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Abstract

Accurate prediction of water quality and quantity is crucial
for sustainable development and human well-being. How-
ever, existing data-driven methods often suffer from spatial
biases in model performance due to heterogeneous data, lim-
ited observations, and noisy sensor data. To overcome these
challenges, we propose Fair-Graph, a novel graph-based re-
current neural network that leverages interrelated knowledge
from multiple rivers to predict water flow and temperature
within large-scale stream networks. Additionally, we intro-
duce node-specific graph masks for information aggrega-
tion and adaptation to enhance prediction over heterogeneous
river segments. To reduce performance disparities across river
segments, we introduce a centralized coordination strategy
that adjusts training priorities for segments. We evaluate the
prediction of water temperature within the Delaware River
Basin, and the prediction of streamflow using simulated data
from U.S. National Water Model in the Houston River net-
work. The results showcase improvements in predictive per-
formance and highlight the proposed model’s ability to main-
tain spatial fairness over different river segments.

Introduction
Freshwater plays a critical role at the intersection of global
economic, food, and energy services (Konar et al. 2011;
Hoekstra and Mekonnen 2012; Carr et al. 2013), but con-
tinues to suffer from increasing demands for water-based
ecosystem services and a shifting climate. The assessment
of water quality and water quantity in freshwater ecosystems
is critical for the future sustainability of the planet and hu-
man well-being. Accurate predictions of seasonal changes,
temperature trends, and flow variations can help support de-
cision and policy making on water management (e.g., reser-
voir operations), maintain the desired habitat for aquatic life,
and detect disasters (e.g., floods and droughts) at an early
stage. This work is focused on predicting water temperature
and streamflow in stream networks.

Given the importance of this problem, researchers from
multiple domains, including hydrology, meteorology, and
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environmental engineering, have been developing physics-
based models to simulate water dynamics at all scales
(Markstrom 2012; Regan et al. 2018), but these models are
only approximations of reality due to incomplete or missing
knowledge of certain processes or excessive complexity in
modeling these processes (Gupta and Nearing 2014; Lall
2014). Recently, graph neural networks (GNNs) have been
widely adopted as a data-driven solution to model stream
networks (Jia et al. 2021b; Moshe et al. 2020; Sun et al.
2021; Topp et al. 2023; Chen, Zwart, and Jia 2022; Jia et al.
2021a; Chen et al. 2021; Jia et al. 2023) as they can learn
to capture complex interactions amongst stream segments
(e.g., through mass advection and diffusion).

Despite promising results demonstrated by initial tests at
small scales, existing GNN methods are often spatially bi-
ased and limited in their accuracy when applied to mod-
eling large-scale stream networks due to several reasons.
First, data are highly heterogeneous due to spatial variation
of stream characteristics (e.g., soil properties, channel ge-
ometry, and roughness), which are difficult to measure and
cannot be included in the features. Thus, the mapping from
input to the target variables can vary across different stream
segments. Moreover, the effect of water flows from upstream
to downstream segments can also be different. Second, water
temperature and streamflow observations are available for a
small subset of well-observed stream segments while other
segments have much less or no observations. Third, the data
can be noisy due to sensor-induced measurement errors and
limited spatial resolution of weather data. Due to these rea-
sons, existing models often compromise the performance of
certain sites in exchange of better performance at other sites.
Such biases may unintentionally induce unfair distribution
of social resources (e.g., subsidies and assistance) and treat-
ment with respect to environmental policies, especially for
low-income and remote regions where no gauging stations
have been built or fewer field studies have been conducted
to collect high-quality data. Thus, addressing this disparity
in model performance is essential, as it substantially affects
strategic decisions in water resource management and eco-
logical policy-making, particularly in enhancing support for
regions with limited data.
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Prior works have investigated different approaches to
enforce the fairness for general machine learning (ML)
models (Kamishima, Akaho, and Sakuma 2011; Alasadi,
Al Hilli, and Singh 2019; Zhang and Davidson 2021) and
GNNs (Bose and Hamilton 2019; Kang et al. 2020; Tang
et al. 2020). Many of these works focus on ensuring the bal-
ance of output distribution (e.g., equal opportunity (Hardt,
Price, and Srebro 2016)) over different protected groups,
which is not suitable for our target problem. Some other
works use regularization-based methods to reduce the per-
formance disparity (Kamishima, Akaho, and Sakuma 2011;
Kang et al. 2020), but the regularization may intentionally
degrade the performance for certain groups to pursue better
overall balance. Recently, researchers have also investigated
preserving fairness on GNNs by considering the connec-
tions amongst different nodes (Tang et al. 2020), but these
approaches do not fully capture the heterogeneity in (i) the
mapping from input to the target variable, and (ii) the effect
each stream segment receives from its upstream segments.

