality Modulation module, a Query-aware Au-
toencoder, and a Prior Motion Distillation Decoder. This in-
novative architecture demonstrates superior performance in
human motion synthesis tasks. 3) To substantiate the effec-
tiveness of our proposed Everything2Motion framework, we
undertake comprehensive empirical evaluations across mul-
tiple public datasets, focusing on two tasks: music-to-dance
and text-to-motion synthesis.

Related Work
Text to Motion Methods
The field of human related machine learning has witnessed
rapid advancements, particularly in synthesizing motion
from textual descriptions. Pioneering methodologies have
emerged, each contributing unique strategies to this domain.
JL2P (Ahuja and Morency 2019) leveraged an end-to-end
curriculum learning approach and a GRU-based motion de-
coder to create a joint embedding space of language and
pose. Further enhancements were made by (Zhou and Wang
2023) through a hierarchical two-stream sequential model,
improving the correspondence between text descriptions and
pose sequences. The focus shifted to diversity and detail
with TEMOS (Petrovich, Black, and Varol 2022), which em-
ployed a Variational Autoencoder (VAE) (Kingma, Welling
et al. 2019). A two-stage approach was introduced by (Guo
et al. 2022a), featuring text2length for sampling motion
lengths and a temporal VAE for synthesizing diverse mo-
tions. T2M-GPT (Zhang et al. 2023a) also proposed a two-
stage method, uniquely utilizing a VQ-VAE and a GPT-
like model. With the advent of multi-modal models, Mo-
tionCLIP (Tevet et al. 2022) harnessed the latent space of
CLIP (Huang et al. 2019). The diffusion model emerged as
a novel tool, with MotionDiffuse (Zhang et al. 2022) and
ReMoDiffuse (Zhang et al. 2023b) generating vivid, seman-
tically consistent, and high-fidelity motion sequences. This
exciting domain continues to evolve, pushing the boundaries
of text-driven motion synthesis. Despite these promising de-
velopments in text-to-motion methodologies, it is notewor-
thy that they are predominantly designed for textual inputs.
The community currently lacks a unified framework that can
competently cater to varying input modalities.

Music to Motion Methods
Research on music-to-dance generation has traditionally re-
lied on low-level music features such as Mel spectrum,
Mel Frequency Cepstral Coefficient (MFCC), or short-time

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

1689



Fourier transform (STFT) spectrum (Griffin and Lim 1984).
However, these fail to capture high-level music features
like rhythm, beat, and style, which are crucial for har-
monious music-motion relations. Early works employed
LSTM-autoencoders to generate 3D dance motion from
these features (Tang, Jia, and Mao 2018), but their sensi-
tivity to noise limited their effectiveness (Lee et al. 2019).
DanceNet (Huang et al. 2020) introduced an auto-regressive
model with dilated convolution and GMM loss, support-
ing long-term music-to-dance generation. The advent of
Transformer-based architectures, such as the approach by
(Li et al. 2021) that utilized VQVAE and GPT with cross-
conditional attention, and (Siyao et al. 2022) that proposed
a Full Attention Cross-modal Transformer (FACT) model,
brought about significant improvements. Despite these ad-
vancements, the majority of music-to-dance methodologies
remain specifically designed for music inputs, thereby lack-
ing a unified framework that can adeptly handle diverse in-
put modalities. In this paper, we propose a broader frame-
work, Everything2Motion, designed for human motion syn-
thesis across diverse inputs.

Method
Overview
Given an input modality x (e.g., music clip or text descrip-
tion), we aim to generate a corresponding 9D motion se-
quence y. This sequence comprises 3D key points and 6D
rotation angles, aligning with the definition in the SMPL
(Loper et al. 2023) model. The unified human motion syn-
thesis problem can be formally defined as learning a map-
ping function F :

F (x) = y (1)

In the context of Everything2Motion, we focus on uni-
fying two tasks: music-to-dance and text-to-motion. For the
former, x is a music clip and y is a dance sequence, and for
the latter, x is a text description and y is the correspond-
ing human motion sequence. Our goal is to optimize the
function F such that it minimizes the difference between
the generated motion sequence and the ground truth motion
sequence.

