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Abstract
Sea-level rise is a well-known consequence of climate
change. Several studies have estimated the social and eco-
nomic impact of the increase in extreme flooding. An ef-
ficient way to mitigate its consequences is the develop-
ment of a flood alert and prediction system, based on high-
resolution numerical models and robust sensing networks.
However, current models use various simplifying assump-
tions that compromise accuracy to ensure solvability within
a reasonable timeframe, hindering more regular and cost-
effective forecasts for various locations along the shoreline.
To address these issues, this work proposes a hybrid model
for multimodal data processing that combines physics-based
numerical simulations, data obtained from a network of sen-
sors, and satellite images to provide refined wave and sea-
surface height forecasts, with real results obtained in a crit-
ical location within the Port of Santos (the largest port in
Latin America). Our approach exhibits faster convergence
than data-driven models while achieving more accurate pre-
dictions. Moreover, the model handles irregularly sampled
time series and missing data without the need for complex
preprocessing mechanisms or data imputation while keeping
low computational costs through a combination of time en-
coding, recurrent and graph neural networks. Enabling raw
sensor data to be easily combined with existing physics-based
models opens up new possibilities for accurate extreme storm
tide events forecast systems that enhance community safety
and aid policymakers in their decision-making processes.

Introduction
Sea-level rise is a well-known and documented trend di-
rectly associated with climate change. There is also mount-
ing evidence in favor of related phenomena such as changes
in the intensity and frequency of extreme meteorological
events. Storm tides are key phenomena that refer to the com-
position of high astronomical and meteorological tides that
can cause severe flooding in coastal areas.

This work focuses on improving early alerts for extreme
storm tide events in the city of Santos, Brazil. The city is
home to the largest port in Latin America and also hosts
rich ecosystems like the Atlantic Rainforest and a vast man-
grove system. Under an optimistic sea-level rise scenario,
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the cumulative damage to the Santos coastal area between
2010 and 2100 could reach 242 million USD (Marengo et al.
2019).

Researchers successfully implemented physical models
for predicting extreme events in Santos (Costa et al. 2020).
These models, considered state-of-the-art for the oceanog-
raphy community, serve as baselines for forecasting. Given
that we have access to those models’ predictions and data
from sensors and satellites, we exploit these modalities in a
lightweight manner. Such a model aims to match the perfor-
mance of physical models, while integrating observed and
simulated time series with satellite imagery. Our novel ap-
proach ensures lower computational costs than numerical
models and addresses real-world challenges, such as noise
and missing data. Designed for multimodal data and with
low complexity, it enables a significant societal and environ-
mental impact, adaptable to regions with similar characteris-
tics. Importantly, our objective is not to benchmark this task;
instead, we emphasize the practical application and potential
for widespread implementation of our model in problems
with highly irregular multimodal time series.

Therefore, we propose a modularized model for multi-
modal data, including observational sensory data, numer-
ical models, and satellite images. The model is divided
into three modules: (1) a timestamp encoding for captur-
ing temporal information of periodic signals, with the abil-
ity to smoothly handle missing data; (2) a Recurrent Neu-
ral Network (RNN)-based temporal encoding for time-series
signals, providing flexibility to the model for differences
in signals’ sampling and missingness rates; (3) a signal
information-sharing module using Graph Neural Networks
(GNNs) (Scarselli et al. 2009) so as to extract connections
among variables and use those connections profitably.

We state our main contributions as:

• Defining an architecture that can learn from multimodal
data sources to generate accurate early detection of ex-
treme storm tide events;

• Providing evidence that recurrent and graph neural net-
works (RNN+GNN) mixtures can be applied to reduce
the complexity of handling irregular data sources;

• Providing evidence that time encoding can increase a
model robustness to missing data and provide flexibility
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to autoregressive inference;
• Providing evidence that data-driven approaches can be

combined with physics-based models to increase com-
munity safety in coastal areas;

• Demonstrating a real application of the method showing
results for historical data from Santos region, Brazil, a
site of significant social importance that is regularly af-
fected by storm tides.