To address these issues, we propose Fair-Graph, a new
fairness-preserving method on graph models that mitigates
model bias over space and enhances performance on individ-
ual nodes using two learning strategies. First, we introduce
a centralized coordination strategy to adjust training priori-
ties over different stream segments, as inspired by previous
works on spatial fairness (Xie et al. 2022; He et al. 2022,
2023). However, increasing the priority for some stream seg-
ments may not necessarily improve their performance due
to the limited data quantity and data quality, and may de-
grade performance for other regions. Hence, we create a
constraint-aware priority adjustment strategy by incorporat-
ing a performance upper-bound for each stream segment. To
further address the data heterogeneity and improve the per-
formance on individual nodes, the Fair-Graph method will
extract node-specific patterns in aggregating the information
from neighboring nodes and making predictions from graph-
based node embeddings. Specifically, we propose to learn
two graph masks in the aggregation phase and the adaptation
phase of the graph learning. The aggregation mask deter-
mines how each stream segment is affected by other nearby
segments while the adaptation mask selects the observations
from other segments and uses them to jointly adapt the graph
model to each individual stream segment. The constraint-
aware priority adjustment strategy and the graph masking
strategy will be coupled together in the training process. As
a result, the GNN model will learn node embeddings that
maximize the fairness after learning customized aggregation
and adaptation using graph masking.

Our experiments demonstrate the superiority of the pro-
posed method over a diverse set of baselines in enhancing
the prediction and preserving the spatial fairness on two
large-scale heterogeneous river basins, the Delaware River
Basin and the Houston River network. We also show that the
aggregation mask and adaptation mask can extract meaning-
ful patterns on the graph of stream networks.

Problem Formulation and Preliminaries
Problem definition: The objective of this work is to de-
velop a robust model for capturing the dynamics of water

temperature and streamflow in river networks. Specifically,
we consider N river segments within a connected river net-
work. Each river segment, indexed by i, is associated with
a set of input features Xi observed at various time steps
(e.g., dates), represented as {x1i , x2i , ..., xTi }. These input fea-
tures include variables describing the environmental con-
ditions, such as daily average solar radiation, air tempera-
ture, precipitation, and wind speed specific to each segment.
Additionally, observed target variables Yt

i (i.e., water tem-
perature or streamflow) are available for certain time steps
t ∈ {1, ..., T} and certain segments i ∈ {1, ..., N}.
Graph representation of stream networks: Graphs have
been commonly used to represent multiple stream segments
and their interactions in a stream network (Sun et al. 2021).
Formally, a graph is denoted by G = {V, E} where the node
set V contains the set of river segments, the edge set E
represents the connections between stream segments, e.g.,
from upstream to downstream segments. The edges can also
be weighted, e.g., based on the inverse of stream distance
between two river segments. The edge weights are stored
in a node adjacency matrix A. The use of GNNs on this
graph structure enables information propagation to facilitate
predictive learning in two ways: (i) when predicting each
stream segment, GNN aggregates useful information from
other segments that contributes to the prediction of target
variables, e.g., streamflow can be affected by rainfall at up-
stream river segments. (ii) GNN models can facilitate the
information sharing among well-observed stream segments
and poorly observed stream segments.
Spatial fairness: Here we introduce the spatial fairness
measure Mfair, which is defined on a spatial partitioning
P (Xie et al. 2022). The partitioning P splits a study region
into multiple partitions, i.e., different stream segments, as
P = {p|∀p ∈ P}. The fairness over a spatial partitioning P
aims to ensure the balance of model performance over all the
space partitions p that are contained in P . First, we consider
a metric MF used to evaluate the performance of a model F ,
e.g., root mean squared error (RMSE). Another key variable
needed for the fairness definition is EP , which measures the
mean model performance over all the partitions. This is im-
plemented as the overall performance of a base model FΘ0

over all the partitions, as EP = MF (FΘ0
, {∪p|∀p ∈ P}),

where parameters Θ0 are trained without any consideration
of spatial fairness. Intuitively, if the model performance on
a specific partition p, i.e., MF (FΘ, p), has a large devia-
tion from the overall mean performance EP , the model FΘ

is potentially unfair across partitions. This can be formally
defined as Mfair(FΘ,MF ,P) =