As depicted in Fig. 3, our innovative Everything2Motion
framework is primarily composed of three modules, each de-
signed to foster a lightweight, smooth, and diversified gen-
eration process: 1) Input-Output Modality Modulation
(IOM) module: This pioneering module incorporates a spe-
cialized input adapter for each distinctive input modality.
It bridges the dimensional gap between various modalities,
enabling a seamless mapping of multi-modal inputs into a
shared latent space. This design promotes the integration and
understanding of diverse input data, serving as the founda-
tion of our unified approach. 2) Query-aware Autoencoder
(QA) module: Equipped with an initialized latent query and
output query, this module fuses motion-related guidance in-
formation and autoregressive pre-conditions into a unified
motion latent representation. By employing multiple cross-
attention modules, our model maintains focus on both tem-
poral dynamics and content-related details during the gener-

ation process. This results in a highly responsive and detail-
conscious representation that enhances the naturalness and
contextual relevance of the synthesized motions. 3) Pre-
trained Prior Distillation Autoencoder with Variational
Representation (PDA-VR) module: This module utilizes a
pre-trained autoencoder equipped with a variational repre-
sentation to achieve more nuanced and fluid motion genera-
tion. By tapping into the wealth of prior knowledge available
in extensive expressive motion datasets, this module ensures
that the generated sequences are not only smooth and natural
but also infused with a rich variety of expressive elements.
Next, we introduce each module in detail.

Input-Output Modality Modulation
We present an innovative Input-Output Modality Modula-
tion (IOM) module, strategically designed with distinct In-
put and Output adapters. This sophisticated design facili-
tates the transformation of multi-modal inputs into univer-
sally applicable latent features. The unique structure of the
IOM module allows for the seamless handling of diverse in-
put modalities, all the while ensuring a consistent format for
subsequent processing stages.
Input Adapter. The modalities under consideration in our
work encompass both textual descriptions and musical au-
dio. For textual descriptions, we employ a pre-trained CLIP
text encoder (Radford et al. 2021) to generate initial token
embeddings. We then deploy a Transformer encoder layer to
yield word-level features Lt, such that:

Lt = Eclip(T ) (2)
where Eclip denotes the encoding function of the CLIP

text encoder and T represents the textual input. Subse-
quently, a linear layer is used to map these text features into
a fixed-shape latent representation.

As for musical audio, we adopt the data preprocessing ap-
proach from (Li et al. 2021). Utilizing the Librosa library,
we extract acoustic features A = {a1, a2, ..., at}, which in-
clude MFCC, beat, chroma, and the corresponding dance
type Dt. The audio encoder is composed of a multi-layer
residual convolutional network and a dance-type embedding
layer. Here, the dance type is mapped into one-hot encodings
and concatenated into ai in the feature channels, yielding:

Lm = Emusic(A,Dt) (3)
where Emusic denotes the encoding function of the musi-

cal audio.
Finally, the latent features are passed through a bi-

directional GRU layer for temporal enhancement. The GRU
layer’s output, xl, is the adapted input, computed as:

xl = GRU(Lm) (4)
This encapsulates the temporally enhanced features. This

well-engineered Input Adapter ensures that diverse modali-
ties are effectively translated into compatible latent features,
setting the stage for the subsequent motion synthesis pro-
cess.
Output Adapter. In addition to the aforementioned mod-
ules, our model also features an Output Adapter. Comprising
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Figure 2: An overview of the unified Everything2Motion framework.

a series of linear blocks, this component is tasked with post-
processing the final output, Oqa, derived from the Query-
aware Autoencoder. The Output Adapter refines this output
into a more precise representation Oout, suitable for down-
stream applications. This process can be represented as:

Oout = flinear(Oqa) (5)

where flinear denotes the function of the linear blocks in
the Output Adapter. This showcases our commitment to pro-
ducing high-quality, usable outputs, thereby enhancing the
utility and robustness of our Everything2Motion framework.

