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Abstract

Emergency and non-emergency response systems are essen-
tial services provided by local governments and critical to
protecting lives, the environment, and property. The effec-
tive handling of (non-)emergency calls is critical for pub-
lic safety and well-being. By reducing the burden through
non-emergency callers, residents in critical need of assistance
through 911 will receive fast and effective response. Collab-
orating with the Department of Emergency Communications
(DEC) in Nashville, we analyzed 11,796 non-emergency call
recordings and developed Auto3111, the first automated sys-
tem to handle 311 non-emergency calls, which (1) effectively
and dynamically predicts ongoing non-emergency incident
types to generate tailored case reports during the call; (2)
itemizes essential information from dialogue contexts to com-
plete the generated reports; and (3) strategically structures
system-caller dialogues with optimized confidence. We used
real-world data to evaluate the system’s effectiveness and de-
ployability. The experimental results indicate that the system
effectively predicts incident type with an average F-1 score
of 92.54%. Moreover, the system successfully itemizes crit-
ical information from relevant contexts to complete reports,
evincing a 0.93 average consistency score compared to the
ground truth. Additionally, emulations demonstrate that the
system effectively decreases conversation turns as the utter-
ance size gets more extensive and categorizes the ongoing
call with 94.49% mean accuracy.

Introduction
Emergency and non-emergency response systems are essen-
tial services provided by local governments and critical to
protecting lives, the environment, and property. While 911
is primarily used for emergency services, 311 is a non-
emergency phone number that people can call to find infor-
mation about municipal services, make complaints, or re-
port problems like stolen property, road damage, etc. Both
emergency and non-emergency calls are operated by the
Department of Emergency Communication (DEC) in most
cities. DECs across the nation receive an overwhelmingly
high number of calls, with the national yearly average of
911 calls being close to 240 million (NYC911 2022; Ma
et al. 2019). The growing use of response systems comes at
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1Code and Demo: https://github.com/AICPS-Lab/Auto311

a time when local governments face increasing pressure to
do more with fewer resources. Indeed, the number of local
government employees in the United States has shrunk by
nearly 5% in 2021 (Saxon et al. 2022), and a large propor-
tion of counties and municipalities anticipate a significant
general fund shortfall as the United States transitions out of
the COVID pandemic (Afonso 2021).

To mitigate this issue, we introduce Auto311, the first
automated system to handle 311 non-emergency calls.
Auto311 features two key components: incident type detec-
tion and information itemization. It identifies probable in-
cident types from ongoing calls and dynamically generates
and updates case reports accordingly. Simultaneously, these
reports direct the information itemization module to gather
necessary information, streamlining the process.

Previous works have aimed to optimize (non-)emergency
management (Sun, Bocchini, and Davison 2020; Wex et al.
2014; Manoj and Baker 2007; Ma et al. 2021a; Ma,
Stankovic, and Feng 2021, 2018; Chen et al. 2008). How-
ever, most of those works focus more on the emergency
resource allocation after one case report is placed, for ex-
ample, route optimization for ambulances and response cen-
ter localization for faster responses (Mukhopadhyay et al.
2022). Although other available could frameworks like
AWS’s Lex2 and Google’s DialogFlow3 can set up auto-
mated dialogue service within a few hours, they require clear
and relatively fixed dialogue charts to guide the conversa-
tion. When it comes to non-emergency call handling, leaving
alone privacy and safety issues brought by online solutions,
most incident types have unique dialogue charts compared to
others, making it unrealistic to separately handle the conver-
sation for each incident type. However, Auto311, at a system
level, takes full advantage of the emitted confidence scores
of each component to strategically optimize the dialogue.

However, developing Auto311 poses some key chal-
lenges. First, unlike plenty of work that has been done
to solve text classification problems (Kowsari et al. 2019;
Mirończuk and Protasiewicz 2018; Minaee et al. 2021; Ag-
garwal and Zhai 2012) with outputting the most likely one
category in the end, the incident prediction in this task has
to cope with calls involving multiple incident types instead,