∑
p∈P

d(MF (FΘ,p),EP)
|P| ,

where d(·, ·) is the absolute distance in our test.

Proposed Method
Model Architecture
We build an ML model architecture F for modeling the wa-
ter dynamics in river segments by capturing their spatial and
temporal dependencies (Fig. 1). For each stream segment,
its thermal status and water quantity change gradually based
on the current weather input and its historical state. We cap-
ture this temporal dependency by using a long short-term
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Figure 1: A diagram of the proposed model. For each node i and each time t, the long short-term memory (LSTM) network ex-
tracts an embedding hi,t. Then we apply a GNN to refine each time’s embedding by aggregating information from neighboring
nodes (highlighted in green), producing a new embedding zi,t. Finally, the fully connected layers output the prediction ŷt

i.

memory (LSTM) network layer, which generates the hid-
den presentation hi,t for each segment i at each time step t
by combining the current input xi,t and the previous LSTM
state and hidden representation hi,t−1.

The water temperature and streamflow at each river seg-
ment can also be affected by the water advected from up-
stream river segments. Hence, after gathering the hidden
representations for all the segments, we use L graph con-
volutional layers to capture the interactions between nearby
stream segments. Formally, the l-th layer of graph convolu-
tion can be expressed as follows:

z(l)i,t = g(l)a ([z(l−1)
i,t , a(l)

i,t ]; θ
(l)
a ), for l ∈ {1, ..., L},

a(l)
i,t = Pooling({z(l−1)

j,t , ∀j ∈ N (i)},Ai.),
(1)

where z(0)i,t = hi,t, N (i) is the set of neighboring river seg-

ments for i, and θ
(l)
a represents the parameters in the l-th

graph convolution layer. The latent representation a(l)i,t em-
beds the information from neighboring river segments, and
is obtained through a weighted pooling of embeddings from
the neighbors based on the weights from the adjacency ma-
trix A. We concatenate a(l)i,t with the last GNN layer’s em-

bedding of the target node z(l−1)
i,t before the transformation

using the function ga(·). In this work, we adopt the Graph-
SAGE method (Hamilton, Ying, and Leskovec 2017) to im-
plement the function ga(·). Finally, we stack fully connected
output layers to convert the aggregated embeddings zi,t to
the predicted output ŷi,t = go(z

(l)
i,t ; θo), where θo represents

the parameters in the output layers.
In the proposed method, we allow the output layers go

to be fine-tuned separately to each node while keeping the
LSTM and graph convolutional layers to be shared across
nodes. This adaptation process enables the model to differ-
entiate the behavior of different nodes. To fully capture the
data heterogeneity over stream segments, we discuss ways
to modify the function ga and go for different nodes using
graph masking.

Graph Masking for Addressing Data Heterogeneity

Here we introduce two graph masks to modify the aggrega-
tion process and the adaptation process, which aim to tackle
the performance disparity issue from (1) the data perspec-
tive, and (2) the model training perspective, respectively.

Aggregation neighborhood refinement: Edge weights
in aggregation inherently determine the influence between
connected river segments. However, they are often set uni-
formly (e.g., 0 or 1) or based on common distance metrics
but do not fully reflect physical characteristics that affect
the interactions amongst stream segments. For example, the
streamflow in one river segment could be affected by the
rainfall from multiple upstream segments, and their contri-
butions depend on both their distance to the target segment
and their stream characteristics (e.g., soil and groundwater
properties), which determines water flow velocity and the
conversion from rainfall to surface runoff. Due to the het-
erogeneous nature of stream characteristics, one challenge
is to determine which subset of neighbors contributes most
to the prediction on each stream segment.

