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Abstract
Given an untrimmed video and a sentence query, video mo-
ment retrieval using language (VMR) aims to locate a target
query-relevant moment. Since the untrimmed video is over-
long, almost all existing VMR methods first sparsely down-
sample each untrimmed video into multiple fixed-length
video clips and then conduct multi-modal interactions with
the query feature and expensive clip features for reasoning,
which is infeasible for long real-world videos that span hours.
Since the video is downsampled into fixed-length clips, some
query-related frames may be filtered out, which will blur the
specific boundary of the target moment, take the adjacent ir-
relevant frames as new boundaries, easily leading to cross-
modal misalignment and introducing both boundary-bias and
reasoning-bias. To this end, in this paper, we propose an ef-
ficient approach, SpotVMR, to trim the query-relevant clip.
Besides, our proposed SpotVMR can serve as plug-and-play
module, which achieves efficiency for state-of-the-art VMR
methods while maintaining good retrieval performance. Es-
pecially, we first design a novel clip search model that learns
to identify promising video regions to search conditioned on
the language query. Then, we introduce a set of low-cost se-
mantic indexing features to capture the context of objects and
interactions that suggest where to search the query-relevant
moment. Also, the distillation loss is utilized to address the
optimization issues arising from end-to-end joint training of
the clip selector and VMR model. Extensive experiments on
three challenging datasets demonstrate its effectiveness.

Introduction
As an emerging and challenging cross-modal task, video
moment retrieval using language (VMR) (Anne Hendricks
et al. 2017; Gao et al. 2017) has drawn increasing atten-
tion in recent years due to its various applications, such as
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Query: Four kids are outside in the beach playing in the sand, two boys on the left and two girls on the right.
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(a) Illustration of video moment retrieval using language.

(b) Pipeline comparison between previous methods and our method.

(c) Performance comparison between previous methods and our method.
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Figure 1: (a) Example of the VMR task, where GT means
the ground-truth boundary. (b) Pipeline comparison between
previous models and our model. Previous models trim a long
video into multiple fixed-length clips and perform costly
processing of every clip. These processed clips are fed to
the VMR model. We propose an efficient clip selection ap-
proach that adaptively spots query-relevant clips quickly,
and selectively processes these clips to serve as inputs to
the VMR model. (c) Performance comparison with state-of-
the-art VMR works on Charades-STA. Best viewed in color.

video understanding (Liu et al. 2023h, 2020, 2021b, 2023b,
2022a, 2021a, 2023g,a, 2022c, 2023c,d, 2022b; Fang et al.
2020, 2021a,b) and temporal action localization (Zhang
et al. 2020b; Fang and Hu 2020; Fang et al. 2022, 2023a,b,c;
Ji et al. 2023e, 2018, 2023g,f,d,c, 2021, 2020, 2019). As
shown in Figure 1(a), the VMR task targets locating a video
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moment that semantically corresponds to a given language
query from a long untrimmed video. Most of the video con-
tents are query-irrelevant, where only a short video segment
matches the query. It is substantially more challenging since
a well-designed method needs to not only model the com-
plex cross-modal interaction between videos and queries,
but also capture complicated context information for cross-
modal semantics alignment. Not only does it require rec-
ognizing objects and activities, but also identifying which
visual content is sufficient to retrieve the accurate moment
expressed in free-form natural language, accounting for the
fact that the accurate moment may occupy only a tiny por-
tion of the entire video. Moreover, all this must be done in
a scalable manner, given that a long untrimmed video (e.g.,
surveillance video and live video) will ultimately span hours,
days or more. In practice, VMR is an extremely challenging
task because the desired model should (i) cover various mo-
ment lengths in multiple scenarios; (ii) bridge the semantic
gap between different modalities (video and query); (iii) un-
derstand the semantic details of different modalities to ex-
tract modal-invariant features for optimal retrieval.