2AWS Lex: https://aws.amazon.com/lex/
3Diagflow: https://cloud.google.com/dialogflow?hl=en
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see Section Motivating Study for more details. Second, al-
though measuring confidence in machine learning models
has become more and more popular recently, refer to Sec-
tion Related Work for more details, there still lacks an ef-
fective method to measure the confidence score behind the
model outputs in a textual format. Lastly, although pre-
trained models yield satisfying performance on datasets with
general purposes, e.g., Bert (Devlin et al. 2018) on SQuAD
(Rajpurkar et al. 2016), Auto311 has to align with more task-
specific data and goals under the non-emergency call han-
dling scope. We summarize our contributions as follows:
• We annotate and analyze 11,796 authentic audio record-

ings of non-emergency calls.
• We build Auto311, the first confidence-guided automated

system to handle non-emergency calls by navigating
the conversation with optimized confidence, dynamically
predicting incident type, and generating reports with key
information.

• We evaluate the performance of Auto311 using real-
world recordings of non-emergency. It achieves an aver-
age F-1 score of 92.54% on the incident type prediction
and an average score of 0.93 for information itemization.

• We emulate the usage of Auto311 using recordings from
our dataset and analyze Auto311’s system-level impacts.
Auto311 dynamically adjusts to shifting incident types,
reduces follow-up conversations, and yields an overall
average accuracy of 94.49% for categorizing the emu-
lated call utterances.

Motivating Study
We annotate and analyze 11,796 real-world recordings of
non-emergency calls, and make two important observations.

Unintentional Additional Information Examination of
audio transcriptions indicates callers tend to provide supple-
mentary details beyond the dispatcher’s specific inquiries.
We found that 72% of callers offer extra information, ex-
ceeding the question’s scope in our dataset. Notably, this ad-
ditional information can enhance the precision and compre-
hensiveness of the emergency response system. See the ex-
ample below with the caller’s personal information removed:

Dispatcher: Metro Nashville Police, Fire, and Medical,
what is the location of your emergency? Caller: Oh, I’m not
sure if this is an emergency. I am #name, #phone number.
The address is #address. It’s the King Buffet. I saw a cus-
tomer out in the parking lot smoking crackpipes in front of
all the customers.

In this conversation turn, although the dispatcher only in-
quires about location, the caller provides additional details
like name, phone number, and suspicious activity, suggest-
ing a drug-related case. Strategically leveraging such extra
information could optimize emergency response conversa-
tions by proactively addressing potential follow-up ques-
tions, thus streamlining the interaction.

Shifting and Multiple Incident Types Call recordings
show that ongoing incidents mentioned by callers occasion-
ally encompass multiple incident types (at a rate of 38.27%).
Callers also tend to modify incident types as they uncover

more details. For instance, phrases like “someone busted
my car and my wallet is gone” indicate two incident types
– damaged and lost stolen property. Similarly, in “I saw a
car illegally parked... oh, wait, it’s abandoned because the
bumper is off and rusted,” the caller initially reports illegal
parking, then recognizes it as an abandoned vehicle based
on new details. This underscores the need for our system to
recognize various incident types concurrently and adapt to
evolving conversations.

Overview of Auto311
Auto311 is designed to automatically handle non-emergency
calls by engaging in interactive conversations with callers.
An outline of our system’s structure is shown in Figure 1.
The system comprises five key components: the conversa-
tional interface for interacting with callers, the handover
control to transfer calls to human operators if needed, the in-
cident type prediction module to identify probable incident
types, the information itemization module to organize details
in case reports, and the confidence-guided report generation
and dialogue optimization module for generating informed
reports and optimizing subsequent conversations using con-
fidence guidance.

Figure 1: Auto311 in Emergency Response

At runtime, as shown in Figure 2, when a caller initiates
contact, the conversational interface starts the dialogue with
opening questions, collecting essential information like the
caller’s name and incident location. Each response from the
caller forms an utterance. Subsequently, the handover con-
trol function evaluates whether human operator intervention
is required for the call. The call proceeds to subsequent mod-
ules only if the handover is not needed. At the same time,
the incident type prediction module forecasts the most likely
incident type(s) for report generation, while the informa-
tion itemization module provides potential details from the
caller’s utterance to fill the report’s sections. Additionally,
the confidence-guided report generation and dialogue opti-
mization module constantly monitors confidence scores to
ensure the report is filled with high confidence, thereby op-
timizing follow-up conversations.

Importantly, the case report referred to here differs from
the question list within the conversational interface. The
question list stores upcoming inquiries for the interface,
while the case report shapes the subsequent dialogue by up-
dating the question list with its incomplete sections after
each conversation turn.