The rationale behind the IOM module’s design lies in ad-
dressing the challenge of multi-modality inherent in human
motion synthesis tasks. Different modalities present vary-
ing types of data, each with its unique characteristics and
dimensionalities. By introducing separate input and output
adapters, we can process these diverse inputs effectively and
convert them into a shared latent space. This design ensures
the adaptability of our system to a wide range of inputs,
thereby enhancing the robustness and flexibility of our Ev-
erything2Motion framework.

Query-Aware Autoencoder
In this section, we delve into the architecture and function-
ality of our proposed Query-aware Autoencoder, a key com-
ponent of our framework. This Autoencoder interfaces di-
rectly with the output from the Input-Output Modality Mod-
ulation (IOM) module, taking its processed latent features as
input. The primary role of the Query-aware Autoencoder is
to further refine these features into a format that is optimally
suited for output motion sequence generation. It essentially
serves as a bridge, effectively translating the general latent

features from the IOM module into a representation that is
finely tuned for the downstream task of motion synthesis.

Our Query-aware Autoencoder can be viewed as a
reimagined version of the Transformer encoder-decoder
structure, with a unique twist. The encoder receives an ar-
bitrarily initialized latent query, ql, while the decoder input
is an output-query, provided by a dynamic provider deter-
mined by the generative mode.

Qencoder = Encoder(ql) (6)

Qdecoder = Decoder(Qprovider) (7)

Latent Query Encoder. In our system design, an input-
aware cross-attention mechanism is employed within the la-
tent query. Here, we let Q,K = ql, and V = xl, effectively
integrating the latent query with the multi-modal input. This
cross-attention mechanism is formulated as:

Al = CrossAttention(ql, xl) (8)

Upon activation, the latent query is passed through several
Transformer encoder layers for further feature extraction and
temporal enhancement. These layers comprise self-attention
blocks, Fixed Positional Embedding, and a Feed Forward
network. Given that our generation task operates in a purely
sequence-to-sequence mode, we have eschewed the use of
causal masks in the multi-head attention mechanism.

This processing pipeline culminates in the production of
an adapted latent query, Lm, which carries a wealth of
modality-related information and is output in a consistent
shape. This can be represented as:

Lm = Transformer(Al) (9)
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Output-Query Decoder. Concurrently, an output query Oq

is initialized via a modality-related output-query provider.
This design provides the flexibility needed to handle both
non-autoregressive and autoregressive tasks, each requiring
different output-query provider structures.

For tasks such as text2motion, the output query is ran-
domly initialized with learnable parameters conforming to
the given output shape. In contrast, for tasks like mu-
sic2dance, we follow the FACT approach (Li et al. 2021),
where dance generation is partially autoregressive, condi-
tioned on previous frames. Consequently, the output-query
provider for such tasks is a motion encoder comprising
Residual Convolution blocks and a self-attention block, with
the previous motion sequence serving as an additional input.

Similar to a Transformer decoder, a cross-attention mech-
anism is then applied between the adapted latent query Lm

and output query Oq . This can be represented as:

Cm = CrossAttention(Lm, Oq) (10)

The objective of this mechanism is to map the latent mo-
tion space and contextual relationship with previous move-
ments into a fixed output shape of T ∗D. Here, T represents
the length of the generated motion sequence, and D denotes
the dimension of different motion representations (for exam-
ple, 21 keypoints for KitML, 22 keypoints for AIST++, due
to varying keypoint numbers in skeletons).

To further enhance the smoothness and temporal consis-
tency of the output, the adapted output query Oq is passed
through the previously discussed Output Adapter. This can
be represented as:

Oout = OutputAdapter(Cm) (11)

Building on our previous discussion, the Query-aware
Autoencoder proves highly effective for human motion syn-
thesis. Its latent query encoder captures the essential at-
tributes of the input modality through cross-attention, while
the output-query decoder maps the adapted latent query into
a suitable output shape for generating motion sequences.
This results in motion sequences that are contextually coher-
ent and exhibit smooth, temporally consistent movements.
Hence, the Query-aware Autoencoder refines features effec-
tively, enhancing the quality of the synthesized human mo-
tion sequences.