Most previous VMR works (Zheng et al. 2023; Shen et al.
2023; Yang et al. 2022; Dong et al. 2022a,b,c, 2023b,a;
Sun et al. 2023; Ma et al. 2020; Liu et al. 2018, 2023f;
Ge et al. 2019; Zhang et al. 2019a; Qu et al. 2023, 2021;
Wen et al. 2023b, 2021, 2023a) are under fully-supervised
setting, where each frame is manually labeled as query-
relevant or not. Therefore, the main challenge in such a set-
ting is how to align multi-modal features well to predict pre-
cise moment boundaries. These fully-supervised approaches
can be divided into two categories: 1) Top-down approaches
(Anne Hendricks et al. 2017; Chen et al. 2018; Zhang et al.
2019b, 2020b): These methods integrate sentence informa-
tion with each fine-grained video clip unit, and predict the
similarity scores of candidate segment proposals by grad-
ually merging the fusion feature sequence over time. The
best proposal with the highest score is selected as the pre-
dicted segment. 2) Bottom-up approaches (Chen et al. 2020;
Mun, Cho, and Han 2020; Zhang et al. 2020a): These meth-
ods leverage the interaction between video and sentence to
directly regress the start and end boundary frames of the tar-
get segment or predict boundary probabilities frame-wisely.
The predicted segment is obtained through post-processing
steps that group or aggregate all frame-wise predictions. Ob-
viously, the frame-based annotation is very time-consuming,
which will limit the applications of these methods. Although
the above two types of works have achieved significant per-
formances, they still suffer from the redundant proposal
generation/matching process (top-down) and complex post-
processing steps (bottom-up) to refine the grounding results.

Although the above VMR methods have made exciting
headway, they neglect the practical scaling issue: they ex-
tract expensive spatio-temporal visual features for densely
sampled clips throughout the long video, which spends the
most computational cost of a VMR model. Such a time-
consuming approach becomes intractable as the video dura-
tion grows, especially for real-time applications like surveil-
lance video and live video, where the constrained on-board
computation severely limits the applications of previous

heavy-weight models. Fortunately, we can notice that (i) not
all parts of the video are useful for reasoning about a given
query, and (ii) there are high-level visual semantics about
objects and activities that could steer our attention toward
where to retrieve. For example, given a query (“A person is
hitting the sides of their bed with the palm of their hand.”),
we can ignore video clips recorded in some irrelevant scenes
other than the bedroom. Notably, these associations cannot
be neatly enumerated, however, given the free-form nature
of the queries. In the query (“Four kids are outside in the
beach playing in the sand, two boys on the left and two girls
on the right”), the model reasoning will become more com-
plex since we need to reason about all persons in the beach
(two boys and two girls), and identify their genders and po-
sition. Thus, we should learn query-conditioned priors that
can use such high-level semantics to narrow down our task.

In this paper, considering that the target moment is often
located near key frames or key clips, we build upon these
intuitions to propose a novel and effective approach to make
a given VMR method more efficient and effective. The idea
is to preview the video using cheap indexing features, in-
telligently select a small subset of query-relevant clips, and
only use these clips for the target moment retrieval. This
can cut down computational costs without sacrificing model
performance. To tackle this challenging setting with long-
form videos and language queries, we design a novel clip
selection architecture, which introduces a cross-modal trans-
former to recursively preview the video and identify some
query-relevant clips. In the VMR task, the key visual fea-
tures include three kinds: background feature to locate the
place, appearance feature to detect the target instance, and
the motion feature to recognize the activity mentioned in
the query. Thus, we further design the above three kinds of
semantic-indexing features that capture video context about
background features, appearance features, and motion fea-
tures (BAM). With the high-level BAM visual features as the
index, we can recursively update the selected clips with the
help of query features. Further, we design teacher-based dis-
tillation losses to optimize the cross-modal interaction.

To sum up, our main contributions are as follows:

• In this paper, we target a novel and efficient clip selection
approach for VMR, which first previews the video using
cheap indexing features, then selects a small subset of
query-relevant clips, and finally only uses these selected
clips for the final moment retrieval.

• We propose an effective clip selection module by design-
ing three high-level features (BAM features) as the se-
mantic indexer. Then, an adaptive clip update strategy
can update selected clips with a feature distillation loss
as supervision during each iteration.