Conversational Interface
The conversational interface supports both voice and text
inputs. Employing state-of-the-art audio transcription tools,
notably the OpenAI Whisper model (OpenAI 2022), this
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Figure 2: Confidence-guided System Design

interface adeptly transforms speech into text, accommodat-
ing a range of accents. For text-to-speech functionality, we
harness advanced audio generation tools like the Suno-AI
Bark model (suno-ai 2023), acclaimed for producing real-
istic voices within a lightweight model framework. Beyond
speech-to-text and text-to-speech conversion, the interface
engages in conversations using a dynamically updated ques-
tion list. This list determines the query sequence and guides
the interface’s speech-to-text conversion process.

Always-on Handover Control
The handover control module remains active throughout
runtime, redirecting calls to human operators when neces-
sary. Collaborating with DEC, we identify specific scenar-
ios that activate this module: (1) downstream module ex-
ceptions, like uncertain information; (2) caller’s repeated re-
quest for human interaction; (3) proactive alerts for potential
urgency. The first case is managed within system actions.
For example, when Auto311 seeks clarification due to un-
certain details, it limits such queries to three turns. Exceed-
ing this threshold triggers exceptions and activates handover
control. Addressing the other two cases, we develop an in-
terpretable rule-based detection mechanism, prioritizing in-
terpretability and control. Using Latent Dirichlet Allocation
(LDA) (Blei, Ng, and Jordan 2003), we curate a sensitive
word list through manual review. Our approach combines
natural language processing (NLP) features (Bird, Loper,
and Klein 2009), such as stemming, lemmatization, part-of-
speech tags, and shallow parsing, with custom patterns to
establish rules activating handover control, thus ending sys-
tem interaction. More details are available in the appendix.
Note that patterns and sensitive words are not exhaustive, al-
lowing future expansion of trigger conditions. However, the
broader process is beyond this paper’s scope.

Incident Type Prediction
The incident type prediction module utilizes contextual in-
formation from previous caller utterances. The module takes
the overall context, covering all prior utterances as input.
Since a context can involve multiple incident types, we apply
a multi-layer hierarchical structure and bootstrap-like proce-
dure for classification. This tracks the possibility of the call
belonging to each incident type (see Confidence-guided Sys-
tem Design for details). The hierarchical structure and itera-
tive procedure enable the prediction module to handle multi-
ple incident types per call using full conversational context.

Information Itemization
The information itemization module completes empty case
report sections by quoting the caller’s utterances. This
involves narrative fields seeking explanatory details and
yes/no fields confirming facts. For narratives, we lever-
age extractive question-answering frameworks - the blank
fields are inputs, and outputs quote relevant caller utterances.
Yes/no fields become binary classification, predicting yes or
no from the last utterance. Unlike incident prediction using
all contexts, itemization considers only the latest utterance.

Confidence-guided Report Generation and
Dialogue Optimization
This module updates the report and optimizes dialogues as
the conversation progresses. See technical details in Section
Confidence-guided System Design.

Confidence-guided System Design
This section delves into the technical aspects of confidence
guidance within Auto311. Firstly, we explain the method to
derive confidence scores from the machine learning models.
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Secondly, we elucidate the purpose of the generated confi-
dence scores within the workflow.

Confidence Measurement
We define confidence as consistency over multiple trials
with the same inputs. We leverage Monte Carlo Dropout(Gal
and Ghahramani 2016; Ma et al. 2021b) to generate the
confidence prediction. Specifically, dropout was set as ac-
tive at test time and assesses consistency across trials to ob-
tain scores. Preset thresholds determine if outputs are confi-
dent - meeting or exceeding the threshold means confident.
Auto311 applies machine learning models to handle two ma-
jor tasks component-wisely: incident type prediction and in-
formation itemization. Here we detail Auto311’s approach
to measuring confidence.