Section Background contextualizes the storm tide phe-
nomena and its interactions with local communities, lists
existing efforts to improve numerical modeling for the re-
gion. We formalize the target task for this work, and high-
light related work recently proposed for similar tasks in Sec-
tion Problem Statement and Related Work. Section Proposed
Model details the architecture, justifying technical choices
based on the challenges inherent to this task. Section Ex-
periments presents and comments on experiments results,
providing evidence for the model’s claimed capabilities. Fi-
nally, the Conclusion emphasizes how this work is both a
technical innovation and a significant step towards increas-
ing Santos’ communities safety.

Background
Among the phenomena that significantly impact coastal pop-
ulations, storm tides cause some of the largest impacts on
economy and society, since they can cause flooding (Costa
et al. 2020), resulting in infrastructure damage, service dis-
ruption, and loss of human life. Coastal regions in devel-
oping countries are especially susceptible to these signifi-
cant damages in the long term (Dasgupta et al. 2009; Ed-
monds et al. 2020). An example of a susceptible area is the
metropolitan region of Santos, in Brazil, which suffers peri-
odically from storm tides.

A storm tide is the total observed water elevation during a
storm event, resulting from the combination of storm surge
and the astronomical tide. Tides are usually caused by the
gravitational forces of the sun and the moon and have their
greatest effects on the sea level during new and full moons,
known as spring tides. A storm surge is the abnormal sea
level rise caused by a storm’s winds pushing the sea water
towards the coast (NOAA 2023). When a storm surge co-
incides with a high spring tide, coastal flooding is likely to
occur.

The metropolitan region of Santos, located on the central
part of the South Brazil Bight (SBB), is home to more than
1.7 million people (Ribeiro et al. 2019) and hosts the largest
port complex in South America. In the SBB region, storm
surges are induced by the passage of cold fronts which reach
the region every 6-10 days throughout the year (Castro and
Lee 1995). However, due to climate changes, the frequency
and magnitude of extreme sea level events is expected to
increase by the end of the century. In addition, as the global
mean sea level has been rising, coastal zones can be more
vulnerable to weaker storms (Oppenheimer et al. 2019).

Between 1961 and 2011, 89 storm surge events were re-
ported by the press in the Santos region (Fundespa 2014).
Although not all of them characterize a storm tide event,

Figure 1: In 2016 an extreme storm tide event caused severe
inundation in Santos (Martiniano 2016).

because they did not coincide with the spring tide, seri-
ous coastal flooding took place many times. A very in-
tense and destructive storm tide happened in Santos in 2016.
In that event, streets, garages of buildings, and commer-
cial points were taken by the sea, causing huge damage to
the local economy (no detailed study on the level of these
losses seems to be available). Figure 1 shows how the San-
tos coastal line is vulnerable to sudden increase of sea-level.

Numerical modeling is commonly employed to simulate
the circulation in oceans and in coastal regions. Such mod-
eling is applied more frequently in case studies, toward spe-
cific objectives and simulating past conditions (e.g. Leitão
et al. 2005; Dube et al. 2009; Bunya et al. 2010). However,
operational models for the prediction of extreme events,
such as storm tides, represent another important application
of numerical modeling. A solid and reliable numerical fore-
casting system is an important tool for preventing the ef-
fects of storm tides, supporting contingency planning and
reducing the risks associated with these events (Ribeiro et al.
2019).

One such model is the Regional Ocean Modelling System
(ROMS). It has been implemented and validated for the SBB
region, by the Coastal Hydrodynamics Laboratory from the
Oceanographic Institute of the University of São Paulo. A
sea-surface height (SSH) series for past periods was simu-
lated and is used to detect and understand past storm tide
events.

Another prominent model currently deployed for that re-
gion is the Santos Operational Forecasting System (SOFS)
(Costa et al. 2020), which is based on the Princeton Ocean
Model (POM). SOFS has two nested grids, where the
coarser one encompasses the SBB region, while the finer
one encompasses the Santos-São Vicente-Bertioga Estuar-
ine System. The model outputs forecasts for SSH, currents,
salinity and temperature for three days ahead.

Figure 2 shows that SOFS and ROMS have high corre-
lations with the measured SSH signal, although their pre-
dicted values show a difference in level and phase due to
differences in mesh resolution, simulation and conventions
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Figure 2: ROMS and SOFS, both numerical models, have
high correlations to the measured SSH signal, even though
the predicted values are out of phase and offset and have
distinct sampling rates.

adopted for each numerical model. Also, a particularity of
SSH is that astronomical tide, which is a quantity that can
be very accurately forecast, accounts for a major component
of it.