• Our experiments on three popular yet challenging bench-
marks demonstrate that our approach is more effective
and efficient than state-of-the-art methods.

Related Works
Most existing VMR methods (Zhang et al. 2019b; Qu et al.
2020; Liu and Hu 2022; Liu, Qu, and Zhou 2021; Liu, Qu,
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Figure 2: Overview of our model, which introduce a novel clip selection approach to search the core clip for VMR iteratively.

and Hu 2022) can be divided into two categories: 1) Top-
down methods (Gao et al. 2017; Liu et al. 2022d; Zhang
et al. 2020b; Zeng et al. 2020; Wang et al. 2022; Wang and
Shi 2023; Wang, Jian, and Xue 2023; Wang et al. 2021b; Li
et al. 2023a,b; Yang et al. 2023): They first pre-define mul-
tiple segment proposals and then align these proposals with
the query for cross-modal semantic matching. Finally, the
best proposal with the highest similarity score is selected as
the predicted segment. Although achieving decent results,
these proposal-based methods severely rely on the quality of
the segment proposals and are time-consuming. 2) Bottom-
up methods (Zhang et al. 2020a; Chen et al. 2020; Mun,
Cho, and Han 2020; Tang et al. 2021; Nan et al. 2021; Ji
et al. 2023a,b; Jian and Wang 2023): They directly regress
the start and end boundary frames of the target segment
or predict boundary probabilities frame-wisely. Compared
with the proposal-based methods, proposal-free methods are
more efficient. However, the above methods heavily rely on
the datasets that require numerous manually labelled anno-
tations for training. In real-world applications, we always
collect overlong videos. If we directly utilize the video for
VMR, it will lead to much computational cost. Although
some egocentric video search works (Jia et al. 2022; Ra-
makrishnan, Al-Halah, and Grauman 2023) are proposed
to accelerate the video understanding process, they rely on
the egocentric video and a language question, which is dif-
ferent from the inputs of VMR. Thus, we present a brand-
new setting, called clip trimming VMR, with a merely light-
weighted model rather than a large-weighted network.

Proposed Method
We propose a light-weighted clip-selection approach that
intelligently spots query-relevant clips for efficient VMR.

Our model consists of a novel clip selection architecture
called ClipSpotter, our BAM semantic indexing features to
select latent query-relevant clips for cross-modal interaction,
and distillation loss to address optimization issues arising
from jointly training ClipSpotter with the VMR task mod-
ules. ClipSpotter previews the video using our RIO features,
which are obtained by selecting a single image from each
clip and encoding them using efficient visual encoders (Tan
and Le 2019). Heavy clip features are then extracted from
only the smaller subset of clips selected by ClipSpotter.

Overview

Problem statement. Given an untrimmed video V with the
frame number of T and a sentence query Q composed of N
words, the task of Video Moment Retrieval Using Language
(VMR) aims to precisely locate a temporal moment bound-
ary (τs, τe) in video V , which starts at timestamp τs and ends
at timestamp τe, according to the semantics of query Q.
Pipeline. To tackle the light-weighted VMR, we propose a
novel framework as shown in Figure 2. For convenience, we
define continuous 16 frames as a clip and each clip over-
laps 8 frames with adjacent clips. We denote the number of
clips as C = T/8 − 1. First, a pretrained semantic indexer,
which consists of one or more image encoders, is used to
extract semantic index features. After encoding the visual
and textual features, we feed the multi-modal features into
a RetrievalSpotter module, which consists of a cross-modal
interaction module and a selection policy to iteratively select
the optimal clip. Especially, in each iteration, we update the
clip feature as the final clip feature. After multiple steps, we
can utilize the selective clip features for the VMR task.
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BAM Features for Semantic Indexing
To adaptively preview the video and select query-relevant
clips, we target to learn the semantic indexer based on three
high-level visual features: background feature, appearance
feature and motion feature, termed BAM features. An intu-
itive idea is to employ the efficient video recognition tech-
nology to extract the visual feature. However, previous ef-
ficient video recognition methods only capture the object-
level appearance feature based on the pretrained ImageNet,
and often ignore the background information and motion
feature, which is insufficient for our challenging VMR task.
Since query-aware indexing in the VMR requires the back-
ground feature and motion information, we try to integrate
the query feature and three high-level features (background,
appearance and motion features) for previewing video.

