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Abstract

Accurate prediction of meteorological elements, such as tem-
perature and relative humidity, is important to human liveli-
hood, early warning of extreme weather, and urban gover-
nance. Recently, neural network-based methods have shown
impressive performance in this field. However, most of them
are overcomplicated and impenetrable. In this paper, we pro-
pose a straightforward and interpretable differential frame-
work, where the key lies in explicitly estimating the evo-
lutionary trends. Specifically, three types of trends are ex-
ploited. (1) The proximity trend simply uses the most recent
changes. It works well for approximately linear evolution. (2)
The sequential trend explores the global information, aim-
ing to capture the nonlinear dynamics. Here, we develop an
attention-based trend unit to help memorize long-term fea-
tures. (3) The flow trend is motivated by the nature of evo-
lution, i.e., the heat or substance flows from one region to
another. Here, we design a flow-aware attention unit. It can
reflect the interactions via performing spatial attention over
flow maps. Finally, we develop a trend fusion module to adap-
tively fuse the above three trends. Extensive experiments on
two datasets demonstrate the effectiveness of our method.

Introduction
The spatiotemporal prediction of meteorological elements,
such as temperature and relative humidity, is of great signif-
icance to our daily life. Conventional numerical weather pre-
diction (NWP) methods mainly resort to specific mathemat-
ical models, which are known as computationally expensive
and time-consuming. Later, data-driven shallow neural net-
works are utilized in this field. For example, Kuligowski et
al. (Kuligowski and Barros 1998) employed a backpropaga-
tion neural network to predict 6-hour precipitation amounts.

In the last decade, deep neural networks have achieved
remarkable success in many fields, including computer vi-
sion (Peng et al. 2022), natural language processing (Ma
et al. 2023), etc. As for the spatiotemporal prediction tasks,
existing methods can be grouped into two types. (1) The
first one is based on convolutional neural networks (CNNs)
(Zhang, Zheng, and Qi 2017; Xu et al. 2018; Gao et al.
2022b; Tan et al. 2023), where the spatial dependencies and
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Figure 1: An example of temperature evolution. The values
of central region (u) at time t, t + 1, and t + 2 are 277.98
K, 278.58 K, and 279.59 K, respectively. That is, it heats up
by 0.6 K and 1.01 K. Most of the previous methods, such
as PredRNN and TAU, directly predict u through implicit
networks. In this paper, we explicitly estimate the change
δu, which can better reflect the meteorological evolution.

temporal dynamics are both modeled by convolution oper-
ations. However, these methods show a weakness in cap-
turing long-term sequential variations. (2) The second line
also learns the spatial features by convolution, but employs
recurrent neural networks (RNNs) to better capture the tem-
poral dynamics (Shi et al. 2015; Wang et al. 2017, 2019; Lin
et al. 2020; Wu et al. 2021; Huang et al. 2022b). Specifi-
cally, Shi et al. (Shi et al. 2015) first replaced the fully con-
nected layer in long short-term memory (LSTM) units with
convolution, and proposed a new model ConvLSTM. After-
wards, ConvLSTM has become one of the most representa-
tive benchmark in this filed. A variety of subsequent meth-
ods were developed to further improve the performance. For
example, Wang et al. (Wang et al. 2017) introduced a spa-
tiotemporal state to memorize both spatial appearances and
temporal variations. Lin et al. (Lin et al. 2020) designed
a self-attention mechanism to extract spatial features with
both global and local dependencies.

Despite the effectiveness of previous studies, most of
them rely on overcomplicated and obscure models. Re-
searchers and users know little about their internals, thus
limiting the development of this field. Recently, explain-
able artificial intelligence, which aims to reveal the inter-
nal mechanisms or decision basis of black-box models,
has received increasing attention. However, existing studies
mainly focused on the tasks of image classification (Zhou
et al. 2016; Zhang et al. 2019, 2022) or time series anal-
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ysis (Barić et al. 2021; Arras et al. 2019; Hou and Zhou
2020). As for the spatiotemporal prediction, there are few
efforts devoted to the interpretability of models. Huang et
al. (Huang et al. 2022a) first explored the internal mecha-
nism of a modified ConvGRU (convolutional gated recurrent
unit). Nevertheless, they only provided a post-hoc analysis,
and the prediction model itself was not interpretable.