A set of collected in-situ data is essential to produce
robust and accurate forecasts, since modeling techniques
with data assimilation can produce results that are closer
to the observations. However, despite being an important
tool for forecasting extreme events, numerical modeling re-
quires significant computational effort. High-resolution nu-
merical models demand great computer hardware for faster
results, which implies high equipment acquisition and main-
tenance costs. Consequently, developing ways to better and
more flexibly combine existing numerical models with ever-
increasing sensor data is a pressing need.

Answering to that, the Santos Storm Tide Dataset was as-
sembled from eleven different data sources. The dataset con-
tains local SSH measurements for the Praticagem station, lo-
cated at the main entrance of the Port of Santos channel at a
distance of 3 kilometers from the Palmas station. The SOFS
and ROMS numerical simulations generate SSH predictions
specifically for the Palmas station location. Although chang-
ing the discretization setup for the simulations could reduce
this distance, it was purposefully kept as it is to better as-
sess data assimilation capacities of new techniques. Some
characteristics of the dataset are summarised in Table 1. For
our experiments, we define data relative to 2022 as our test
dataset, leaving the rest for model training.

Problem Statement and Related Work
Both measured and simulated data can be collectively
formulated as a Multivariate Time Series (MTS). We
can define a MTS as a (finite) set of time series

Figure 3: Shifted time series with missing data points are dif-
ficult to regularize. In this example, 65% of the data comes
from interpolation after the data imputation process.

S = {Zi}|S|
i=1. Each element in this set is a sequence of

events Zi = [Zi,t1 , Zi,t2 , · · · , Zi,tT ], such that Zi,t ∈ RKi

for tabular data and Zi,t ∈ RHi×Wi×Ki for images, where
Hi and Wi represents the spatial dimensions of the image
and Ki represents the number of features. Note that we
choose to represent a time series as a boldface matrix Zi

with T observations, t1, · · · , tT ∈ R.
The task objective is to use all information available at a

reference time tϕ to forecast a sequence of future measure-
ments for a subset of time series So ⊆ S . For this work So

contains two time series, SSH and Wave Height (WH). Cru-
cially, measured data only exists for past events, i.e., t < tϕ,
while the forecasts from numerical models typically extend
up to t < tϕ +Oi, where Oi represents the forecast window
length specific to that numerical model.

Handling irregularly sampled multivariate time series rep-
resent a fundamental challenge for classical models from
machine learning and statistics (Shukla and Marlin 2021).
Several data imputation approaches have been proposed to
regularize MTS in order to achieve a grid-like structure (Em-
manuel et al. 2021). A grid-like MTS would allow the us-
age of a RNN or Transformer models directly; however,
for highly irregular signals it becomes unfeasible to regu-
larize the grid, as shown in Figure 3. Additionally, the fact
that some data points are missing can be informative, which
means data imputation is not always beneficial (Little and
Rubin 2014).

Recent proposals have described techniques to inform
classical machine learning architectures about missing data
without data imputation. GRU-D (Che et al. 2018) proposes
two additional structures to the classical GRU, namely,
a masking tensor and a decay mechanism. RAINDROP
(Zhang et al. 2022) proposes a mechanism that relies solely
on GNN message passing by modeling each measurement
as a node that creates ripples, therefore propagating infor-
mation to nearby nodes.

Proposed Model
To effectively merge numerical model forecasts with avail-
able measurement data, a model must represent events span-
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Source Interval (min) Date Range % Miss Shape Readings (train/test)
SSH (Local Measurement) 60 / 10 2016-04 to 2022-12 4.57/15.41 [1] 173607 / 52479
Wave Height (Local Measurement) 20 2016-01 to 2022-12 6.84 [1] 148423 / 23070

Astro. Tide (Calculated) 10 2016-01 to 2022-12 0 [1] 315648 / 52560
ROMS (Reference Model) 60 2016-01 to 2022-12 0 [1] 51876 / 8760
SOFS (Reference Model) 15 2019-01 to 2022-12 0 [3] 105216 / 35040