For example, in a query “A woman and a man are sit-
ting on the sidewalk playing music.”, the background-related
text is “sidewalk”, the appearance-related text is “a woman
and a man”, the motion-related text is “playing music”. All
three kinds of visual information are significant for the VMR
task. Hence, we design a set of low-cost semantic indexing
features that capture context from the background, object-
level appearance, and motion, named BAM.
Background features: To effectively capture the back-
ground characteristics, we utilize a pre-trained EfficientNet-
b0 image encoder (Tan and Le 2019) as a background clas-
sifier. In the VMR task, a full video often contains less than
three backgrounds, and the background change often corre-
sponds to the start or end of an important video activity.
Appearance features: In a video, the view is often changed
due to the object movement and the camera shift, which
leads to the visual variance. To adaptively minimize the vari-
ance, we feed the frame-level video into a pretrained VI-
CReg (Bardes, Ponce, and LeCun 2022) network in a self-
supervised way. To extract appearance features accurately,
we maintain diversity over each feature dimension, which
can learn the object properties and closes the visual variance.
Motion features: For each clip, we first choose its start
frame and end frame to extract the motion feature. Then,
we feed the two frames into pretrained C3D network (Tran
et al. 2015) to extract the clip-level motion features.

Overall, we sample one image within each video clip, ex-
tract each of the RIO features, and concatenate them to ob-
tain the semantic indexing features s = [s1, s2, · · · , sC ] =
SemanticIndexer(V). These are image features extracted
by sampling one image within each video clip, and they are
inexpensive to compute. These will serve as an initial pre-
view of the video for intelligent clip selection.
Query features. Similarly, given the query Q, we also fol-
low (Liu et al. 2022c, 2023e) to utilize the Glove (Penning-
ton, Socher, and Manning 2014) embedding to encode each
word into a dense vector. We further employ the Bi-GRU
(Chung et al. 2014) layers to encode the word-level sequen-
tial information in the whole sentence. The final word-level
feature can be denoted as Q = {qj}Nj=1 ∈ RN×D.

q = [q1, q2, · · · , qN ] = QueryEncoder(Q). (1)

Thus, by the semantic index s, query features q, and the
video V , we design a RetrievalSpotter module to recursively

retrieve a final subset of query-relevant video clips V ′ as the
moment candidates. Then, we feed all the frames of the se-
lected clips V ′ into the same pre-trained C3D network to
extract the expensive clip features. To avoid the unimpor-
tant computational cost, we set the features of those selected
clips to zero in v′ = V ideoEncoder(V ′) ∈ RC×D.

RetrievalSpotter Architecture
To adaptively select the query-relevant clips in the VMR
task, we design a RetrievalSpotter network, which first pre-
views the entire video by an efficient semantic index, and
then alternates between selected clips for expensive feature
extraction. Finally, the RetrievalSpotter network repeats the
above two processes until all the clips will be selected in the
next recursive clip or the current recursive step reaches the
maximum step. Thus, the semantic index s is computed once
before step 1 and kept fixed.

Specifically, we denote the recursive step as b ∈
[1, · · · , B], where B is the maximum step. v′b ∈ RC×D de-
note the clip features for selected from steps 1 to b−1, where
v′1 = [0]C×D is an all-zero matrix. For any clip feature cb,
we concatenate it with s along the feature dimension to fuse
them as sb ∈ RC×2D. To interact the visual and textual fea-
tures for further reasoning, we perform the clip-aware cross-
modal fusion as: c′b = CrossModalFusion(sb, q), where
c′b is the fused cross-modal feature.