Existing works on graph attention networks (Velickovic
et al. 2017) are based on the similar idea of learning node-
specific neighborhood but they rely on input data to pre-
dict attention weights on neighbors through a global func-
tion. This method remains limited in many spatial datasets as
many important physical characteristics that account for het-
erogeneity (e.g., groundwater, soil properties) can be miss-
ing from input data. To address this limitation, we intro-
duce a trainable aggregation mask Ma, which learns the
level of contribution of other nodes in the graph convolu-
tion process. The aggregation process (Eq. 1) then becomes
z(l)i,t = g

(l)
a ([z(l−1)

i,t ,
∑

j∈N (i) AijMa
ijz(l−1)

j,t ]; θ
(l)
a ). This ap-

proach is based on the assumption that the aggregation mask
is specific to each spatial location and remains static over
time as most stream characteristics are static or change very
slowly over time. Directly training the mask Ma can re-
define the neighborhood for the aggregation operation on
each entity separately based on its historical data and bet-
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ter capture the spatial heterogeneity.
Sample selection in adaptation: We consider adapting

the GNN model to each node by fine-tuning the parameters
in the output layers θo. However, this approach has limits in
adapting the model to many stream segments with limited
observations. To tackle this challenge, we propose to learn
an adaptation mask Ms to measure the degree of contribu-
tion made by different nodes to the adaptation process to a
target node i. The loss function for the adaptation process
to the node i thus becomes Ladp

i =
∑

j Ms
ijLsup(Xj , Yj),

where Lsup(Xj , Yj) denotes the standard supervised loss
on the labeled samples from the node j. Different from the
standard adaptation process that uses only the data from
each node for model fine-tuning, the adaptation mask helps
collect data from multiple nodes and use them jointly in
the adaptation process. We hypothesize that combining data
from multiple entities sharing similar mapping relations
X → Y can help mitigate the data scarcity issue on certain
nodes and improve the adaptation performance.

Training graph masks: In the training process, we first
initialize the model via global training, i.e., tuning the pa-
rameters θa and θo using the observations from all the nodes
and without using the adaptation (i.e., node-specific θo) and
graph masks. Then we split the observation data for each
node into training and validation sets, and update the graph
masks through a bi-level optimization process.

• Inner loop: In this stage, we fine-tune the model param-
eters (i.e., shared θa and node-specific θo) using training
data and the current graph masks. Specifically, for each
node, the model parameters are updated to minimize the
training loss based on the node’s training data and the cur-
rent graph masks. This helps the model refine its internal
representations to each node’s characteristics and better
grasp the complex relationships in the data.

• Outer loop: The outer loop evaluates the fine-tuned model
using the separate validation data. The loss on the valida-
tion data is used to guide the update of the graph masks.
Specifically, the graph masks are adjusted in a way that
minimizes the validation loss, encouraging the model to
focus on the most relevant connections between nodes.

This separation of inner and outer loops enables an itera-
tive refinement process, ultimately leading to the estima-
tion of adaptive graph weights that accurately reflect the un-
derlying relationships amongst the nodes in the graph. We
use the graph masks to fine-tune the model parameters, and
for nodes with no observations, we use the θo parameters
learned from the initial model.

Constraint-aware Priority Adjustment
Amongst existing fairness-enforcing methods, the most
common strategy is to incorporate additional fairness losses
as the term in the loss function (Kamishima, Akaho, and
Sakuma 2011; Zafar et al. 2017), e.g., L =

∑
i L

sup
i /N +

λ · Lfair, where
∑

i L
sup
i /N is the prediction loss (e.g.,

MSE loss) and λ is a scaling factor. Another popular strat-
egy involves incorporating additional discriminators during
training to penalize learned representations that may reveal

the identity of a group (e.g., gender) in an adversarial man-
ner (Alasadi, Al Hilli, and Singh 2019; Sweeney and Na-
jafian 2020; Zhang and Davidson 2021). However, these
fairness-preserving methods often lead to competition be-
tween the predictive performance Lpred and fairness Lfair.
As a result, the model often intentionally degrades the per-
formance for certain regions to pursue better overall balance.
Moreover, existing methods can still be affected by sparse
and imbalanced training samples.