SSH (Copernicus) 60 2020-11 to 2022-12 0 [1, 133, 133] 10224 / 8760
ADT (Copernicus) 1440 2016-01 to 2022-12 0 [1, 45, 45] 2192 / 365
Waves (ERA5) 60 2016-01 to 2022-12 0 [3, 23, 23] 52608 / 8760
Waves (Copernicus) 1440 2016-01 to 2022-12 0 [2, 7, 6] 2192 / 366
Wind (Local Measurement) 20 2016-01 to 2022-12 4.53 [2] 149855 / 25905
Wind (ERA5) 60 2016-01 to 2022-12 0 [2, 45, 45] 52608 / 8760

Table 1: To develop more accurate forecast systems for Storm Tides in the Santos region, a multimodal dataset was assembled
from different sources.

ning both past and future timestamps. Moreover, given that
sensors in the wild can be susceptible to malfunctions, it is
essential for the model to remain functional and dependable
even when one or more sensors are out of commission.

Furthermore, simplifying data preprocessing and reduc-
ing the model’s size are paramount, since it allows smaller
teams to efficiently deploy the model across various regions
with minimal adjustments. This section describes the model
in detail, but omit some minor information, such as the com-
plete configuration for the CNN modules.

The proposed model is grounded on three primary princi-
ples:

1. Timestamp Encoding using Periodic Functions: Ensures
that time-related information is consistently encoded
across time series, capturing patterns that occur period-
ically.

2. Independent Temporal Encoding of Time Series: Uses an
independent Recurrent Neural Networks (RNN) to pro-
cess each time series data stream, ensuring the model’s
capability to operate without one or more sensors.

3. Information Diffusion with Regularized Heterogeneous
Graph Attention Network (RHGAT): Facilitates the dis-
semination of information across the model’s nodes, al-
lowing for each representation to be enriched based on
neighbourhood information.

A visual representation of these concepts from a for-
ward pass perspective is illustrated in Figure 4. The pro-
posed architecture is trained following the supervised learn-
ing paradigm.

To build training batches, a set of tϕ are sampled uni-
formly from the time interval over which data is available.
Note that the sampling is performed over the entire time in-
terval, rather than just over the set of timestamps that have
associated measurements. Actually, there is no need for any
Zi,tϕ to exist.

Recall that for measured data, the context window in-
cludes data collected in t < tϕ, while for estimated data
(i.e. numerical models and astronomical tide), the context
window will be in t < tϕ + Oi. Thus, for each tϕ, both a
context window and a forecast window are determined for

each time series,

t
′

ϕ = tϕ +Oi, (1)

Zc
i =

[
Zi,t ∈ Zi | t

′

ϕ − Ci ≤ t < t
′

ϕ

]
, (2)

Zf
i =

[
Zi,t ∈ Zi | t

′

ϕ ≤ t < t
′

ϕ + Fi

]
, (3)

where: Oi denotes the offset allowed for a specific time se-
ries. It is configured to be 48 hours for both numerical mod-
els and for the astronomical tide signal, and zero for oth-
ers. This positive offset allows the context window for these
types to contain future events, i.e., forecasts; Ci represents
the size of the context window and is set to 7 days for all
time series; Fi is the size of the forecast window and only
applies to the target time series SSH and WH, both set to 2
days. These three parameters are problem specific and can
be tuned without affecting our formulation.

To provide the model with information about irregular in-
tervals between measurements we apply the same Positional
Encoding (PE) formulation originally proposed by (Vaswani
et al. 2017). Although this technique has been commonly
used in Natural Language Processing models to add posi-
tional information to the fully connected attention mecha-
nism in Transformers, our hypothesis is that this mechanism
associated with a GNN would allow the model to adjust for
missing data windows. Firstly, each timestamp t is internally
represented relative to tϕ and then PE is applied to create a
vector representation τti of this temporal distance that has
size T = 50,

t
′
= t− tϕ, (4)

τt′ ,2k = sin

(
t
′

10002k/T

)
, (5)

τt′ ,2k+1 = cos

(
t
′

10002k/T

)
. (6)

This approach is convenient since it represents both past
and future events relative to tϕ by leveraging periodic func-
tions applied to t

′
, which is negative for past events and pos-
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Figure 4: Architecture overview. 1) Measurements are enriched with encoded representation of subsequent timestamps. Each
time series is encoded by a different RNN instance. 2) A Regularized Heterogeneous GAT updates hi,t the target nodes repre-
sentations based on its neighbourhood. 3) h

′

i,t is used as the initial state for an autoregressive decoding process.