In this paper, we propose a self-explanatory framework
for meteorological spatiotemporal prediction. As shown in
Figure 1, the evolution of meteorological elements can be
represented as a small increment based on their current val-
ues. Standing on this observation, we explicitly formulate
the evolution by estimating the underlying trend. Specifi-
cally, as shown in Figure 2, three types of trends are ex-
ploited. (1) The proximity trend (PT) estimates the change
at time t according to the change at time t-1. Obviously, PT
works well when the curve is approximately linear at time t.
(2) The second type is the sequential trend (ST). Instead of
only using the proximity information, ST explores the long-
term information. Compared with PT, ST performs better
when the curve changes nonlinearly1. (3) The third type is
the flow trend (FT). This is motivated by that the evolution
is driven by the information interaction with surrounding re-
gions. For example, as for the temperature, the heat tends to
flow from hot to cold regions.

Based on the above three trends, we propose an inter-
pretable trend-aware RNN, named iTrendRNN. The key of
our model is a trend estimator, which has three modules
for learning three trends and a fusion module for fusing
them. Specifically, (1) the proximity trend is captured by a
PT module, which directly replicates the change of the pre-
vious moment. (2) The sequential trend is modeled by an
ST module. Here, we develop a new attention-based trend
unit (ATU) to estimate the long-term trend. ATU can ob-
tain better global information via performing temporal at-
tention over historical features. Furthermore, we employ the
true trend as a constraint to guide the learning process of
ATU. (3) The flow trend is estimated by an FT module. Here,
we propose a novel flow-aware attention unit (FAU). It per-
forms spatial attention over flow maps, thereby reflecting the
meteorological interactions. (4) Finally, we develop a trend
attention mechanism to adaptively fuse these trends.

Overall, the main contributions of this paper are summa-
rized as follows:
• We propose an interpretable trend-aware RNN (iTren-

dRNN) for meteorological spatiotemporal prediction. It
follows a straightforward differential framework that ex-
plicitly formulates the evolution as an estimation of the
trend.
• We develop three types of trends, i.e., proximity trend

(PT), sequential trend (ST), and flow trend (FT). All of
them can be well explained. Furthermore, we design a
fusion module to adaptively fuse these trends.
• As for ST, we propose an attention-based trend unit

(ATU) to better capture the long-term features. More-
over, its temporal weight can indicate the role of each
1In practice, the temperature within a day may usually rise first

and then decrease. At the turning point, ST is the better choice.

time step. As for FT, we develop a flow-aware attention
unit (FAU), where the meteorological interactions can be
reflected by its spatial attention mechanism.
• We conduct extensive experiments to evaluate the pro-

posed iTrendRNN. The results show that our model out-
performs existing methods. We also perform a thorough
analysis to investigate the role of different trends.

Related Work
Spatiotemporal Prediction Models
The spatiotemporal prediction task aims to forecast future
data frames based on historical observations. It covers many
real-world applications, such as video prediction (Wu et al.
2021; Gao et al. 2022b), weather forecast (Shi et al. 2015,
2017), traffic flow prediction (Dai et al. 2022a; Xia, Jin,
and Chen 2022), etc. In general, the prevailing studies can
be divided into CNNs-based and ConvRNNs-based models.
Specifically, (1) in the CNN-based line, convolution opera-
tions are used to capture not only spatial dependencies, but
also temporal dynamics. For example, Zhang et al. (Zhang,
Zheng, and Qi 2017) employed a residual CNN to model the
spatiotemporal properties of crowd traffic. Gao et al. (Gao
et al. 2022b) developed a CNN translator to learn tempo-
ral evolution. Nevertheless, most of them capture the dy-
namics via performing convolution in the time dimension,
which can not effectively model the complex and long-term
sequential changes (He, Chow, and Zhang 2020; Huang et al.
2023). (2) In the ConvRNN-based line, the temporal dynam-
ics are handled by various RNNs. As a representative base-
line, ConvLSTM (Shi et al. 2015) first integrated convolu-
tion into LSTM cells. Later, Wang et al. (Wang et al. 2017)
proposed a spatiotemporal LSTM cell, which introduced a
new state to memorize both spatial appearance and tempo-
ral variations. In (Wang et al. 2019), a memory-in-memory
(MIM) block was designed to exploit the differential signals
between adjacent states, aiming to model the non-stationary
and approximately stationary dynamics. Recently, Lin et al.
(Lin et al. 2020) proposed a novel self-attention ConvL-
STM. They employed a self-attention memory module to
capture features with long-range dependencies in terms of
spatial and temporal domains. Moreover, generative adver-
sarial network-based (Ravuri et al. 2021; Dai et al. 2022b)
and transformer-based models (Gao et al. 2022a; Peng and
Huang 2022) also attracted recent attention. However, the
former is difficult to train, and the latter requires a lot of
computing resources. Therefore, we do not discuss them in
this work.