Prior Motion Distillation Decoder
In the domain of human motion synthesis, our primary goal
is to create sequences that are smooth, abide by physical
laws, and exhibit diversity. Traditional approaches often rely
on modality-specific measures to meet these criteria. How-
ever, in our unified framework, devising ad-hoc modules for
each modality is unfeasible.

To address this, we propose leveraging the inherent pri-
ors found in human motion sequences. More specifically, we
train a Motion-based Prior Variational Autoencoder (MP-
VAE) to extract these priors and incorporate them into our
unified framework.

Our MP-VAE employs a symmetric encoder-decoder
structure. The encoder uses convolutional layers and down-
sampling operations to derive the latent feature z from the
input data:

z = Encoder(x) (12)
In contrast, the decoder reconstructs the human motion

from the latent representation:

x′ = Decoder(z) (13)
The goal of the MP-VAE is to minimize the reconstruction

error and align the posterior distribution qθ(z|x) as closely
as possible to the likelihood qθ(x|z). This is encapsulated in
the Evidence Lower Bound (ELBO):

ELBO = Eqθ(z|xi)[log pθ(xi|z)]−DKL(qθ(z|xi)||p(z))
(14)

In our specific implementation, the optimization equation
of our VAE is given by:

Lvae = DKL(z||N(0, I)) + L2(xrecon − x) (15)

This equation comprises a reconstruction L2 loss and the
Kullback-Leibler (KL) divergence of the variational space
generated.

Once the MP-VAE is adequately trained, we distill the hu-
man motion priors by directly migrating the pre-trained de-
coder into our framework, termed Prior Motion Distillation
Decoder, as depicted in Fig.3.

Through the use of the Prior Motion Distillation Decoder,
we showcase an effective strategy for synthesizing human
motion sequences that are smooth, physically plausible, and
diverse within a unified framework.

Loss
Given the inherently sequential nature of motion, where
each movement is highly dependent on its preceding and
succeeding movements, we adopt a velocity-aware loss
function to gauge the cross-frame distance errors between
the generated motions (gj) and the ground truth targets (tj),
where j denotes the frame number in a short sequence.
This approach, reminiscent of the methodology employed
in (Guo et al. 2023), can be expressed as follows:

Lprev = ||(gj − gj−1)− (tj − tj−1)||2 (16)

Llatter = ||(gj+1 − gj)− (tj+1 − tj)||2 (17)

Lloss = ||gj − tj ||2 + α(Lprev + Llatter) (18)
Here, α is a weighting factor that modulates the influence

of the velocity terms in the total loss function.
The inclusion of this velocity-continuous loss function

substantially enhances the temporal smoothness of the gen-
erated motions, particularly when conforming to discrete
text descriptions. This refined loss function hence plays an
indispensable role in ensuring the synthesis of high-quality,
temporally consistent motion sequences.
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Method FID ↓ R precision
(Top 1) ↑

R precision
(Top 2) ↑

R precision
(Top 3) ↑ Diversity ↑ MM-Dist ↓ Modality

Ground Truth 0.031 0.424 0.649 0.779 11.08 2.788 –
Test2Gesture 12.12 0.156 0.255 0.338 9.334 6.964 –
Language2Pose 6.545 0.221 0.373 0.483 9.037 5.147 –
MoCoGAN 94.41 0.037 0.072 0.106 0.462 10.40 0.250
Guo et.al 2.770 0.370 0.569 0.693 10.91 3.401 1.482
Motiondiffuse 1.954 0.417 0.621 0.739 11.10 2.958 0.730

E2M (Ours) 1.060 0.385 0.574 0.685 11.15 3.457 0.051

Table 1: Performance on Text2Motion task on KitML dataset.