Confidence in Incident Type Prediction To address po-
tential multiple incident types within a call, we employ a
multi-layer hierarchy structure coupled with a bootstrap-like
process. The initial layer of this structure involves training a
neural network to assess if the present context corresponds
to the most common incident type. Subsequently, the sec-
ond layer trains another neural network to determine if the
context aligns with the second most frequent incident type,
excluding the previously identified type. This pattern con-
tinues for subsequent types. As a result, (1) the structure can
identify all possible incident types within a call; (2) each cat-
egory operates independently, facilitating future adjustments
based on new data or expansion to more categories. At run-
time, we establish confidence scores by measuring consis-
tency across output distributions for the same input, utiliz-
ing active dropout to quantify prediction uncertainty. The hi-
erarchical cascade structure adeptly handles multiple types,
while confidence scoring measures prediction certainty.

Confidence in Information Itemization Regarding tex-
tual outputs for information itemization, determining confi-
dence necessitates a consistency assessment between texts.
Traditional text comparison methods often prioritize aspects
like edit distances and length. See details in Related Work.
However, our collaboration with DEC underscores the value
of succinct outputs with ample details for case reports. Con-
sider the scenario where the module generates “on the 2525
West End Ave” while the ground truth is “2525 West End
Ave.” Traditional methods yield low scores, such as 0.5 from
BLEU-bigram. However, when dispatchers gather incident
location details, these outputs should exhibit high consis-
tency due to matching location keywords and similar se-
mantics. To address this, we adopt a new approach. For
keywords, we employ an unsupervised state-of-the-art key-
word extractor (Campos et al. 2018) to extract key segments
from model outputs. The overlap between keyword segment
lists is calculated. For semantics, we utilize SentenceBERT
(Reimers and Gurevych 2019) to project each output into
a latent space, assessing the similarity between represented
textual string lists. The overall score, calculated via Polyak
averaging (p=0.2), integrates keyword overlaps and embed-
ding distances. This metric enables us to gauge consistency
and generate a confidence score.

Report Generation and Dialogue Optimization

Auto311 is designed to be confidence-guided. With maxi-
mum confidence guaranteed, it (1) dynamically updates case
reports at every turn of the conversation and (2) guides the
follow-up conversation based on the generated case report.
See Figure 2 for more detailed system logic.

Confidence drives precise report completion via informa-
tion itemization. Using the latest caller utterance, it pop-
ulates report details. Textual output confidence is deter-
mined through text comparison. As in Figure 2, uncertainty
(conf1 ≤ λ1) prompts Auto311 to seek clarification for
guiding questions, capped at three turns before handover
control. Confidence (conf1 > λ1) skips further dialogue op-
timization for filled fields. Confidence also aids the incident
type prediction module’s adaptability and report efficiency.
Using complete utterance context, it predicts likely incident
types. As shown in Figure 2, low confidence (conf2 ≤ λ2)
excludes uncertain predictions from reports. High confi-
dence (conf2 > λ2) incorporates predictions. Systemically,
prediction persists each turn, even post early confident iden-
tification. This iterative process tracks trends in types and
scores, updating reports on confidence drops (conf2 ≤ λ2).
Confidence-driven adaptation detects and responds to evolv-
ing incident types during calls, further updating reports.

Previous component confidence scores further optimize
future dialogues. In the case study illustrated in Figure 3,
when a new caller utterance is received, Auto311 identi-
fies fields to complete in the case report (e.g., incident-
address, caller-name, caller-phone). High-confidence com-
pletion marks them as done. Unfinished fields guide subse-
quent questions (e.g., requesting a callback number if caller-
phone is missing). Concurrently, incident type is confirmed
if confidence surpasses a set threshold (0.85 in Figure 3).
With the type established, specialized fields are identified
(e.g., property description for lost/stolen cases), updating the
report. Auto311 then prioritizes shared general fields (e.g.,
property description, time, ownership status), streamlining
dialogue to focus initially on universal details. This avoids
asking about the damage nature before finalizing the inci-
dent type, which applies only to damaged property cases.
This optimization confirms type(s) with more context. In the
example, the next turn’s details indicate a shift to ”lost/s-
tolen” only. The report is updated accordingly. The dialogue
concludes when all report fields are complete. Confidence
scoring thus optimizes the flow by collecting universal de-
tails first and adapting to emergent incident types.