Although the above methods have shown impressive per-
formance in specific tasks, they have become increasingly
complex and difficult to understand. In this paper, we work
towards a more transparent and interpretable model.

Explainable Artificial Intelligence
Explainable artificial intelligence aims to reveal the internal
mechanisms or decision basis of black-box models. In terms
of different networks for distinct tasks, existing studies can
be grouped into three types. (1) The most widely studied is

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

22133



(a) Proximity trend. (b) Sequential trend. (c) Flow trend.

Figure 2: Three types of trends in this work. In subfigures (a) and (b), the T -axis represents the time step, and the h-axis means
the value of the hidden state. In subfigure (c), the arrows indicate the information flow into or out of the central region.

to explain CNNs for image classification tasks. For exam-
ple, Zeiler et al. (Zeiler and Fergus 2014) first visualized the
intermediate layers in CNNs via a deconvolutional network.
The class activation mapping family of methods (Zhou et al.
2016; Selvaraju et al. 2017; Belharbi et al. 2022) provided
the basis for classification by highlighting evidential im-
age regions. Recently, Nauta et al. (Nauta et al. 2023) pro-
posed to learn prototypical parts in a self-supervised fash-
ion, which correlated better with human vision. (2) Explain-
ing RNNs for time series analysis also attracted consider-
able interest. Herein, attention-based techniques are the most
popular (Tran et al. 2018; Munkhdalai et al. 2019; Chien
and Chen 2021; Papi, Negri, and Turchi 2022). They usu-
ally employed attention weights to reflect the importance of
each time step, thus revealing the crucial parts. (3) Com-
pared with CNNs and RNNs, there are few studies focusing
on the interpretability of spatiotemporal prediction models.
Huang et al. (Huang et al. 2023) proposed an interpretable
local flow attention mechanism for traffic flow prediction.
Beyond the similarity or correlation of features, Huang et al.
(Huang et al. 2022a) suggested to explore the inner mecha-
nism from two aspects, i.e., image generation analysis and
spatiotemporal dynamics analysis.

In spite of the progress made by previous studies, an in-
terpretable model for meteorological spatiotemporal predic-
tion is under-researched. Particularly, the trend information,
which well reflects the meteorological evolution, has never
been explicitly exploited. In this paper, we propose an inter-
pretable trend-aware model.

Methods

In this section, we first formally define the task, and then
introduce our method in detail.

Task Definition

Meteorological Spatiotemporal Prediction Task (MSPT):
Given a meteorological input sequence uT−L+1:T =
{uT−L+1, ..., uT−1, uT }, MSPT aims to predict the most
likely length-K sequence in the future, denoted as
ûT+1:T+K = {ûT+1, ..., ûT+K−1, ûT+K}. Here, ut ∈
RM×N is the observation at time t. L and K represent the
lengths of the input and output sequences, respectively.

Motivation for Estimating Trends
To improve the interpretability of neural network-based
methods, we propose to build a self-explanatory model from
the perspective of estimating trends. Specifically, given a
value u(x, y, t0 + δt), we have the following formula:
u(x, y, t0 + δt) = u(x, y, t0) + (u(x, y, t0 + δt)− u(x, y, t0))

= u(x, y, t0) + δu|t=t0

.

(1)
(x, y) indicates the position. t0 means the current time. δt is
the time increment, and δu is the corresponding increment
of u, which is termed as trend in this work.