By treating the fused feature as guidance, we utilize a two-
layered MLP as the clip selection module to show if a clip
feature should be computed or not. Especially, the clip se-
lection module will output a binary value (i.e., thresholded
probabilities) for each clip:

pb+1 = ClipSelection(c′b) ∈ {0, 1}C , (2)

where pb+1 is the binary value, where if pb+1 = 1, the
clip will be selected and vice versa. Finally, we feed these
selected clips into the video encoder (C3D) to obtain the
expensive visual clip features. We repeat the selection pro-
cess for steps, and utilize a cumulative set of clip features
(fv = v′B+1) to predict the moment boundary.

To enhance the visual features with query-specific infor-
mation, we perform cross-modal interaction by the concate-
nated clip and semantic index features s ⊕ v and the query
features q.

c = CrossModalInteraction(s⊕ v, q) ∈ RC×Dh . (3)

Finally, we design a retrieval module to predict the temporal
extent of the boundary B̂: B̂ = [τs, τe] = Retrieval(c).

Thanks to the above processes, we can enhance the ef-
ficiency of the state-of-the-art VMR methods. Specifically,
the VMR works (e.g., VSLNet (Zhang et al. 2020a) and
MMN) feed the entire video into the visual encoder to ex-
tract the clip features, utilize a query encoder to extract
query features, use a cross-model interaction module to fuse
visual and textual feature, and finally employ a retrieval
head module to predict the moment boundary. Our pro-
posed SpotVMR can significantly save the computational
cost by first previewing the video cheaply using the se-
mantic indexer and then recursively selecting a subset of
query-relevant clips by RetrievalSpotter. By iteratively se-
lecting a subset of clips for expensive feature extraction,
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our SpotVMR can modulate the video inputs to these state-
of-the-art VMR models. Although different models utilize
various cross-modal interaction modules and retrieval head
modules, our efficient clip selection strategy still works.

Model Optimization
After selecting the query-relevant clips, we jointly optimize
the cross-modal interaction and the retrieval head modules
end-to-end to improve the retrieval performance. During
training, we keep the video, semantic index, and text en-
coders frozen. Besides, multiple loss functions are intro-
duced: a VMR task loss Lvmr, a clip selection loss Lsel,
and a novel feature distillation loss Lftd.
Clip selection loss. To select accurate clips to avoid under-
sampling and over-sampling, we introduce a clip selection
loss: Lsel = (γ − E(v,q)∼Dt

[ 1L
∑L

l=1 b
l
joint])

2, where Dt

denotes the training dataset and b̄joint =
∑N+1

n=1 pb is the
overall binary selections after N steps. By predefining the
hyperparameter γ, the clip selection loss can limit the frac-
tion of selected clips in expectation. To regularize the per-
step clip selection plb, we encourage our proposed model to
select (γL/B) clips in each step. Experimental results show
that the above simple regularization can significantly im-
prove training stability. Since our proposed RetrievalSpotter
predicts binary values during clip selection, it is not differ-
entiable for gradient-based optimization. Therefore, we in-
troduce the Gumbel-Softmax trick to reparameterize argmax
sampling using a softmax relaxation during training (Hazan
and Jaakkola 2012; Wu et al. 2019).
VMR task losses. We denote the video and query features
as v and q. By fusing v and q, we utilize the cross-modal
interaction module to obtain the cross-modal representation
as c = CrossModalInteraction(v, q) ∈ RC×D. Espe-
cially, the module includes a transformer encoder module,
which utilizes the self-attention process to update the video
feature v and query feature q independently. Then, we uti-
lize the context-query attention mechanism for enhancing
the video features with the help of the query features (Zhang
et al. 2020a; Seo et al. 2016). Then, we introduce a 1D
convolutional layer to compute the probability that a clip
lies within a temporal neighborhood of the target moment:
Ŝh = σ(Conv1D(c)) ∈ RC×1, where σ is the sigmoid
function, and Ŝh is used to update the cross-modal features:
c = Ŝh · c ∈ RC×Dh . To infer the moment boundary, we in-
troduce a retrieval module, including a transformer encoder
for performing self-attention and an MLP layer to predict
the log probabilities:

τ̂s, τ̂e = RetrievalPrediction(c), (4)

where τ̂s, τ̂e ∈ RC×1 are log-probabilities per feature loca-
tion, “RetrievalPrediction” means the retrieval module. We
use the following loss to supervise the boundary predictions:

Lboundary = LCE(p̂s, p
∗
s) + LCE(p̂e, p

∗
e), (5)

where LCE denotes the cross-entropy loss, and p∗s, p
∗
e are the

ground-truth boundary of the target moment. We supervise
the query-aware visual enhancement by the following loss:

Lqav = fCE(Ŝh, S
∗
h), (6)

where S∗
h denotes the ground-truth enhancement score,

which covers an extended temporal window around the
ground-truth moment boundary. By jointing the above loss,
we can obtain the overall VMR loss as follows:

Lvmr = Lboundary + Lqav. (7)

Distillation loss: To further fine-tune the moment boundary,
we design a two-stage training strategy based on the knowl-
edge distillation approach. First, we train a teacher VMR
model without the RetrievalSpotter module as the distilla-
tion supervision. Then, we utilize a student VMR module
with the RetrievalSpotter module for joint optimization.

Given a video-query pair (V,Q) and its ground-truth
moment boundary B, we denote the cross-modal interac-
tion outputs for the teacher and student VMR modules
as cteacher and cstudent, respectively. Different from the
student module, we feed all the video features into the
teacher module. To match the cross-modal features be-
tween the student module and the teacher module, we
design the following feature distillation loss: Lftd =
||StopGrad(cbteacher)−cbstudent||2, where || · ||2 is the L-2
loss, the gradient is not propagated to the frozen teacher.

Thus, our final loss is:

Lfinal = αLvmr + βLsel + γLftd, (8)

where α, β and γ are hyperparameters to balance the weights
of different losses. By jointly training these losses, we en-
courage the model to improve VMR performance while lim-
iting the budget of clips selected.

Experiments
Dataset. For fair comparison with existing VMR works, we
utilize the same datasets for evaluation: ActivityNet Caption
(Caba Heilbron et al. 2015), TACoS (Regneri et al. 2013),
and Charades-STA (Sigurdsson et al. 2016). Specifically,
ActivityNet Caption contains 20000 untrimmed videos with
100000 descriptions from YouTube. Following the public
split, we use 37417, 17505, and 17031 sentence-video pairs
for training, validation, and testing. TACoS contains 127
videos collected from cooking scenarios. We also follow
the public split, which includes 10146, 4589, 4083 query-
segment pairs for training, validation and testing. As for
Charades-STA, there are 12408 and 3720 moment-query
pairs in the training and testing sets, respectively.
Evaluation metrics. Following (Gao et al. 2017; Zhang
et al. 2020a), we adopt “R@n, IoU=m” as the evaluation
metrics. The “R@n, IoU=m” denotes the percentage of lan-
guage queries having at least one result whose Intersection
over Union (IoU) with ground truth is larger than m in top-
n retrieved segment. In our experiments, we use n ∈ {1, 5}
for all datasets, m ∈ {0.5, 0.7} for ActivityNet Captions and
Charades-STA, m ∈ {0.3, 0.5} for TACoS.
Implementation details. To encode each video, we de-
fine continuous 16 frames as a clip and each clip over-
laps 8 frames with adjacent clips. Following previous works
(Zhang et al. 2020b; Wang et al. 2022), we employ the Glove
model (Pennington, Socher, and Manning 2014) to embed
each word to 300 dimension features. We train our whole
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Performance comparisons on ActivityNet Captions

Method Type R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL ↓ 29.01 10.34 59.17 37.54
SCDM ↓ 36.75 19.86 64.99 41.53
CMIN ↓ 43.40 23.88 67.95 50.73
2D-TAN ↓ 44.51 26.54 77.13 61.96
DRN ↓ 45.45 24.36 77.97 50.30
MMN ↓ 48.59 29.26 79.50 64.76
GDP ↑ 39.27 - - -
LGI ↑ 41.51 23.07 - -
VSLNet ↑ 43.22 26.16 - -
IVG-DCL ↑ 43.84 27.10 - -
Ours ↕ 52.83 32.76 84.37 68.95