Figure 5: Time-aware RNN setup.

itive otherwise. Finally, we denote t
′

− the relative timestamp
for the previous measurement of a time series.

Images are encoded into a vector with Ki values using a
two-layer convolutional neural network CNN. This step is
necessary to allow temporal encoding RNNs to be defined
uniformly for all time series. Associating CNNs and RNNs
for image sequence encoding has been previously success-
fully applied in a multitude of use cases (Fan et al. 2016;
Donahue et al. 2016; Sharma et al. 2021).

Information about the size of the gap ahead of each Zi,t−
is provided to the RNN by concatenating to it each encoded
timestamp τt′ of the next event Zi,t,

hi,t = RNNi

(
Zi,t− ∥ τt′ , ht−

)
, (7)

and ∥ is the concatenation operator. This autogressive setup
is depicted in Figure 5.

In our setup, all hi,t have size H = 200; however, as the
notation indicates, this hyperparameter could be different for
each time series. Because these latent representations only
contain information about their own time series, an informa-
tion propagation mechanism is necessary to enrich the target
nodes representations before the decoding step.

For that, we use a single-layered regularized vari-
ant of an Heterogeneous Graph Attention Network
(HGAT)(Veličković et al. 2018; Wang et al. 2019). Each
node type in the network has a single node, which means
each graph has S node types. Each target node has incoming
edges from all other nodes, i.e., the total number of edges is
S × So, where So is the number of target nodes.

In HGATs, each edge type r ∈ R, also known as relation,
is a unique pair of connected node types. To decouple the
size of R from S and So we apply the regularization tech-
nique proposed by (Schlichtkrull et al. 2018), where a set of
B homogeneous GNNs and R × B scalar coefficients are
trained. The Regularized HGAT update can be defined as:

h
′

i,t =
∑
r∈R

B∑
b=1

GAT({ar,b · hj : j ∈ N (r)(i)}), (8)

where GAT is the convolution proposed by Brody, Alon,
and Yahav that builds upon the original GAT architecture
(Veličković et al. 2018); N (r)(i) represents the neighbour-
hood of a target node, which in our setup is the whole graph;
ar,b is a trainable scalar coefficient; and hj is the hidden
representation of a neighbouring node. Applying techniques
for latent graph inference, such as proposed by Kazi et al., is
a relevant research direction to improve this formulation by
addressing eventual over-squashing in the message passing
mechanism (Alon and Yahav 2021).

Finally, to generate forecasts the same autoregressive
setup described in Equation 7 is applied. However, for each
step, a node specific linear layer with Wi and bi is applied to
h

′

i,t to generate a prediction from the latent representation,
Ẑi,t,

Ẑi,t = Wih
′

i,t + bi. (9)
During the training regime, the timestamps are those of

the labels available in the training dataset; however, in an
inference setup it is possible to define for which timestamps
predictions must be generated. Once again, the mechanism
that represents both encoding and decoding is depicted in
Figure 5.

Forecasts are compared to the actual measured values by
using a loss function derived from the Index of Agreement
(Willmott 1981). This loss can detect additive and propor-
tional deviations between time series and was successfully
applied in ML modeling of oceanic phenomena by (Netto
et al. 2022). In this formulation it is defined as:

L(Sf
o, Ŝf

o) =
1

So

So∑
i=1

( ∑
t(Z

f
i − Ẑf

i )
2∑

t(|Ẑf
i − Z̄f

i |+ |Zf
i − Z̄f

i |)2

)
,

(10)
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where Sf
o and Ŝf

o are, respectively, the measured and forecast
MTS in the forecast window, and Z̄f

i is the temporal mean
of Zf

i .

Experiments
Three variants of the model were trained: the complete
model, as described in the previous section; a variant with-
out the RHGAT; and a last variant without time encoding.
This section analyses these variants by creating four differ-
ent inference setups:

1. Input Pairs: Evaluates the effect of each individual vari-
able in the system’s performance;

2. Input Removal: Evaluates the effect of the eventual un-
availability of each time series;

3. Missing Data: Evaluates robustness to missing data by
removing increasing amounts of data from all inputs;

4. Oversampling and Undersampling: Evaluates the capac-
ity of the model to produce forecasts with different sam-
pling rates.