Evaluation
Experiments assess the performance of (1) confidence-
guided incident prediction, (2) confidence-guided itemiza-
tion, and (3) the overall system. Our dataset includes 11,796
non-emergency calls from the DEC in Nashville, TN. Met-
rics for incident type prediction are precision, recall, F-1,
and accuracy. The newly introduced text comparison method
evaluates itemization module outputs. The experiments were
run on a machine with 2.50GHz CPU, 32GB memory, and
Nvidia GeForce RTX 3080Ti GPU.
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Figure 3: A General Case Study in Confidence Guidance

Minor
Crash

Lost
Stolen

Aggressive
Drivers

Check
Welfare

Damaged
Property

Noise
Violation

Roadway
Hazard

Abandoned
Vehicles

Drug-Pros
Activity

LSTM 56.47% 0.00% 53.85% 82.35% 0.00% 0.00% 63.83% 69.23% 46.15%
CNN 75.86% 85.71% 72.72% 81.08% 40.00% 44.44% 80.00% 62.07% 25.00%

RCNN 90.57% 82.35% 61.54% 82.35% 76.92% 83.33% 86.67% 26.09% 25.00%
RNN 63.33% 40.00% 52.71% 73.33% 44.44% 83.33% 74.29% 28.57% 26.67%

Self-Attn 88.46% 88.89% 66.67% 87.50% 66.67% 50.00% 81.25% 9.52% 35.29%
Attention 91.69% 62.50% 50.00% 53.66% 54.55% 60.00% 81.08% 66.67% 62.50%

Bert 95.04% 91.50% 92.31% 90.00% 88.89% 83.33% 90.91% 94.12% 92.40%
Auto311 95.71% 93.00% 93.75% 90.00% 94.12% 83.33% 90.91% 94.12% 92.40%

Table 1: Averaged performance (F-1) over 30 trials on incident type prediction

Confidence-guided Incident Type Prediction
This section aims to evaluate Auto311’s performance on
incident type prediction. Baselines use various neural net-
works like LSTM, CNN, RCNN, Self-Attention, Bah-
danau’s Attention, and BERT (Hochreiter and Schmidhu-
ber 1997; Kim 2014; Lai et al. 2015; Vaswani et al. 2017;
Bahdanau, Cho, and Bengio 2014; Wolf et al. 2019)(see Ta-
ble 1). We include 9 categories due to the page limit (full
results including standard deviation stats in Appendix). Ex-
periments comprehensively assess prediction with different
model architectures on real call data.

Analysis shows traditional models like CNN perform
poorly, with just 62.99% average F-1 on these 9 types. Tran-
scription diversity from varied callers increases task com-
plexity (e.g., different speaking habits), challenging learn-
ing without prior knowledge. BERT surpasses other mod-
els, with 92.54% average F-1 and 100% max across all 11
types. Leveraging BERT’s pre-trained weights and confi-
dence guidance, Auto311 further improves BERT F-1 from
91.50% to 93.00% for lost/stolen cases. Results demonstrate

prediction difficulties due to call diversity and Auto311’s en-
hancements over BERT using confidence scoring.

In summary, based on the results, Auto311 effectively dis-
patches the ongoing call to the given incident types. In terms
of F-1 score, the BERT backend has the most competitive re-
sults. Confidence guidance further improves performance.

Confidence-guided Information Itemization
This experimental setup assesses the performance of the
information itemization module of Auto311 using various
backends (DistilBERT, BERT, RoBERTa, LongFormer, Big-
Bird (Sanh et al. 2019; Beltagy, Peters, and Cohan 2020; Za-
heer et al. 2020)) and benchmarks (SQuAD, CUAD, Trivi-
aQA (Rajpurkar et al. 2016; Rajpurkar, Jia, and Liang 2018;
Hendrycks et al. 2021; Joshi et al. 2017)) and compares it to
large language models (LLMs) like GPT3.5 and 44, with re-

4Prompt: “I will provide context and a set of questions. Please
respond to the questions using exact quotes from the context. Your
answers should be concise and comprehensive. Context: ...; Ques-
tion Set: ...”
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sults in Table 2. We utilize our consistency score in this eval-
uation. Two types of data samples are evaluated for perfor-
mance: random test samples from archived data (collected
by the end of 2022) and the latest data samples (collected
from the beginning of 2023) from the call center. Recogniz-
ing that city-related information evolves (e.g., new places,
activities), we simulate Auto311’s usage under knowledge
evolution by assessing performance on the latest data sam-
ples. Furthermore, we assess Auto311’s performance in in-
formation itemization when queried with various fields, en-
compassing basic fields, less specific fields, and more spe-
cific fields. Basic fields include essential data like incident
location, less specific fields cover descriptors like vehicle
and human/suspect descriptions, and more specific fields
pertain to incident-specific details such as the timing of the
incident (DamagedProperty-when).