Eq. (1) effectively formulates the spatiotemporal evolu-
tion of meteorological elements. For example, the future
temperature usually increases or decreases by a small incre-
ment based on the current value. In this work, we explicitly
follow this equation to design our model, which thus can be
easily understood and well explained.

Framework Overview

Figure 3: The structure of iTrendRNN. ut is the input data,
and ht is the hidden state. Enc denotes the input encoder.
Asm means the assimilation module. FT, PT, and ST are
the flow trend, proximity trend, and sequential trend, respec-
tively.

As described in the introduction part, three types of trends
are exploited, namely proximity trend (PT), sequential trend
(ST), and flow trend (FT). Based on them, we propose a new
model iTrendRNN, which is shown in Figure 3. Here, to en-
hance the expressiveness, we estimate the trend on a hidden
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Figure 4: The inner structure of ATU. s memorizes the trend dynamics and δt−1 is the most recent trend. Notice that s1 and h1
are initialized to 0, hence the temporal attention starts from t = 2.

spaceH. Concretely, at time t, the input ut is mapped by an
encoder (Enc). Then we fuse the input data and hidden state
(ht ∈ H) with an assimilation module (Asm)2. Asm can
help ht leverage the recent input data3. After that, ht is sent
to a trend estimator to obtain its trend δt. Finally, we update
the hidden state as follows: ht+1 = ht + δt. ht+1 will be
delivered to a CNN decoder to generate the prediction ût+1.

In our framework, the evolution is explicitly formulated
by ht+1 = ht + δt. This exactly follows Eq. (1). Next, we
mainly introduce the trend estimator.

Trend Estimator
The trend estimator first calculates three types of trends, then
utilizes a fusion module to fuse them.

Proximity Trend (PT) The idea of proximity trend (δPTt )
is to use the change at time t − 1 to estimate the future
change, i.e., δPTt =ht − ht−1. PT is highly straightforward
and intuitive. It can work well when h changes approxi-
mately linearly at time t.

Sequential Trend (ST) As shown in Figure 2 (b), when
the evolution curve is locally similar to a quadratic function,
PT has a significant error at the inflection point. This is be-
cause it only sees limited historical information, thus cannot
accurately estimate the future trend. To alleviate the issue,
we develop the sequential trend, which exploits the global
information.

Specifically, a state pool (sp) is employed to memorize
all historical states, i.e., sp = {h1, h2, ..., ht−1}. Then we
denote the change hτ+1 − hτ as δτ . Finally, the sequential
trend δSTt is calculated as follows:

δSTt = f(δ1, δ2, ..., δt−1). (2)
Here, f(·) is the ST function. We hope that δSTt equals to the
true trend (ht+1−ht). Therefore, we adopt the following ST
loss lst(t):

lst(t) = ||δSTt − (ht+1 − ht)||22. (3)
2Here, Enc and Asm are implemented by convolution layers.
3Without ambiguity, the output of Asm is still denoted as ht.

As for f(·), it can be implemented by a recurrent cell,
such as ConvGRU (Ballas et al. 2015). However, Con-
vGRU tends to retain short-term information in spatiotem-
poral prediction tasks (Huang et al. 2022a). To better cap-
ture the global trend, we develop an attention-based trend
unit (ATU), which is shown in Figure 4.

Concretely, an ST state st−1 memorizes the historical
trend dynamics, then we calculate the candidate ST state s′t
as follows:

rt = σ(Wrδ ∗ δt−1 +Wrs ∗ st−1)
s′t = tanh(Wsδ ∗ δt−1 + rt ◦ (Wss ∗ st−1))

. (4)

Here, rt is the reset gate. ∗ denotes the convolution operation
with W as its parameter.

Then, we use s′t as the query to extract important infor-
mation from each historical state:

Q =WT
q ∗ s′t

Ki =WT
ki ∗ si

λi = softmax(QTKi)

at =
∑
i

λi · si

. (5)

Q andK are the results of query and key, respectively, where
Wq and Wk are the parameters. at combines all ST states
with λi as the coefficients. Notice that the early states can
play important roles when their coefficients are large. There-
fore, ATU can better capture the long-term features.