Each of these inference setups are described in the follow-
ing, showing and discussing the results achieved.

Inference Setup 1: Input Pairs
Table 2 presents results for the first setup, i.e., using pairs
of time series as input instead of the full set of eleven input
variables. These results show that the model, regardless of
not being trained for this scenario, is capable of incorporat-
ing information from each time series independently.

As expected, the time series that increase SSH forecast
performance the most are those most correlated to it, namely,
ROMS, SOFS and Astronomical Tide. These results also
show that when the inference is done with all the inputs, the
performance rises above the level of any other pair, demon-
strating that even a single layer of the information propaga-
tion mechanism is capable of taking advantage of synergies
between nodes. Additionally, WH data from ERA5, which is
a sequence of images, brings the most benefit for WH pre-
dictions, displaying evidence of multimodal data processing
capabilities.

Inference Setup 2: Input Removal
Table 3 shows the results for the second inference scenario
where a single time series is removed at a time. Note that
IoA remains high even when critical information, such as
Astronomical Tide, is lost. This evidences the robustness of
the proposed architecture for data failures.

Inference Setup 3: Missing Data
Figure 6 shows qualitative results for the third inference
setup where 2-hour long data windows are randomly re-
moved until reaching a missing data ratio threshold. This
setup illustrates how the variant without time encoding ex-
hibits faster performance degradation as the missing ratio
increases. Results shown in Table 4 also provide further ev-
idence that the time encoding mechanism is crucial in order
to achieve robustness against missing data.

Additional SSH (m) WH (m)

Time Series IoA MAE IoA MAE

SSH* 0.69±0.15 0.22±0.07 0.48±0.23 0.30±0.29
WH* 0.69±0.14 0.22±0.07 0.48±0.23 0.31±0.29

Astron. Tide 0.90±0.11 0.15±0.08 0.47±0.23 0.30±0.29
ROMS 0.80±0.12 0.19±0.07 0.47±0.24 0.30±0.28
SOFS 0.86±0.11 0.15±0.04 0.56±0.25 0.25±0.20

ADT (SC) 0.69±0.14 0.22±0.07 0.48±0.24 0.30±0.29
SSH (NMC) 0.69±0.14 0.23±0.08 0.49±0.24 0.30±0.28
Waves (ERA5) 0.71±0.14 0.21±0.07 0.62±0.24 0.20±0.19
Waves (SC) 0.66±0.15 0.23±0.07 0.45±0.23 0.32±0.28
Wind (ERA5) 0.71±0.14 0.21±0.07 0.50±0.23 0.29±0.28
Wind* 0.69±0.15 0.22±0.07 0.47±0.23 0.30±0.29

All series 0.97±0.04 0.08±0.03 0.65±0.23 0.18±0.14

Table 2: Results with PE time encoding and adding a single
time series during inference. Bold indicates most impactful
additions. (SC: Copernicus Satellite; NMC: Copernicus Nu-
merical Model.)

Unavailable SSH (m) WH (m)

Time Series IoA ↑ MAE ↓ IoA ↑ MAE ↓
SSH - - 0.65±0.23 0.19±0.14
WH 0.96±0.04 0.08±0.03 - -

Astron. Tide 0.86±0.09 0.15±0.04 0.65±0.23 0.19±0.14
ROMS 0.96±0.04 0.08±0.03 0.65±0.23 0.18±0.14
SOFS 0.92±0.08 0.13±0.07 0.60±0.24 0.21±0.19

ADT (SC) 0.96±0.04 0.08±0.03 0.65±0.23 0.18±0.14
SSH (NMC) 0.95±0.04 0.09±0.03 0.64±0.24 0.20±0.15
Waves (ERA5) 0.96±0.04 0.09±0.03 0.56±0.25 0.24±0.19
Waves (SC) 0.97±0.04 0.08±0.03 0.67±0.24 0.17±0.13
Wind (ERA5) 0.96±0.04 0.08±0.03 0.65±0.23 0.19±0.14
Wind 0.96±0.04 0.08±0.03 0.65±0.23 0.18±0.14

All series 0.97±0.04 0.08±0.03 0.65±0.23 0.18±0.14

Table 3: Results with PE time encoding and a single time se-
ries unavailable during inference. Most impactful removals
in bold. (SC: Satellite - Copernicus; NMC: Numerical
Model - Copernicus.)