Experiments
Datasets
In our study, we utilize two key datasets: KIT Motion-
Language (KIT-ML) for text-to-motion (text2motion) tasks,
and AIST++ for music-to-dance (music2dance) tasks. The
KIT-ML dataset (Mandery et al. 2015) includes 3911 mo-
tion sequences paired with 1 to 4 English language descrip-
tions, spanning diverse motion categories such as locomo-
tion, manipulation, and sports. It is derived from the KIT
(Plappert, Mandery, and Asfour 2016) and CMU (Merel
et al. 2017) databases. For music2dance tasks, we use the
AIST++ dataset (Tsuchida et al. 2019), the largest public
3D human dance dataset. It contains 1408 sequences repre-
sented as joint rotations and root trajectories from 30 sub-
jects across ten dance genres. Each sequence’s data includes
9 camera views, 2D and 3D human joint locations in the
COCO-format (Lin et al. 2014), and 24 SMPL (Loper et al.
2015) pose parameters. These datasets, each tailored to a
specific task of text2motion or music2dance, together pro-
vide a comprehensive foundation for exploring unified hu-
man motion synthesis.

Implementation Detail
Using SMPL-X parameter models, our motion format han-
dles KitML and AIST++ keypoints, with 21 and 24 joints
respectively. A consistent preprocessing procedure calcu-
lates six additional rotation angles and introduces the cor-
responding transition matrix. Music processing, following
(Tsuchida et al. 2019), extracts MFCC, beat, peak, and
Chroma features at 25 fps per sequence. Text2motion’s input
adapter combines a pre-trained Clip encoder, a 2-layer trans-
former encoder, and a single linear layer. Conversely, the
music2motion adapter uses convolutional layers, a 5-D type
embedding network output, and a double-layer transformer
encoder. Both share a linear-based 3-layer network output
adapter. Text2motion’s Query-aware Autoencoder has 128
latent codes and features a 128 feature-shaped autoencoder
with four self-attention and two cross-attention layers. Mu-
sic2dance’s larger latent space has 256 latent codes, a 128
feature-shaped autoencoder, and two self-attention layers.
The output-query provider for music2motion uses a 3-layer
convolutional network. The prior distillation autoencoder,
symmetric with 3-layer convolutional blocks, has a 256

Method FID ↓ Diversity ↑ Beat Align ↑
Ground Truth 10.60 7.45 0.237

Li et.al 43.46 3.32 0.160
Dancenet 25.49 2.85 0.143

DanceRevolution 25.92 4.87 0.195
FACT 22.11 6.18 0.221

E2M (Ours) 38.23 6.68 0.248

Table 2: Performance on Music2Dance task on AIST++
dataset.

feature-shaped bottleneck. This autoencoder is pre-trained
and jointly trained with the Everything2Motion framework.

Evaluation Metrics
Our methodology is evaluated employing distinct metrics for
the two tasks: text-to-motion and music-to-motion. Specif-
ically, we apply R Precision, Frechet Inception Distance
(FID), Diversity, Multimodal Distance (MM-Dist), and Mul-
timodality (MModality) for Text2Motion evaluation. R Pre-
cision assesses the Euclidean distances between motion and
text embeddings. FID gauges the distribution distance be-
tween features of generated and real motions. Diversity mea-
sures the variation in motion sequences created from test
set descriptions. MM-Dist calculates the difference between
text features from the description and generated motions.
MModality measures differences in joint positions in motion
sequences generated from a single text description. We use
FID to measure the overall quality of the generated dance
movements, Diversity to compute the average Euclidean dis-
tance across generated motions and Beat-align to measure
the synchronization for motion and music on the AIST++
test set for Music2Dance evaluation, calculated primarily in
the geometry feature space for a simplified evaluation.