Finally, we obtain δSTt as follows:

zt = σ(Wzδ ∗ δt−1 +Wzs ∗ s′t +Wza ∗ at)
st = (1− zt) ∗ s′t + zt ∗ at

δSTt = conv(st)

. (6)

Here, zt is the update gate. conv(·) means the convolutional
mapping.

Flow Trend (FT) As for the meteorological elements, in-
formation flow is a significant internal cause of their evolu-
tion. For example, the heat flows from hot to cold regions,
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Figure 5: The inner structure of FAU. dt denotes the local
difference. D is a distance-based prior matrix, where the
closer regions have large weights.

and the substance flows from high-concentration to low-
concentration regions. Inspired by such a common sense, we
develop the flow trend (FT).

Specifically, the above flows are usually driven by tem-
perature or concentration difference. Therefore, at a given
point ht,i,j , we first calculate the difference between it and
the surrounding regions, which is shown as follows:

dt,i′,j′ = ht,i′,j′ − ht,i,j . (7)
Here, (i′, j′) ∈ N(i, j) is the neighborhood of (i, j).

Then we perform spatial attention on d to capture the flow
features, as shown in Figure 5. Here, the previous FT trend
δFTt−1 serves as the query. Eq. (8) gives the details:

Q̃ = W̃T
q ∗ δFTt−1

K̃i′,j′ = W̃T
k ∗ dt,i′,j′

λ̃i′,j′ = softmax
(
Di′,j′ ∗

(
Q̃Ti,j · K̃i′,j′

))
f ′t =

∑
(i′,j′)

λ̃i′,j′ · dt,i′,j′

. (8)

Q̃ and K̃ are the results of query and key, with W̃q and W̃k as
the parameters. D is a distance-based prior matrix4 (Huang
et al. 2023).

Finally, the flow trend δFTt is calculated as follows:

gt = σ(Wgd ∗ dt +Wgf ′ ∗ f ′t +Wgf ∗ δFTt−1)
δFTt = gt ∗ δFTt−1 + (1− gt) ∗ f ′t

, (9)

where gt is the update gate with Wg· as the parameters.

Trend Fusion Inspired by the selective kernel network
(SKNet) (Li et al. 2019), which aims to fuse multi-
ple branches with different kernel sizes, we develop an
attention-based fusion module.

Specifically, we first take the average of PT, ST, and FT,
where the outcome is denoted as AT. Different from SKNet,
we compress AT with a downsampling function instead of a
global average pooling. This is because that various trends
may play different roles in different positions. Then the out-
come CT is utilized to generate the adaptive fusion weight
w, which is shown as follows:

p = us1(CT ), s = us2(CT ), f = us3(CT )

wp, ws, wf = softmax(p, s, f)
. (10)

4See the Appendix for more details about D.

Here, us is the upsampling function, aiming to map CT back
to the original size. wp, ws, and wf are the weights of PT,
ST, and FT, respectively.

Finally, we add up the three trends with their weights:

δt = wp ∗ δPTt + ws ∗ δSTt + wf ∗ δFTt . (11)

Loss Function
The loss function consists of two parts, i.e., the prediction
loss lp and the sequential trend loss lst. (see Eq. (3) for
details.) Here, lp is the commonly used mean square error,
which is calculated as follows:

lp(t) = ||ut − ût||22. (12)

ut is the true observation and ût is the prediction. Finally,
we obtain the loss l as follows:

l =
∑
t

(lp(t) + lst(t)). (13)

Interpretable Structures in Our Model
At the end of this section, we summarize the interpretable
structures in our model. Specifically, (1) the proposed iTren-
dRNN exactly follows the differential framework in Eq. (1),
which well formulates the meteorological evolution. (2) PT
simply uses the most recent changes, so it is exceedingly in-
tuitive. (3) ST is explicitly constrained by lst, aiming to learn
the true trends. Furthermore, the temporal attention weights
can reveal the roles of different historical states. (4) FT re-
flects the nature of evolution, namely the flow of matter or
energy. The spatial attention weight also indicates the degree
of interaction. (5) The trend weights in the fusion module
show the importance of each trend.

Experiments
In this paper, we conduct extensive experiments on two im-
portant meteorological elements, i.e., atmospheric tempera-
ture and relative humidity.