Priority adjustment: To mitigate these concerns, we
propose a centralized coordination algorithm for enforc-
ing the fairness of the predictive performance over differ-
ent stream segments. The objective is to elevate the prior-
ity for regions with relatively poor predictive performance
while considering the performance constraint due to the
data quality and quantity in each segment. As inspired by
prior works (Xie et al. 2022; He et al. 2022, 2023), we
introduce a global referee to regularly evaluate the perfor-
mance disparity during the training process and identify the
stream segments that are under-represented by the current
predictive model F . Then the referee will adjust the learn-
ing rate for different stream segments based on their rel-
ative performance. In each iteration, the referee evaluates
the performance (e.g., RMSE) MF (i) on each river segment
i ∈ {1, ..., N}, and measures its deviation with the overall
performance M̄ . We then change the learning rate ηi for the
segment i as

ηi =
η′i − η′min

η′max − η′min

· ηinit,

η′i = max(MF (i)− M̄, 0),

(2)

where ηinit is the learning rate used to train model F ,
η′min = argminη′

i
{η′i | η′i, ∀i ∈ {1, ..., N}}, and η′max =

argmaxη′
i
{η′i | ∀i ∈ {1, ..., N}}. In the method description

we use RMSE as an example, for which the lower MF (i) in-
dicates better performance, but the proposed method can be
applied to other metrics (e.g., R-squared or Nash–Sutcliffe
model efficiency coefficient (NSE)) by slight modifications.

According to Eq. 2, if the performance MF (i) is worse
than the overall performance, its learning rate ηi will in-
crease relatively to other segments. As a result, the samples
in this segment will have a higher impact for training the
predictive model F . Moreover, all the learning rates after the
update are normalized back to the range [0, ηinit] to keep the
optimization process stable.

Constraint-aware adjustment: We assume there is a
performance upper-bound M∗

F (i) that can be achieved in
each segment by using any subset of training data from this
segment. Such a performance upper-bound exists because of
the data paucity or data quality issues in the segment. When
optimizing the spatial fairness, the referee needs to consider
both the current validation loss and the performance upper-
bound for each segment as the ignorance of the performance
upper-bound may lead to negative model training. For exam-
ple, for two segments i and j with their current performance
M∗

F (j) < M̄ < MF (j) < MF (i) ≈ M∗
F (i), the fairness

only driven algorithm may lower the priority on the segment
j or keep elevating the training priority on the segment i,
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even though this will not improve the performance on the
segment i. As a result, this may degrade the performance on
the segment j, i.e., increase MF (j).

To address this limitation, we propose to incorporate the
performance upper-bound in the coordination process, as

ηi =
η′i − η′min

η′max − η′min

· ηinit,

η′i = max(MF (i)−max( M̄,M∗
F (i) ), 0).

(3)

This helps ensure that the referee will not elevate training
priority for segments that have already achieved their per-
formance upper-bound as this may degrade the performance
for other segments.

In this work, we approximate the value of M∗
F (i) by the

maximum validation performance obtained from multiple
rounds of training with randomly selected subsets of train-
ing data. Specifically, we adopt a process similar to cross-
validation, dividing observed data across varying times and
locations into training and validation sets. Then we train and
evaluate standard GNNs, including segment-specific fine-
tuning, to establish the performance upper-bound. In the test,
we observe that most of the segments are unable to reach
the performance upper-bound. To bridge the performance
gap between these segments and the corresponding upper-
bound, we introduce a strategy to align the upper-bound to
be more reliable for the distribution of model performance
by M̃∗

F (i) = M∗
F (i) + (M̄ − M̄∗

F ), where M̄∗
F is the mean

of performance upper-bound.
Coupled graph masking and priority adjustment:

The priority adjustment will be used together with the graph
masking, to enable the model to pursue better performance
balance while allowing individual nodes to enhance its
performance. In the process of priority adjustment, we
freeze the parameters specific to each node’s output layers
and only update the shared parameters (LSTM+GNN). The
goal is to learn graph embeddings z so as to optimize the
fairness after the model is fine-tuned on each individual
node. Specifically, we perform regular training using
learning rates {ηi} assigned by the referee over data in all
individual river segments. Note that when we iterate over
each river segment in updating the model parameters, we
also combine the data samples from other segments, as
guided by the corresponding adaptation mask.