Archived (test) Latest (runtime)
DistilBERT-SQuAD2 0.5546 0.5330

BERT-SQuAD2 0.2422 0.2791
RoBERTa-SQuAD2 0.1172 0.2581
RoBERTa-CUAD 0.2188 0.2378

LongFormer-TriviaQA 0.3260 0.1424
BigBird-TriviaQA 0.5289 0.5015

GPT3.5 (June 2023) 0.6343 0.6529
GPT4 (June 2023) 0.6578 0.6264

Auto311 0.9329 0.8605

Table 2: Performance on information itemization

Table 2 yields the following insights: (1) pretrained model
limitations: DistilBERT and BERT struggle in current non-
emergency dispatch scenarios, performing notably lower
than other methods. For instance, BERT pretrained on
SQuAD achieves only 0.2422 on the test batch; (2) LLMs
vs. Auto311: Despite LLMs’ general NLP success, Auto311
consistently outperforms them on both datasets. For exam-
ple, Auto311’s performance surpasses GPT3.5 by 47% on
archived samples and 41% on the latest samples; (3) adap-
tation to evolving knowledge: Auto311’s 37% performance
lead over GPT4, despite a minor drop, underscores its profi-
ciency in capturing evolving local city knowledge.

Table 3 highlights how confidence guidance enhances
itemization across field types, e.g., improving consistency
from 0.8255 to 0.9164 for aggressive driver behavior de-
tails. Auto311 achieves 100% recall for binary questions,
correctly predicting traffic blockage and in-person meetup
needs. In real-world non-emergency scenarios, prioritizing
high recall ensures comprehensive coverage of potential re-
quests. Results showcase confidence scoring’s role in opti-
mizing itemization, particularly for critical binary fields.

In summary, the results underscore the difficulty of the in-
formation itemization task for both pretrained models and
existing LLMs. Auto311’s fine-tuning on our dataset effec-
tively integrates task-specific knowledge, leading to com-
petitive performance surpassing LLMs. Moreover, through
runtime emulation, Auto311 adapts to evolving city knowl-
edge, indicating potential for long-term deployment. Addi-
tionally, confidence guidance empowers Auto311 to enhance

the completion of various case report fields.

System Level Performance
The subsequent experiments focus on assessing Auto311’s
system-level performance. Due to data limitations, audio
recordings only capture fixed dialogue paths, preventing di-
rect interaction with the same caller in identical call scenar-
ios. Instead, we emulate conversations by merging utterance
segments. This emulation facilitates evaluating Auto311’s
capabilities in two aspects: (1) assessing its management of
changing incident types and (2) analyzing the optimization
of follow-up dialogues during emulation.

Adjustments to Shifting Incident Types We evaluate
Auto311’s adaptability to shifting incident types. Using
common shifts observed in the dataset (see Figure 4), we
emulate conversations where the caller firmly states type A
(blue lines and grey regions), then adds type-specific details
for type B (orange lines and regions), indicating a type shift.
These experiments assess Auto311’s real-time adaptation to
emergent types in emulated interactions.

Figure 4: Confidence Changes in Shifting Incident Types

From Figure 4, we observe that first, Auto311 handles
all four major shifting situations in three future turns with
more type-specific descriptions being fed as input to the in-
cident type prediction module. Second, with the introduction
of confidence guidance, Auto311 adjusts the prediction re-
sults to align with the shifting trend dynamically.

In summary, Auto311 adeptly handles shifting incident
types in simulations, updating its understanding and creat-
ing optimized reports with more specific information over 3
follow-up turns.