Performance comparisons on Charades-STA

Method Type R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

CTRL ↓ 23.63 8.89 58.92 29.57
SCDM ↓ 54.44 33.43 74.43 58.08
2D-TAN ↓ 39.81 23.25 79.33 51.15
DRN ↓ 53.09 31.75 89.06 60.05
MMN ↓ 47.31 27.28 83.74 58.41
GDP ↑ 39.47 18.49 - -
VSLNet ↑ 47.31 30.19 - -
IVG-DCL ↑ 50.24 32.88 - -
ACRM ↑ 57.53 38.33 - -
Ours ↕ 68.82 47.39 97.01 75.38

Performance comparisons on TACoS

Method Type R@1, R@1, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

CTRL ↓ 18.32 13.30 36.69 25.42
SCDM ↓ 26.11 21.17 40.16 32.18
CMIN ↓ 24.64 18.05 38.46 27.02
2D-TAN ↓ 37.29 25.32 57.81 45.03
DRN ↓ - 23.17 - 33.36
MMN ↓ 39.24 26.17 62.03 47.39
GDP ↑ 24.14 - - -
VSLNet ↑ 29.61 24.27 - -
IVG-DCL ↑ 38.84 29.07 - -
ACRM ↑ 38.79 26.94 - -
Ours ↕ 48.72 38.94 67.03 56.38

Table 1: Performance comparisons on three challenging
datasets (top: ActivityNet Captions, middle: Charades-STA,
bottom: TACoS), where ↓ means the top-down setting; ↑
means the bottom-up setting, and ↕ means our posed setting.

model for 100 epochs with an early stopping strategy. Pa-
rameter optimization is performed by Adam optimizer with
a learning rate of 0.0005, and a linear decay rate of 1.0. All
the experiments are implemented by PyTorch. For the hyper-
parameters, we set α = 0.4, β = 0.8, and γ = 0.6.

Comparison with State-of-the-Arts
For performance evaluation, we compare several state-of-
the-art open-source VMR methods that are grouped into
two categories: 1) Top-down (↓): CTRL (Gao et al. 2017),
SCDM (Yuan et al. 2019), CMIN (Zhang et al. 2019b), 2D-
TAN (Zhang et al. 2020b), DRN (Zeng et al. 2020), MMN
(Wang et al. 2022); 2) Bottom-up (↑): GDP (Chen et al.

Model Text Texe TtotalB A M Other
CTRL - - - 18.51 187.52 206.03
RaNet - - - 18.51 208.40 226.91

2D-TAN - - - 18.51 216.87 235.38
MIGCN - - - 18.51 253.94 271.89
MMN - - - 18.51 289.31 207.82
DRN - - - 18.51 294.70 313.21
Ours 1.02 1.34 2.57 - 32.75 37.68

Table 2: Efficiency comparison (time complexity (s) of 100
videos) on ActivityNet Captions. The total time Ttotal com-
prises the measurement time of extracting the corresponding
features (Text), and executing the network models (Texe),
where “Other” means the feature encoder (e.g., C3D/I3D).
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Figure 3: Analysis on the parameters (α, β, γ) on Activi-
tyNet Captions (left) and Charades-STA (right).

2020), LGI (Mun, Cho, and Han 2020), VSLNet (Zhang
et al. 2020a), IVG-DCL (Nan et al. 2021), ACRM (Tang
et al. 2021). The best results are bold. As shown in Table
1, our model beats all compared methods by a large margin,
which illustrates the effectiveness of our model.
Efficiency comparison. As shown in Table 2, we con-
duct the efficiency comparison on ActivityNet Captions with
some state-of-the-art open-source methods. Our model is
more efficient than compared methods by a large margin.