Datasets
The European Centre for Medium-Range Weather Forecasts
(ECMWF) provides the global climate and weather data5.
In our experiment, we focus on the temperature and relative
humidity near the ground. Specifically, we select a region in
East Asia, with latitude ranging from 20◦ N to 40◦ N and
longitude ranging from 110◦ E to 130◦ E. Here, the spatial
resolution is 0.25◦. We set the time resolution to 2 hours,
and use the previous six frames to predict the next six. The
training set consists of 5,840 sequences from 2018 and 2019,
and the test set contains 2,912 sequences from 2020.

Implementation Details
The details of the proposed iTrendRNN are listed as follows:
• Input encoder (Enc in Figure 3): It is a two-layer convo-

lutional network, where the channel numbers are 32 and
64, respectively. The kernel sizes are both set to 3.
5https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-

era5-pressure-levels?tab=overview
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• Assimilation module (Asm in Figure 3): It is a one-layer
convolution network, where the kernel size is 3.
• Proximity trend module: It is a non-parametric module.
• Sequential trend module: As for Eq. (4), the channel

number is 64 and the kernel size is 5. As for Eq. (5), the
query and key functions are both implemented by 3 × 3
convolutions. As for Eq. (6), the kernel size is 5.
• Flow trend module: The query and key functions in Eq.

(8) are both implemented by 1 × 1 convolutions. The
neighborhood size is set to 5. Moreover, the kernel size
in Eq. (9) is 5.
• Fusion module: The stride and kernel size in downsam-

pling and upsampling functions are 2 and 3, respectively.

Furthermore, our code is publicly available at
https://github.com/hub5/iTrendRNN.

Baselines and Evaluation Metrics
We compare our model with the following popular methods:
ConvGRU (Ballas et al. 2015), ConvLSTM (Shi et al. 2015),
TrajGRU (Shi et al. 2017), PredRNN (Wang et al. 2017),
MIM (Wang et al. 2019), PhyDNet (Guen and Thome 2020),
Sa-ConvLSTM (Lin et al. 2020), SimVP (Gao et al. 2022b),
and TAU (Tan et al. 2023).

Two commonly used metrics are employed to evaluate the
prediction performance, i.e., mean square error (MSE) and
mean absolute error (MAE). A better prediction is indicated
by lower MSE and MAE.

Overall Performance

Temperature Relative humidity
MSE MAE MSE MAE

ConvGRU 1.32 0.79 43.22 4.54
ConvLSTM 1.25 0.77 43.09 4.50

TrajGRU 1.09 0.70 41.59 4.42
PredRNN 1.15 0.75 40.30 4.35

MIM 1.06 0.70 39.57 4.28
PhyDNet 1.13 0.72 41.15 4.38

SA-ConvLSTM 1.19 0.73 40.51 4.31
SimVP 1.19 0.76 41.91 4.48
TAU 1.04 0.70 40.37 4.35

iTrendRNN 0.87 0.63 36.97 4.17

Table 1: Evaluation metrics of all methods.

Table 1 reports the evaluation metrics of all methods.
We can see that our iTrendRNN outperforms all the base-
lines. Specifically, as for the temperature dataset, we im-
prove MSE from 1.04 to 0.87, and MAE from 0.70 to 0.63.
As for the relative humidity dataset, we improve MSE from
39.57 to 36.97, and MAE from 4.28 to 4.17.

Figure 6 shows the step-wise MSE for two datasets. We
can observe that our curves are generally lower than the oth-
ers. This demonstrates that the proposed iTrendRNN is con-
sistently superior. (See the Appendix for more prediction re-
sults.)

Ablation Study
In this part, we evaluate the role of each proposed module.

(a) Temperature.

(b) Relative humidity.

Figure 6: The step-wise MSE for two datasets.

Firstly, we explore the effectiveness of each trend. Specif-
ically, the variants are denoted as w/o PT , w/o ST , and
w/o FT , each of which means discarding the corresponding
trends. The results are reported in Table 2. We find that: (1)
the performance of all variants decreases. This suggests that
each trend module helps to make a more accurate prediction.
(2) w/o ST achieves the worst metrics, which indicates that
ST is the most important.