Results
In this section, we show the quantitative results of our
method and compare it with strong modality specific base-
lines. For qualitative results, please refer to the supplemen-
tary material.
Performance on Text2Motion task: Our E2M (Every-
thing2Motion) model, as demonstrated in Table 1, ex-
hibits exceptional performance across key evaluation met-
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rics in the Text2Motion task, outperforming other modality-
specific methods. A defining characteristic of our model is
its unified framework, capable of handling various modali-
ties of input data, thereby providing an innovative solution
in the field of motion generation. In particular, the E2M
model’s strikingly low FID score of 1.060, compared to the
2.770 of Guo et al. (Guo et al. 2022a) and 1.954 of Motion-
diffuse (Zhang et al. 2022), is a testament to its excellent
ability to generate high-quality and realistic motions. The
FID score measures the distance between the generated mo-
tion and the actual motion, and a lower score indicates a
closer match to reality. E2M’s low score reflects its excep-
tional capacity to generate outputs that closely mirror real-
world motions. Moreover, E2M shines in terms of R preci-
sion, another critical metric in motion generation. It scores
0.385, 0.574, and 0.685 at Top 1, Top 2, and Top 3 levels,
respectively. These high scores demonstrate E2M’s profi-
ciency in effectively capturing and integrating text-related
information into motion synthesis. The ability to generate
motion that correctly corresponds to the provided textual de-
scription is a vital aspect of the Text2Motion task, and E2M
excels in this regard. E2M also impresses with its Diversity
score of 11.15, which is very close to the 11.08 score of
the ground truth motion. This high score underscores E2M’s
ability to generate a diverse range of motion outputs. It’s
a significant accomplishment, as modality-specific methods
often struggle to balance diversity and accuracy. In conclu-
sion, our E2M model marks a significant advancement in the
Text2Motion task.
Performance on Music2Dance task: In the arena of music-
to-motion tasks, our Everything2Motion (E2M) framework
has been rigorously benchmarked against the FACT (Siyao
et al. 2022), Li et al. (Li et al. 2021), and other SOTA meth-
ods, using the AIST++ dataset as the evaluative standard. As
evidenced in Table 2, our framework excels particularly in
the Beat-Align metric, which measures the synchronization
between the given music and dance movements. Achieving a
score of 0.248, E2M surpasses all other established methods
in this category, demonstrating its superior ability to gener-
ate dance sequences that harmonize rhythmically with the
music. Despite the complex nature of this task, our model
also achieves comparable results in the other metrics. The
FID score of 38.23 and the diversity score of 6.68, while
not the highest, are competitive when compared with other
state-of-the-art models. These results underscore the robust-
ness of our model across different aspects of dance genera-
tion. It is important to emphasize that our E2M framework
is designed as a unified model, with the aim of achieving
solid performance across various modality inputs. The pur-
suit of this work is to refine the model’s ability to general-
ize across different modalities. Despite this broad focus, our
method achieves results on par with existing state-of-the-art
modality-specific approaches in the music-to-motion task.
This speaks volumes about the versatility and superiority of
our approach.
Running Time Analysis: Our Everything2Motion frame-
work is also characterized by its lightweight design, which
enables real-time implementation. To illustrate this point, we
conduct an inference time test for our method and compared

Method Task Time (s) ↓
Guo et al. Text2Motion 0.6220
E2M Text2Motion 0.0904
FACT Music2Dance 0.1082
E2M Music2Dance 0.0384

Table 3: Inference time comparison for Text2Motion and
Music2Dance tasks.

it with the state-of-the-art approaches, as demonstrated in
Table 3. For the task of text-to-motion, our method is able to
generate 120 frames of motion in just 0.0904s on a 3090 gpu.
In contrast, the method proposed by Guo et al. (Guo et al.
2022a) requires 0.622s to achieve the same task. This bench-
mark illustrates that our method offers an order of magni-
tude improvement in terms of inference speed. Similarly,
for the music-to-dance task, our method predicts 240 frames
of motion in a mere 0.0384s, a speed that far surpasses the
FACT method (Siyao et al. 2022). These results unequivo-
cally demonstrate the efficiency of our E2M framework. Its
superior speed in generating motion frames from both text
and music inputs highlights its potential in real-time appli-
cations, marking it out as a significant advancement in the
field.
Visualization: In order to provide a more comprehensive
evaluation of the quality of our generated frames, we show-
case a selection of generated results derived from the KitML
dataset for text2motion tasks in Fig. 3. The results encom-
pass three distinct movements, namely: 1) Being pushed 2)
Walking in degree angles 3) Stretching arms. This delin-
eation of results serves to demonstrate the versatility and ca-
pability of our model in effectively translating varied textual
descriptions into corresponding motion sequences.