Ablation Study
Main ablation study. To demonstrate the effectiveness of
each component in our model, we conduct ablation studies
regarding the components. The corresponding experimental
results are reported in Table 3. Obviously, we can find that
both two modules contribute a lot to the final performances,
showing that each module is effective for the VMR task.
Plug-and-play. To further compare with current methods,
we serve our method as a plug-and-play module for state-
of-the-art models (2D-TAN and MMN). As shown in Table
4, our method can significantly improve their performance,
which shows the effectiveness of our method.
Effect of the BAM feature. To analyze the contribution of
different high-level features, we conduct the ablation study
in Table 5. Background(B), appearance(A) and motion(M)
features can significantly improve the performance. The im-
provement shows the effectiveness of our designed features.
During the clip selection, we set the maximum recursive step
as Bmax, we analyze the effect of different Bmax on Table
6. When Bmax = 5, we can obtain the best performance.
Analysis on parameters. We conduct the ablation stud-
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Method
ActivityNet Charades TACoS

R@1, R@1, R@5, R@5, R@1, R@1, R@5, R@5, R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

w/o Lqav 48.72 29.53 82.53 67.30 68.01 45.32 94.27 73.52 46.80 37.85 65.29 53.71
w/o Lsel 50.66 30.80 81.32 66.97 67.35 44.86 95.41 74.25 47.13 37.92 66.17 54.82
w/o Lftd 51.39 31.95 84.03 68.54 67.90 46.81 96.57 75.32 48.08 38.75 66.88 54.18

Full model 52.83 32.76 84.37 68.95 68.82 47.39 97.01 75.38 48.72 38.94 67.03 56.38

Table 3: Main ablation study on all the datasets, where we remove each key individual module to investigate its contribution.

Model Setting
ActivityNet Captions Charades-STA TACoS

R@1 R@1 R@5 R@5 R@1 R@1 R@5 R@5 R@1 R@1 R@5 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7 IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

2D-TAN Origin 44.51 26.54 77.13 61.96 39.81 23.25 79.33 51.15 37.29 25.32 57.81 45.03
Ours 46.21 27.43 78.64 63.58 42.95 25.10 81.72 53.27 38.49 26.15 59.22 45.83

MMN Origin 48.59 29.26 79.50 64.76 47.31 27.28 83.74 58.41 39.24 26.17 62.03 47.39
Ours 49.37 30.52 80.26 65.31 49.12 28.54 85.43 59.72 41.17 27.43 63.92 49.30

Table 4: Our proposed method serves as a plug-and-play module for state-of-the-art models on different datasets.

B A M R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

" % " 50.24 30.62 82.49 68.43
" " % 51.35 31.84 82.88 68.27
% " " 51.98 32.25 83.71 68.60
" " " 52.83 32.76 84.37 68.95

Table 5: Effect of semantic index on ActivityNet Captions.

Module Changes R@1 R@1 R@5 R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

Recursive
steps

3 51.92 31.40 83.55 67.38
5 52.83 32.76 84.37 68.95
7 53.04 31.95 83.52 68.24

Table 6: Effect of recursive step on ActivityNet Captions.

ies on the parameters α, β, γ in Figure 3. Specifically, we
change one parameter with fixing the others. We obtain the
best performance when α = 0.4, β = 0.6, γ = 0.8.

Qualitative results
We provide the retrieval visualizations on three datasets in
Figure 4. Our method can retrieve more precise moment
boundaries than previous state-of-the-art methods (MMN
(Wang et al. 2022) and WSTAN (Wang et al. 2021a)).

Conclusion
In this paper, we propose a novel and efficient video mo-
ment retrieval setting, which first previews the whole video
by a semantic indexer, and then retrieves the target moment
boundary by a distillation loss. Experiments on three chal-
lenging datasets show the effectiveness of our method.
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Ground Truth

MMN
17.37s 60.81s

8.95s 75.38s
WSTAN 44.72s 79.63s

Query: The girl dances around the room while the camera captures her movements.

Query: Person closes the window.

Ground Truth

MMN
18.20s 26.10s

18.74s 29.53s

Ours 16.84s 59.87s

WSTAN 20.38 21.46s
Ours 18.17s 26.24s

Query: The person takes a bell pepper from the pantry.

Ground Truth

MMN
10.26s 13.46s

8.53s 17.72s
WSTAN 7.31s 15.84s
Ours 10.28s 13.59s

Figure 4: Qualitative results on three datasets (top: Activi-
tyNet Captions, middle: Charades-STA, bottom: TACoS).
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