Inference Setup 4: Oversampling and
Undersampling
The fourth inference setup aims to investigate if the RNN
does indeed consider the encoded time gap τt′ to estimate
Zi,t. Figure 7 clearly shows that this architecture is capa-
ble of producing time series forecasts in frequencies that it
was not trained on. This is evidence that the introduction of
time encoding is not only an efficient way to model varying
time gaps in the input, but also represents a notable gain in
flexibility in how forecasts can be produced.

Here it is emphasized that the model was not trained with
this capability in mind, however, based on these results, a
dataset with more diverse time gaps within each time series
could further improve this time generalization property.

Finally, Table 5 shows some statistics for the training
and characteristics of the final model. Since all RNNs and
the RHGAT have only one layer, the model is extremely
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Figure 6: Time encoding is especially important as the miss-
ing data ratio increases as the information about the gaps
between measurements allows the system to adapt.
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Figure 7: The model can of producing forecasts with differ-
ent frequencies from those seen during training.

lightweight. It was trained in a consumer level GPU and is
capable of performing inference in CPUs.

Conclusion
Results for the experiments demonstrate that the proposed
model represents an innovative approach to handle irregu-
lar data sources. Despite being tested in adverse conditions
(scenarios with high level of missing data, unavailable time

Model/Miss% SSH (m) WH (m)

IoA ↑ MAE ↓ IoA ↑ MAE ↓
Full/0% 0.96±0.09 0.08±0.03 0.65±0.23 0.18±0.14
No Enc/0% 0.94±0.10 0.10±0.03 0.63±0.23 0.20±0.17
No GNN/0% 0.92±0.12 0.13±0.07 0.52±0.25 0.29±0.26

Full/10% 0.95±0.09 0.09±0.03 0.65±0.24 0.19±0.14
No Enc/10% 0.89±0.14 0.14±0.06 0.61±0.22 0.21±0.18
No GNN/10% 0.91±0.12 0.14±0.07 0.51±0.24 0.30±0.27

Full/20% 0.95±0.09 0.10±0.03 0.65±0.23 0.19±0.14
No Enc/20% 0.84±0.17 0.16±0.08 0.60±0.23 0.21±0.19
No GNN/20% 0.91±0.12 0.14±0.07 0.51±0.24 0.30±0.27

Full/40% 0.92±0.10 0.12±0.04 0.63±0.24 0.20±0.15
No Enc/40% 0.72±0.24 0.21±0.10 0.59±0.23 0.21±0.19
No GNN/40% 0.89±0.12 0.15±0.07 0.51±0.23 0.30±0.27

Table 4: Results for varying missing data percentages. Per-
formance degradation is faster in models without time en-
coding.

Training and model statistics

Model size in disk 48MB
Model size in GPU 908MB
Number of parameters 10,275,516
GPU used GeForce RTX 3060
Average training time (hours) 22.89
Inference time in CPU (s) 1.6

Table 5: Training statistics relative to the full model variant.

series and noise, etc.), the model maintained itself opera-
tional with adequate performance. Evidence shows that this
approach is capable of associating different types of time se-
ries, including images, numerical forecasts, and local mea-
surements, in order to better represent the complex phenom-
ena around storm tides.

In particular, our experimental results highlight how
schemes like Positional Encoding, which utilize periodic
functions, can be applied in autoregressive RNN setups to
encode timestamps. This allows models to account for vary-
ing time gaps, increasing robustness to missing data and al-
lowing for flexible inference setups.

As the frequency of extreme meteorological events in-
creases, we predict that efficient approaches for processing
MTS, especially those capable of combining existing global
and local numerical models to sensoring networks, will grow
in importance.

As future research directions, our architecture can be
used in a continuous operation setup, i.e., the autoregressive
mechanism can be run without interruption with periodic in-
formation propagation events. There has been work in a sim-
ilar direction, where a persistent memory vector is attached
to GNN nodes, such as (Rossi et al. 2020).
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