Experiments
Dataset
Stream water temperature prediction in the Delaware River
Basin (DRB): The DRB is an ecologically diverse re-
gion and a watershed along the east coast of the United
States that provides drinking water to over 15 million peo-
ple (Williamson et al. 2015). The dataset used in our eval-
uation is from the U.S. Geological Survey’s National Wa-
ter Information System (USGS 2016) and the Water Quality
Portal (Read et al. 2017). Observations at a specific latitude
and longitude were matched to river segments that vary in
length from 48 to 23,120 m. The river segments were de-
fined by the geospatial fabric used for the National Hydro-
logic Model (Regan et al. 2018), and the river segments are

split up to have roughly a 1-day water travel time. Refer to
(Oliver et al. 2021) for the full observational dataset. Specifi-
cally, DRB contains 456 stream segments with input features
at the daily scale from Jan 01, 1980, to Jul 31, 2020 (14,823
dates). In the following experiments, we use data from the
first 27 years (Jan 01, 1980, to Jan 20, 2007) for training and
then test in the next 13 years (Jan 21, 2007, to Jul 31, 2020).
Water flow prediction in Houston River network: Houston
(Harris County) Texas is subject to frequent flood hazards. A
major flood occurs somewhere in Harris County about every
two years, resulting from fluvial, pluvial, tropical cyclone
related storm surge, or most likely a compounded impact
from all three flooding mechanisms. The Houston River net-
work was extracted from the National Hydrography Dataset
Plus (NHDPlus) database (U.S. Geological Survey 2023).
The streamflow data were taken from the National Water
Model (NWM) reanalysis dataset (v2.0) (NOAA 2023) and
aggregated to 3-hr intervals. Houston River network consists
of 412 river segments with input features at the 3-hr inter-
val from Jan 01, 2000, to Dec 31, 2018 (55,520 time steps).
In the following experiments, we use data from the first 15
years (Jan 01, 2000, to Aug 04, 2015) for training and then
test in the next 4 years (Aug 05, 2015, to Dec 31, 2018)

Implementation Details
We implement the proposed method using Tensorflow 2 un-
der the environment of Windows 10, CPU i9 11900F, and
GeForce RTX 3080 GPU. Our implementation is released1.

For the DRB dataset, we generate the adjacency matrix A
based on the river distance between each pair of river seg-
ment outlets, represented as dist(i, j). We standardize the
stream distance and then compute the graph edge weights as
Aij = 1/(1 + exp(dist(i, j))). For the Houston River net-
work dataset, the adjacency matrix includes two-hop neigh-
boring rivers and is unweighted.

We first train a base model with the initial adjacency ma-
trix for 200 epochs (converged) without considering the fair-
ness, using Adam (α = 0.002) as the optimizer. From this
base model, we implement different candidate approaches to
improve the predictive and fairness performance. We use the
first 2/3 of the dataset for training and the remaining 1/3 for
testing. Within the training data, the last 1/3 of time steps are
further separated as validation data for graph masks learning
and priority adjustment.

Candidate Methods
We compare our method with the following baseline
methods: the base LSTM+GNN model using the ini-
tial adjacency matrix without consideration of spatial
fairness (Base), the regularization-based fairness enforce-
ment method (REG) (Kamishima et al. 2012), the adver-
sarial discriminator-based fairness enforcement approach
(ADL) (Alasadi, Al Hilli, and Singh 2019), and the graph-
based fairness-preserving algorithm using degree-specific
parameters (DSGNN) (Tang et al. 2020). For a fair compari-
son, the proposed method and all the baselines are built upon
the base model (Base).