Temperature Relative humidity
MSE MAE MSE MAE

w/o PT 0.98 0.69 39.09 4.32
w/o ST 1.46 0.82 45.82 4.73
w/o FT 1.06 0.72 40.17 4.37

iTrendRNN 0.87 0.63 36.97 4.17

Table 2: Evaluation metrics of all trend variants.

Secondly, we explore the effectiveness of trend fusion
module. Here, we compare it with the other three fusion
ways, i.e., average fusion (AF ), convolution fusionCF , and
SKNet fusion (SF ). The results are reported in Table 3. We
can see that our fusion strategy yields the best results. Par-
ticularly, compared with SF , our method is better because
it takes into account that various trends may play different
roles in different regions.

Temperature Relative humidity
MSE MAE MSE MAE

AF 0.94 0.66 39.15 4.32
CF 0.92 0.65 38.26 4.28
SF 0.89 0.64 37.89 4.24

iTrendRNN 0.87 0.63 36.97 4.17

Table 3: Evaluation metrics of all fusion variants.
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(a) The data sequence. Here, we are predicting the 7-th frame.

(b) Temporal attention weights. According to
Figure 4, we are esimating δST

6 . Hence, the
historical states include s2, s3, s4, and s5.

(c) Information flow. According to Eq. (8), we
show the flow with (λ̃i′,j′ · dt,i′,j′).

(d) Trend attention weights. wf , wp,
and ws are for the flow trend, proximity
trend, and sequential trend, respectively.

Figure 7: Attention analysis on a temperature sample.

Attention Analysis
In this part, we analyze the attention mechanisms used in
iTrendRNN.

Firstly, we visualize the temporal attention in ST. Figures
7(b) and 8(b) show the learned weights. We can see that the
most recent state s5 has the largest weight λ5. On the other
hand, λ2, λ3, and λ4 also play a nonnegligible role, which
indicates the importance of long-term features.

Secondly, we visualize the spatial flow attention in FT.
Figures 7(c) and 8(c) show the learned information flow.
Specifically, the left subfigure depicts the values of a given
position (i, j) and its neighborhood. The right subfigure
shows the information flow from its neighborhood. We can
find that: (1) as for Figure 7(c), the temperature of the upper
part is higher than that of (i, j), and the corresponding flow
is also generally positive. The phenomenon in the left part is
exactly the opposite. (2) As for Figure 8(c), something sim-
ilar happens. For example, the humidity of the upper part is
lower than that of (i, j), and the corresponding flow is also
generally negative.

Lastly, we visualize the attention in trend fusion module.
Figures 7(d) and 8(d) show the learned weights. We can ob-

(a) The data sequence. Here, we are predicting the 7-th frame.

(b) Temporal attention weights. According to
Figure 4, we are esimating δST

6 . Hence, the
historical states include s2, s3, s4, and s5.

(c) Information flow. According to Eq. (8), we
show the flow with (λ̃i′,j′ · dt,i′,j′).

(d) Trend attention weights.wf ,wp, and
ws are for the flow trend, proximity
trend, and sequential trend, respectively.

Figure 8: Attention analysis on a relative humidity sample.

serve that: (1) ST has the largest weights, which means it is
the most important part. (2) In Figure 8(d), the weight distri-
bution in the spatial domain shows certain differences. This
suggests that various trends play different roles in different
positions, thus we improve the fusion way in SKNet. (See
the Appendix for more attention analysis.)

Conclusion
In this paper, we propose an interpretable trend-aware RNN,
named iTrendRNN, for meteorological spatiotemporal pre-
diction tasks. iTrendRNN explicitly adopts a differential
prediction framework, where the key lies in estimating the
evolutionary trends. Herein, three types of trends are ex-
ploited, i.e., proximity trend (PT), sequential trend (ST), and
flow trend (FT). All of them can be well explained. Further-
more, we develop an attention-based trend unit for ST, aim-
ing to better capture long-term features. We also design a
flow-aware attention unit for FT, which can reflect the lo-
cal information interactions. Finally, a trend fusion module
is employed to adaptively fuse the three trends. Extensive
experiments on two datasets show that our iTrendRNN out-
performs existing methods.
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