Optimizations to Upcoming Dialogues We emulate
Auto311 usage by composing caller utterances and assessing
the relationship between saved turns and utterance size (see
Figure 5). Utterance size represents the count of past seg-
ments included. Across 100 emulations per size, we monitor
saved turns and categorization accuracy. These experiments
evaluate Auto311’s ability to optimize dialogues through ac-
cumulated context and to make type predictions effectively.
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Basic Fields Less Specific Feilds
Inc-Loc Caller-Name Caller-Phone Veh Desc Human/Suspect Desc Prop Desc

w/o Conf Guide 0.9035 0.9478 1.0000 0.8538 0.9678 0.9512
w/ Conf Guide 0.9631 0.9962 1.0000 0.9104 1.0000 1.0000

More Specific Fields

DamgProp
-When

AggDriver
-Behavior

CheckWel
-Relation

MinorCrash
-BlockTraffic (Y/N)

CheckWel
-InpersonMeet (Y/N)

P R F-1 P R F-1
w/o Conf Guide 0.9045 0.8255 0.9023 66.67% 100.00% 80.0% 83.33% 83.33% 83.33%
w/ Conf Guide 1.000 0.9164 0.9855 88.89% 100.00% 94.12% 83.33% 100.00% 90.91%

Table 3: Auo311’s performance on different fields

Longer composed utterances contain more itemizable de-
tails. The blue line indicates Auto311’s saved turns dur-
ing emulation, while the light blue region represents to-
tal information provided. The average and maximum real-
world utterance lengths are denoted by green and red dashed
lines. Emulation demonstrates Auto311 effectively using ad-
ditional information in caller utterances to minimize follow-
up turns. Furthermore, Auto311 achieves a 94.49% accu-
racy (not shown in Figure 5) when handling composed ut-
terances.

Figure 5: Emulated Usage of Auto311

In summary, these emulations show our solution, at a sys-
tem level, not only piratically optimizes future conversations
by utilizing additional information provided in caller utter-
ances but also effectively categorizes the potential incident
types with an overall accuracy of 94.49%.

Related Work
Question Answering and Large Language Models. In
recent years, advanced question-answering systems have
evolved across various scenarios (Chen et al. 2023, 2022b,a;
Diefenbach et al. 2018). Black-box abstractive QA systems
like mBART and T5 (Chipman et al. 2022; Raffel et al.
2019) lack output control. Although large language mod-
els, like Claude5, especially for QA dialogues (Brown et al.
2020; Ouyang et al. 2022), gain attention, we still argue that
prompt-based models are unsuitable for emergency response

5Anthropic Claude: https://claude.ai

due to compromised input preservation and advocate for a
transparent, controllable offline approach prioritizing relia-
bility and decision transparency.
Confidence Scores in Machine Learning. While signifi-
cant efforts have been dedicated to assessing the model con-
fidence (Poggi, Tosi, and Mattoccia 2017; Hüllermeier and
Waegeman 2021; Poggi and Mattoccia 2016), we redefine
confidence as internal consistency across identical inputs,
deviating from common definitions. For text classification
like call dispatching, this consistency is seen in distribu-
tional shifts. However, quantifying and analyzing output text
changes across domains remains challenging in current in-
formation itemization setups. Most open-source QA mod-
els provide confidence scores for single runs, like Hugging-
Face’s Bert-QA (Face 2022), which measures confidence in
a single trial through simple multiplication of softmax dis-
tributions. Hence, a robust confidence measurement mecha-
nism for Auto311 in incident type prediction and informa-
tion itemization is crucial.
Metrics for Text Comparison. Many text comparison
metrics are unsuitable for Auto311’s information itemiza-
tion. For our goal of concise, detailed outputs that allow
deviations from the ground truth, metrics like Damerau-
Levenshtein distance (Damerau 1964) and BLEU (Papineni
et al. 2002) fall short. N-gram metrics like ROUGE (Lin
2004) and WER lack semantic understanding. Although
end-to-end metrics like embeddings and learned metrics
(Reimers and Gurevych 2019; Cer et al. 2018; Artetxe et al.
2019) consider semantics, they misalign with our criteria
and lack interpretability and generalization in emergency re-
sponse. Thus, a metric that gauges key information coverage
from user utterances while meeting dispatch center require-
ments becomes essential.

Summary
In this paper, we introduce Auto311, the first automated
system tailored for non-emergency call management. Our
evaluations with real-world and emulated interactions show
strong performance in (1) incident type prediction, (2) case
report generation, and (3) enhanced follow-up conversations
using confidence-based guidance. In future work, we will
enhance Auto311 and deploy it to handle non-emergency
calls in the real world. By reducing the burden through non-
emergency callers, residents in critical need of assistance
through 911 will receive a fast and effective response.
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