1https://github.com/ai-spatial/Fair-Graph
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Method Delaware River Basin Houston River network
RMSE Fairness NSE Fairness

Base 1.833 0.616 0.721 0.113
REG 1.824 0.581 0.726 0.086
ADL 1.843 0.591 0.723 0.095

DSGNN 1.842 0.584 0.729 0.094
Fair-Graphma 1.807 0.605 0.732 0.123

Fair-Graphma+ft 1.804 0.601 0.737 0.114
Fair-Graphma+mo 1.795 0.596 0.740 0.111

Fair-Graphpa 1.830 0.556 0.723 0.075
Fair-Graphcpa 1.834 0.532 0.737 0.088

Fair-Graphpa+ma+mo 1.786 0.552 0.738 0.078
Fair-Graphcpa+ma+mo 1.792 0.537 0.758 0.087

Table 1: The fairness and predictive performance. For root mean squared error (RMSE) and Fairness, lower is better; for
Nash–Sutcliffe model efficiency coefficient (NSE), higher is better. Bold indicates the best performing model for a given metric
and region.

(a) (b) (c) (d)

Figure 2: The distributions of predictive root mean squared error (RMSE) by (a) Base, (b) the graph-based fairness-preserving
algorithm using degree-specific parameters (DSGNN), and (c) the proposed model in the Delaware River Basin. (d) The kernel
density plot for the predictive performance across stream segments in the Delaware River Basin.

Additionally, we include variants of the proposed meth-
ods to show the effectiveness of each component in the
proposed method. For the graph masking approach, we
implement the proposed method using only the aggrega-
tion mask and shared output layers (Fair-Graphma), us-
ing the aggregation mask and node-specific output layers
tuned using only the observations from each node (Fair-
Graphma+ft), and using both the aggregation mask and
the adaptation mask (Fair-Graphma+mo). For the constraint-
aware priority adjustment approach, we implement the pro-
posed method using only the priority adjustment follow-
ing Eq. 2 (Fair-Graphpa), using the constraint-aware priority
adjustment with performance upper-bound following Eq. 3
(Fair-Graphcpa), using graph masking and priority adjust-
ment (Fair-Graphpa+ma+mo), and the complete version us-
ing graph masking and constraint-aware priority adjustment
(Fair-Graphcpa+ma+mo).

Results
Overall accuracy and fairness evaluation: Table 1
presents a comprehensive overview of the performance of
our proposed methods and other baseline models. For wa-
ter temperature prediction, we use the RMSE as the eval-
uation metric (average error magnitude between predicted
and observed). For water flow prediction, we use NSE (Nash
et al. 1970), which is a widely used metric for the evalua-

tion of streamflow in hydrology. The value of NSE ranges in
(−∞,1] and the higher value indicates better performance.
The fairness performance is measured as the mean absolute
distance between the overall performance and the perfor-
mance of individual segments.

The proposed method outperforms the baselines (Base,
REG, ADL, DSGNN) in both accuracy and fairness (Ta-
ble 1). Moreover, the results show the effectiveness of
using both graph masking and priority adjustment. The
proposed Fair-Graphma+mo method outperforms the base
model, which shows the benefit of incorporating aggrega-
tion and adaptation masks. The improvement from Base to
Fair-Graphma confirms the benefit of refining graph neigh-
borhood in better capturing the effect of weather input and
water flows across different river segments. Moreover, Fair-
Graphma+mo performs better than Fair-Graphma+ft. This is
because the integration of the adaptation mask can mitigate
the data paucity issue by identifying and leveraging benefi-
cial training samples from other river segments.

In addition, we observe that Fair-Graphpa and Fair-
Graphcpa improve the fairness compared to the base model
and other baselines (REG, ADL, DSGNN). The meth-
ods using both priority adjustment and graph masking
(Fair-Graphpa+ma+mo and Fair-Graphcpa+ma+mo) gener-
ally have similar fairness performance as the methods using
only priority adjustment (Fair-Graphpa and Fair-Graphcpa),
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while exhibiting improved accuracy. This demonstrates that
the performance enhancement brought by graph masking
does not compromise the overall fairness. The incorpora-
tion of the upper-bound constraint into priority adjustment
presents a trade-off between enhancing fairness and predic-
tive performance. Consistently training under-performing
river segments that have already reached the performance
upper-bound can negatively affect the performance on other
segments and thus limit overall accuracy. One potential
reason why Fair-Graphpa+ma+mo and Fair-Graphpa have
better fairness performance than their counterparts using
performance upper-bound (Fair-Graphcpa+ma+mo and Fair-
Graphcpa) is that the performance of well-performing seg-
ments get degraded due to consistent training on under-
performing segments as performed by the priority adjust-
ment without considering performance upper-bound. Thus,
the performance of these well-performing segments gets
closer to the overall performance, leading to a fairness im-
provement.
Detailed fairness evaluation: Fig. 2 (a)-(c) shows the distri-
butions of RMSE for a subset of segments by Base, DSGNN,
and the proposed Fair-Graphcpa+ma+mo model. The pro-
posed method effectively reduces the RMSE for segments
that are poorly modeled by Base and DSGNN. Fig. 2 (d)
presents the density distributions for the RMSE for river
temperature predictions by the base model, the DSGNN
model, and the proposed model (Fair-Graphcpa+ma+mo).
The distribution of RMSE for the proposed model is nar-
rower, which indicates an improvement in fairness. More-
over, our proposed model improves on poorly performing
segments (right section of RMSE distribution) while main-
taining the competitive performance in well-performing seg-
ments.