Ablation Study
Ablation study on structure design: To validate the effec-
tiveness of key model structure designs, we conducted an
ablation study on the text-to-motion task using the KitML
dataset. The study primarily focused on the pre-trained Clip
encoder and the Prior Motion Distillation Decoder (PMD).
As illustrated in Table 4, when the pre-trained Clip encoder
is not utilized (E2M w/o Clip), the model’s ability to gen-
erate matching motion sequences during input adapter ex-
traction is substantially compromised, leading to a higher
FID score of 4.624 and a lower R precision top1 score of
0.287. This indicates the crucial role of the Clip encoder in
the model’s structure. Similarly, when we bypass the Prior
Motion Distillation Decoder (E2M w/o PMD), it results in a
further increase in the FID score to 4.258 and a drop in the
R precision top1 score to 0.244, indicating a loss of tempo-
ral consistency in the generated motion sequences due to an
unstable latent space. In contrast, the fully equipped E2M
model, which includes both the Clip encoder and PMD,
achieves a significantly lower FID score of 1.060 and a
higher R precision top1 score of 0.385.
Ablation study on query-aware autoencoder: The selec-
tion of latent shape in the Query-Aware Autoencoder is
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Figure 3: Visualization of generated results

Method FID ↓ R precision top1 ↑
GT 0.031 0.424

E2M w/o PMD 4.258 0.244
E2M w/o Clip 4.624 0.287
E2M 1.060 0.385

Table 4: Ablation study on KitML dataset for Every-
thing2Motiong’s framework architecture.

found to significantly influence the overall performance of
the model. An unsuitable latent query can lead to unstable
training and mode collapse, underscoring the importance of
an appropriate latent shape selection. To systematically eval-
uate this, we conduct an extensive ablation study focusing
on the selection of the latent shape. Specifically, we assess
the impact of varying the number of latent codes and latent
channels, evaluating them at levels of 64, 128, and 256. As
indicated in Table 5, enlarging either the number of codes
or channels tends to cause a slight degradation of the gener-
ative performance across all metrics. The Frechet Inception
Distance (FID) score is particularly impacted, which could
be attributed to the overabundance of information present in
the latent query due to an unsuitable latent shape. This ex-
cessive information makes it more challenging for the output
query to extract useful information during the training pro-
cedure. Conversely, our ablation experiments suggest that a
higher number of latent codes and shape dimensions enable
the model to generate more natural and plausible results,
which are characterized by lower FID scores. This under-
scores the need for a judicious balance in the selection of la-
tent shape parameters to ensure optimal model performance.

KitML
Method Num Dim FID ↓ Top1 Top2 Top3

GT - - 0.031 0.424 0.649 0.779

E2M 64 128 2.086 0.277 0.462 0.577
E2M 128 64 2.468 0.361 0.544 0.656
E2M 128 256 1.243 0.274 0.472 0.607
E2M 256 256 1.147 0.303 0.472 0.580
E2M 128 128 1.160 0.385 0.574 0.685

Table 5: Ablation study results of the E2M framework struc-
ture. We evaluate the performance difference for the model
without Pre-trained Prior Motion Decoder and Clip encoder.

Conclusion
In this paper, we have introduced Everything2Motion, a
novel unified model framework that aims to revolutionize
human motion synthesis in the dynamic fields of film and
game development. By integrating the Input-Output Modal-
ity Modulation module, the Query-aware Autoencoder, and
the Prior Motion Distillation Decoder, Everything2Motion
eliminates the need for modality-specific frameworks, fa-
cilitates efficient latent motion generation, and enhances
the naturalness and fluidity of the final skeleton sequences.
Our comprehensive experiments conducted on several pub-
lic datasets have demonstrated the effectiveness of Every-
thing2Motion, providing compelling evidence of its poten-
tial for practical implementation. While Everything2Motion
presents a promising approach for diverse motion synthesis
tasks, there remain areas for exploration. Future work may
extend its application to other modalities and datasets, such
as video2motion or image2motion.
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