Also, it is important to point out the real-world impact of
these improvements in predictive performance and fairness.
The changes in performance values for stream network pre-
dictions are small but environmentally significant. For ex-
ample, subtle changes in water temperature (e.g., less than
0.1 degree) can greatly affect the aquatic environment for
fish growth (Letcher et al. 2015). Such small changes can
also lead to strong dynamics of concentration of nutrients in
the water (Hanson et al. 2020).
Graph masking analysis: Fig. 3 illustrates the learned
graph masks for a specific node (highlighted in red) in the
context of predicting stream water temperature. Fig. 3 (b)
shows that certain river features have been excluded in the
aggregation phase due to their limited effect on improving
predictions for the target node. The reason is two-fold: (1)
the information from these rivers can be redundant to that of
other rivers, and (2) certain characteristics of these streams
such as groundwater and reservoir impact may diminish
their influence on downstream areas. Fig. 3 (c) shows that
the river segments selected by the adaptation mask can be
located far from the target river. This is because these distant
segments might share similar weather conditions and stream
characteristics with the target river, and thus contribute to
enhancing the prediction for the target river.
Evaluation under perturbed data: To test the proposed
method in scenarios with sparser and low-quality data, we

(a) (b) (c)

Figure 3: Visualizations of graph masks in the DRB for a
specific node (highlighted in red), with green indicating a
relatively higher weight. (a): Initial adjacency matrix. (b):
The aggregation mask. (c): The adaptation mask.

Method Delaware River Basin
RMSE Fairness

Base 2.037 0.635
REG 2.011 0.611
ADL 2.052 0.620

DSGNN 2.090 0.615
Fair-Graphma 1.999 0.630

Fair-Graphma+ft 1.985 0.620
Fair-Graphma+mo 1.974 0.615

Fair-Graphpa 2.014 0.594
Fair-Graphcpa 1.983 0.588

Fair-Graphpa+ma+mo 1.970 0.594
Fair-Graphcpa+ma+mo 1.953 0.586

Table 2: The fairness and predictive performance on per-
turbed data. For root mean squared error (RMSE) and Fair-
ness, lower is better. Bold indicates the best performing
model for a given metric and region.

randomly select 30 out of the 74 river segments in the DRB
that originally possess over 500 observations, and then ran-
domly drop 90% of water temperature observations on these
segments (Table 2). The graph masking method improves
overall RMSE, which indicates the ability to capture the
underlying relationships between different segments. Addi-
tionally, the proposed methods achieve comparable fairness
measures compared to the test using complete data (Table 1).

Conclusions
We introduce a new method for enhancing prediction
and spatial fairness on graphs using graph masking and
constraint-aware priority adjustment. Our experiments on
two large-scale heterogeneous river basins have demon-
strated the effectiveness of the proposed method. Moreover,
the proposed method is shown to learn meaningful stream
relationships and benefit graph learning using sparser data.
The proposed method is widely applicable to many other
applications (e.g., agriculture and traffic management) in
which graphs can be used to represent the spatial relation-
ships amongst entities. Future work is planned on graph
masking for unmonitored streams and creating new fairness
metrics that consider both fairness preservation and predic-
tive accuracy. Additionally, future work could focus on de-
veloping a generalized performance upper-bound estimation
applicable across diverse models and scenarios.
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